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Abstract: Hemorrhagic shock is the primary cause of death in patients with severe trauma, and
the development of rapid and efficient hemostatic methods is of great significance in saving the
lives of trauma patients. In this study, a polycaprolactone (PCL) nanofiber membrane was prepared
by electrospinning. A PCL–PDA loading system was developed by modifying the surface of poly-
dopamine (PDA), using inspiration from mussel adhesion protein, and the efficient and stable loading
of thrombin (TB) was realized to ensure the bioactivity of TB. The new thrombin loading system
overcomes the disadvantages of harsh storage conditions, poor strength, and ease of falling off, and it
can use thrombin to start a rapid coagulation cascade reaction, which has the characteristics of fast
hemostasis, good biocompatibility, high safety, and a wide range of hemostasis. The physicochemical
properties and biocompatibility of the PCL–PDA–TB membrane were verified by scanning electron
microscopy, the cell proliferation test, the cell adhesion test, and the extract cytotoxicity test. Red
blood cell adhesion, platelet adhesion, dynamic coagulation time, and animal models all verified
the coagulation effect of the PCL–PDA–TB membrane. Therefore, the PCL–PDA–TB membrane has
great potential in wound hemostasis applications, and should be widely used in various traumatic
hemostatic scenarios.

Keywords: trauma; electrospinning; polydopamine modification; thrombin; hemostatic method

1. Introduction

In the emergency department, trauma-induced hemorrhagic shock is the leading
cause of death [1–3]. Therefore, rapid and efficient hemostatic first aid measures are
essential to save the lives of trauma patients, especially in cases of traumatic bleeding of
the liver, spleen, kidneys, and other substantial visceral trauma, as well as bleeding from
large vessels such as the aorta, femoral artery, and mesenteric artery [4–7]. At present,
the main hemostatic materials used in the clinic include the gelatin sponge, fibrin glue,
polysaccharide hemostatic powder, etc., [8–10] whose main hemostatic mechanisms include
the following: an adsorbent material, which networks the formation of components in
the blood, thereby providing a mechanical structure for the mutual adhesion between
platelets in order to promote thrombosis; a compress material, which promotes hemostasis
by absorbing water and expanding or promotes mechanical hemostasis by dissolving the
adhesion wound; and hemostatic materials, which exert hemostatic effects by delivering
procoagulant drugs [11–13]. However, these hemostatic materials have certain limitations,
such as low hemostatic efficiency, poor biocompatibility, harsh storage, and use conditions,
etc., meaning they cannot fully meet the urgent needs of all trauma response first aid [14,15].
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Exploring and developing new rapid hemostatic materials with better performance is an
urgent clinical need.

Thrombin is a serine protease extracted from human or animal blood. It is a biological
factor that plays a major role in the coagulation cascade, activating FXIII and converting
fibrinogen in the blood into fibrin to achieve hemostasis [16]. As we all know, thrombin
has many advantages: relevance to a variety of bleeding wound types, rapid function,
reasonable biocompatibility, and non-toxicity, ease of obtaining and using, etc., which lead
to its wide use in capillaries, small blood vessels, and organs to stop bleeding; additionally,
it has an excellent hemostatic effect [17,18]. However, on the other hand, because of its
near-non-adhesion, when used for bleeding in larger wounds, it is easily washed away by
the blood flow, which causes it to lose its hemostatic effect; furthermore, its harsh storage
environment (low temperature) further limits its range of applications [19,20]. Therefore, it
is important to develop thrombin-loaded membranes or other materials instead of powder-
based materials.

Thrombin can be linked by a polymer to convert the thrombin powder into a thrombin
membrane for acute hemostasis. Nanofiber membranes prepared using electrospinning
technology have the characteristics of large specific surface area, small pore size, and high
porosity [21,22]. Because their nanostructure can simulate the structure of the extracellular
matrix (ECM), they can be loaded with active ingredients that promote therapy. They also
provide air to the wound area and keep the healing environment moist [23]. Chen Kai et al.
prepared a novel curcumin-loaded sandwich nanofiber membrane by sequential electro-
spinning, which can effectively prevent bleeding, inhibit bacteria, and accelerate wound
healing [24]. Liu Tao et al. prepared a chitosan/polyethylene oxide/kaolin nanofiber
membrane by electrospinning and found that their nanofiber membrane of 10% weight per-
centage kaolin showed excellent hemostatic performance; it was proven that back wounds
on 14-day-old rats were healed without causing any obvious inflammatory reaction [25].
Mirmajidi et al. prepared three layers of chitosan–polycaprolactone/polyvinyl alcohol–
melatonin/chitosan–polycaprolactone nanofiber dressings by electrospinning and found
that it had good attachment to hydrophilic support cells and effectively promoted wound
healing in a full-layer skin resection model of rats [26]. Based on the above advantages,
the use of electrospinning technology to transform thrombin powder into a thrombin
membrane can produce the structural advantages of an electrospun membrane while
maintaining the hemostatic activity of thrombin, producing a synergistic effect for wound
hemostasis, which is a new and effective strategy. PCL is often used as a raw material
in electrospinning technology. It is a commonly used biodegradable synthetic polymer
material that degrades into non-toxic metabolites in vivo [27–29]. However, due to the
hydrophobic surface structure of pure polymer electrospun membranes, it is difficult for
proteins and cells to attach, resulting in low drug loading efficiency, poor cell affinity, and
poor biological activity.

In recent years, polydopamine (PDA) coating, as a simple and mild surface modifica-
tion method, has been shown to improve the adhesion properties of modified biomaterials
and has been widely studied by researchers. In particular, 3,4-dihydroxy-L-phenylalanine
(DOPA) and lysine-enriched proteins near the patch–substrate interface were found to be
the main sources of the wet adhesion properties found in mussels [30,31]. Inspired by the
mussel, PDA has a similar molecular structure to DOPA and can be easily deposited on all
types of inorganic and organic substrates with controllable film thickness and long-lasting
stability [32]. Moreover, the chemical structure of PDA has many functional groups, such
as catechols, amines, and imines [33]. These functional groups provide abundant covalent
binding sites for desired molecules [34]. Due to its good biocompatibility and its ability
to promote cell proliferation [35], PDA has been used in many fields to develop bioactive
molecular delivery systems. For example, PDA-coated chitosan membranes have been used
to deliver vascular endothelial growth factor (VEGF) in vascular tissue engineering [36].
In addition, PCL–nanocarbon fiber scaffolds coated with PDA have been used to deliver
brain-derived neurotrophic factor (BDNF) in nerve repair [37]. However, the study of
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using PDA surface modification to efficiently load thrombin onto nanofiber membranes for
wound hemostasis has not been reported so far.

To this end, in this study, the PCL nanofiber membrane was prepared by electrospin-
ning method, and thrombin was loaded onto the membrane by PDA surface modification.
The loading efficiency was evaluated using TB model protein (FITC-BSA). Then, fibrob-
lasts were co-cultured with membranes to evaluate the effects of membranes on fibroblast
growth and adhesion. Further, subcutaneous embedding models of SD rats were used
to evaluate the biosafety of the membranes in vivo. Then, the in vitro coagulability of
membranes was tested by dynamic coagulation test and adhesion test of red blood cells
and platelets. Finally, the in vivo coagulability of membranes was evaluated using SD rat
liver hemorrhage model and femoral artery hemorrhage model.

2. Materials and Methods
2.1. Preparation of PCL Fibrous Membranes

A total of 1 g polycaprolactone (PCL, Jinan Daigang Co., Ltd., Jinan, China) was
added into 10 mL chloroform (McLean Reagent Co., Ltd., Beijing, China) and N, N-
dimethylformamide (McLean Reagent Co., Ltd., Beijing, China) in a mixed solvent (8:2,
v/v), and stirred with a magnetic stirrer until completely dissolved to obtain spinning
solution. The viscosity of the electrospinning solution was determined using a rheometer
(HAAKE MARS60) and repeated three times. The prepared electrospinning solution was
loaded into a 20 mL syringe, and the electrospinning voltage was set to 25 kV, the solution
flow rate to 1.0 mL/h, the receiving distance to 16 cm, the temperature to 25 ◦C, and the
humidity to 50%. The PCL fibrous membranes obtained by electrospinning machine was
placed in a fume hood for 12 h to allow the solvent to fully evaporate, and then dried in a
vacuum oven for 6 h to completely remove residual solvent, then a preliminary PCL fibrous
membrane was obtained.

2.2. Coating PDA onto PCL Fibrous Membranes

Dopamine (McLean Reagent Co., Ltd., Beijing, China) was dissolved in 10 mM Tris
HCl (pH = 8.5) to prepare 2 mg/mL dopamine solution. The PCL nanofiber membrane
was placed in a dopamine solution, soaked in the dark for 12 h, washed with deionized
water three times, and freeze-dried to obtain the PCL–PDA fibrous membrane.

2.3. Characterization of Membranes

Gold was sprayed on PCL and PCL–PDA fibrous membranes, and the morphology of
the fibrous membranes was observed using field emission scanning electron microscopy
(SEM, HITACHI SU8010, Tokyo, Japan). The surface chemical elements of PCL and PCL–
PDA fibrous membranes were analyzed by energy-dispersive spectroscopy (EDS) and
elemental mapping. Image-Pro Plus 6.0 software (Media Cybernetics, Rockville, MD,
USA) was used to randomly select 200 nanofibers from PCL and PCL–PDA samples to
analyze the diameter distribution of nanofibers. The water contact angles of the PCL and
PCL–PDA fibrous membranes were measured with a water contact angle tester (OCA20,
DataPhysics, Filderstadt, Germany). The elastic modulus and elongation at break of the
fabricated scaffolds were measured with a universal testing machine (Model 5848, Instron,
Norwood, MA, USA). Each group of samples was repeated three times. The degradation
rate of PCL, PCL–PDA, and PCL–PDA–TB fibrous membranes was studied by immersing
the membranes (12 × 12 mm) in phosphate buffered saline (PBS) (pH 7.4) at 37 ◦C. After
3 months, the membranes were taken out, vacuum-dried, and weighed. The weight loss
was calculated as the difference between the original weight and the remaining weight.
Subsequently, the degradation rate was calculated as the ratio of lost weight to original
weight. Each group was tested independently 3 times. A separate sample was used for
each data.
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2.4. Thrombin Loading

A TB solution was prepared with a concentration of 250 U/mL, the PCL and PCL–PDA
fibrous membranes were soaked in the TB solution for 12 h, washed with deionized water
three times, and freeze-dried to obtain a PCL-TB and PCL–PDA–TB fibrous membranes.
The TB loaded on the fiber scaffold was observed by SEM. The surface chemical elements
of PCL–PDA–TB fiber membranes were analyzed by energy dispersive spectrometry (EDS)
and element diagram.

In order to evaluate the distribution of TB on the membranes, fluorescein isothiocyanate-
labeled bovine serum albumin (FITC-BSA) (Solarbio, Beijing, China) was applied as a model
drug for TB according to the procedure described above. After FITC-BSA loading, the
membranes were harvested, washed with deionized water, and observed using a confocal
laser scanning microscope (CLSM) (TCS-SP8, Leica, Wetzlar, Germany). Image-Pro Plus 6.0
software was used to compare the fluorescence intensity of FITC-BSA on the membranes.
Six independent fields of view were selected for each group of samples.

2.5. In Vitro Biosafety Evaluation

Prepared PCL and PCL–PDA samples with concentrations of 5000, 2500, 1250, 625,
312.5, and 156.25 µg/mL and placed in culture medium for 24 h to make an extract.
Cultivated mouse fibroblasts cells (L-929, NCTC) and adjusted density to 1 × 105/well,
were inoculated on a 24-well plate. A total of 1 mL of extraction solution was placed on the
pore plate. After 24 h, 100 mL was added to the CCk-8 reagent. It was incubated in a cell
culture chamber at 37 °C for 4 h, and the absorbance of the supernatant was measured at
450 nm on an enzyme-linked immunosorbent assay.

Fibrous membranes were sterilized (UV sterilization) for 1 h, and PBS solution was
used to wash three times to remove residual ethanol. The sample was placed in a 24-well
plate and inoculated fibroblasts at a density of 1 × 105/well on it. On days 1, 3, and
5, cells were stained with Calcein-AM and cell growth was observed by laser confocal
microscopy (OLYMPUS FV1000, Tokyo, Japan). On the third day, the culture medium
was removed from the well, the sample was washed three times with PBS solution, fixed
with 3% glutaraldehyde for 12 h, dehydrated with gradient alcohol, and the sample was
observed using SEM after gold spraying treatment.

2.6. In Vivo Biosafety Evaluation

To evaluate the biocompatibility and degradability of fiber membranes in vivo, we
anesthetized SD rats with pentobarbital sodium and removed hair on the back. After the
incision on the back skin, a 20 mg sample was implanted. In the blank group, only skin
incision and suture were performed without embedding any material. The positive control
group was filter paper. The skin reaction of each group was observed at 0, 3, 7, and 14 days.
After 14 days, the rats in each group were euthanized, and the whole skin tissue of each
group was stained with hematoxylin-eosin (HE) to observe the skin pathological changes
(especially foreign body reaction and inflammatory reaction) and evaluate the degradation
performance of the material. In addition, the shape and size of heart, lung, stomach,
liver, spleen, and kidney of blank group and PCL–PDA group were observed. Then, the
pathological changes in these organs were observed by HE staining to assess whether
PCL–PDA caused substantial damage to various organs after degradation and absorption.

2.7. Blood Coagulation In Vitro

Fresh rat blood was extracted and mixed with Anticoagulant citrate dextrose solution
(ACD, 20 mM citric acid, 110 mM sodium citrate, and 5 mM D-glucose) at a ratio of 9:1
(v/v) to make anticoagulant whole blood for later use. The samples of PCL, PCL–PDA,
and PCL–PDA–TB were cut into a square (0.5 × 0.5 cm2) of the same size and put into
the 12-hole plate. The hole plate of the sample was not added as the control group. A
total of 50 µL anticoagulant whole blood drops were added to the surface of each group of
samples, and then 10 µL 0.2 mol/LCaCl2 solution was added to initiate coagulation. Then
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the samples were placed in a constant temperature oscillating incubator at 37 °C for 10 min,
20 min, 30 min, 40 min, 50 min, and 60 min. After that, 3 mL of deionized water was added
to each sample, gently shaken, and left for 5 min. Finally, the absorbance of the supernatant
was measured at 545 nm by enzymograph, and the dynamic coagulation curves of each
group were obtained. The whole blood clotting index (BCI) is calculated as follows:

BCI = [(As − Ab)/(Ac − Ab)] × 100% (1)

where As is the OD value of the experimental group, Ac is the OD value of the control
group, and Ab is the OD value of the blank hole.

Each group of samples was repeated three times.

2.8. Red Blood Cell Adhesion

The PCL, PCL–PDA, and PCL–PDA–TB samples were placed in a 24-well orifice plate.
A total of 1 mL of anticoagulant whole blood was dropped in each sample. The 24-well
plate was incubated in a 37 ◦C incubator for 5 min to make the sample fully interact with
the blood. Deionized water was then slowly added to the surface of each sample to wash
away the red blood cells that had not been captured by the material. After fixation with
3% glutaraldehyde for 12 h, dehydration and gold spraying with gradient alcohol were
performed. The morphology and number of red blood cells adhering to the surface of the
sample were observed by SEM.

2.9. Platelet Adhesion

The procedure of this part of the experiment is similar to that of red blood cell adhesion.
The difference was that anticoagulant whole blood was centrifuged at 800 rpm for 10 min,
and the supernatant was obtained with a pipette to obtain platelet-rich plasma (PRP),
which was then added to the surface of the sample and incubated for 2 h. Finally, SEM was
used to observe the number and activation degree of platelets adhering to the surface of
the sample.

2.10. In Vivo Hemostatic Test

All experimental procedures in this study were carried out in accordance with ethical
guidelines and approved by the Animal Ethics Committee of Peking University People’s
Hospital (approval number: 2021PHE067). This part of the experiment used 60 SD rats
purchased from Beijing Weitonglihua Laboratory Animal Technology Co., Ltd. (License No.
SCXK (JING) 2021-0011). Each experimental animal was randomly divided into 5 groups
with 6 animals in each group: control group (using ordinary gauze), PCL group, PCL–PDA
group, PCL–PDA–TB group, and commercial group (using absorbable soluble hemostatic
material, purchased from Qingdao Zhonghui Shengxi Biological Engineering Co., Ltd.,
Qingdao, China).

Femoral artery hemostasis experiment. The SD rats were anesthetized and fixed in a
supine position. The skin and muscle were cut layer by layer from the inner thigh to expose
the femoral artery. The femoral artery was punctured with the needle of a 1 mL syringe,
then materials of each group were placed at the wound and fully fitted to the wound
through appropriate pressure. The time of complete stop of bleeding and the amount of
bleeding were recorded.

Liver hemostasis experiment. SD rats were anesthetized, fixed in supine position,
shaved, disinfected, and a median abdominal incision about 5 cm long was made, and
the skin, muscle, and peritoneum were cut layer by layer. The liver was exposed. After
the right lobe of the liver was fully exposed, a scalpel was used to make a cutting wound
about 0.5 cm long and 0.2 cm deep on it. The materials of each group were placed in the
wound, fully covered, and attached to the liver tissue. The dry cotton ball was applied to
the wound on the outside of the material. The time of complete stop of blood seepage and
the amount of blood loss were recorded.
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2.11. Statistical Analysis

All data are expressed as mean ± standard deviation (SDs). SPSS 13.0 statistical
software and one-way analysis of variance (ANOVA) were used to analyze the data.
* p < 0.05, ** p < 0.01, *** p < 0.001 were defined as all statistical tests were significant, ns
meant p > 0.05, and there was no statistical difference in the results. Each group was tested
independently 3 times. A separate sample was used for each dataset.

3. Results
3.1. Characterization of Membranes

The viscosity of the initial solution affects the process and result of electrospinning.
The viscosity of PCL solution was determined to be 202 ± 2.16 mPa s. Then, the PCL and
PCL–PDA nanofiber membranes were observed by SEM. As can be seen from Figure 1A,
the distribution of the two scaffolds was uniform and smooth. The surface of PCL fiber
membrane was smooth, and the surface of PCL–PDA fiber membrane was rough. The
surface elements of PCL and PCL–PDA fiber membranes are also shown in Figure 1A. After
PDA coating, the content of N increased from 0 to 3.00%. As can be seen from Figure 1B,
the fiber diameter of PCL (0.12 ± 0.04 µm) was close to that of PCL–PDA (0.14 ± 0.07 µm),
and there was no statistical difference between them (p > 0.05). Figure 1C shows the water
contact Angle of PCL and PCL–PDA fiber membranes. After PDA coating, the water
contact Angle decreased significantly from 111.47 ± 1.09◦ to 45.46 ± 1.27◦ (p < 0.01). There
was no significant difference in the mechanical properties of the samples before and after
the surface coating of PDA and loaded TB (p > 0.05) (Figure S1). As shown in Figure S2,
there was no significant difference in degradation rate among all groups after 3 months
(p > 0.05). It can be seen that the surface treatment of PCL nanofibers has no obvious effect
on their mechanical properties and degradation.
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3.2. Loading of Thrombin

Figure 2A shows that the fluorescence intensity of the PCL fiber membrane was much
lower than that of the PCL–PDA fiber membrane, indicating that the PCL–PDA fiber
membrane was loaded with more thrombin model drug (FITC-BAS). By quantification and
comparison of fluorescence intensity (Figure 2B), PCL–PDA fiber membrane was much
higher than PCL fiber membrane (p < 0.01). We also observed the SEM images and surface
element distribution of PCL-TB and PCL–PDA–TB fiber membranes loaded with thrombin.
As can be seen from Figure S3, the PCL–PDA membrane had more thrombin particles on the
fiber surface than the PCL membrane. As shown in Figure S4, the surface of PCL–PDA–TB
fiber membrane increased the S element specific to thrombin. The results showed that
thrombin was loaded onto the surface of PCL–PDA fiber membrane.
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3.3. In Vitro Safety Evaluation of Membranes

The detection results of CCK8 are shown in Figure 3A. The survival rate of membranes
cultured with different concentrations of PCL and PCL–PDA fiber membranes was more
than 90% after 1 day, indicating that both membranes had good biocompatibility. As shown
in Figure 3B, in the SEM images after 3 days of culture, more membranes were adhered to
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the PCL–PDA fiber membrane than the PCL fiber membrane. On days 1, 3, and 5, living
cells were colored green by Calcein-AM and dead cells were colored red by PI. There is
little red fluorescence in Figure 3C. The results also showed that PCL fiber membrane and
PCL–PDA fiber membrane had good cytocompatibility.

Polymers 2023, 15, 3122 9 of 18 
 

 

 
Figure 3. (A) Cell viability of PCL and PCL–PDA fibrous membranes incubated with Fi-
broblasts cells for 1 day. (B) SEM images of Fibroblasts cells grown on PCL and PCL–PDA 
fibrous membranes. (C) Representative CLSM images of fibroblasts cells after 1 day, 3 
days, and 5 days of culture on PCL and PCL–PDA fibrous membranes. 

3.4. In Vivo Biosafety Assessment of Membranes 
To further evaluate the biosafety of the membranes, filter paper (control group), PCL, 

and PCL–PDA fiber membranes were implanted into the subcutaneous tissue of the rat 
back (Figure 4A). The images of the wound were recorded after the operation. On the 7th 
day, the wounds of the control group showed obvious redness and swelling. After 14 
days, all wounds recovered completely. HE results showed that the control group had 
relatively serious foreign body granuloma and inflammatory reaction, while the cells in 
other groups maintained normal levels, indicating that PCL and PCL–PDA fiber mem-
branes had good biosafety and degradation performance. 

Figure 3. (A) Cell viability of PCL and PCL–PDA fibrous membranes incubated with Fibroblasts
cells for 1 day. (B) SEM images of Fibroblasts cells grown on PCL and PCL–PDA fibrous membranes.
(C) Representative CLSM images of fibroblasts cells after 1 day, 3 days, and 5 days of culture on PCL
and PCL–PDA fibrous membranes.

3.4. In Vivo Biosafety Assessment of Membranes

To further evaluate the biosafety of the membranes, filter paper (control group), PCL,
and PCL–PDA fiber membranes were implanted into the subcutaneous tissue of the rat
back (Figure 4A). The images of the wound were recorded after the operation. On the 7th
day, the wounds of the control group showed obvious redness and swelling. After 14 days,
all wounds recovered completely. HE results showed that the control group had relatively
serious foreign body granuloma and inflammatory reaction, while the cells in other groups
maintained normal levels, indicating that PCL and PCL–PDA fiber membranes had good
biosafety and degradation performance.

In order to further investigate the biotoxic effects of PCL–PDA fiber membranes and
their degradation products on other organs, including heart, lung, stomach, liver, spleen,
and kidney, we compared the gross and HE results of various organs in SD rats after 14 days
of subcutaneous implantation of PCL–PDA fiber membranes. As shown in Figure 4B,C,
the shape and size of each organ in the PCL–PDA group did not change significantly,
which was similar to that of normal rats. After histological analysis, no substantial damage
was found in the organs of the rats treated with PCL–PDA, indicating that there were no
obvious side effects on the circulatory system, respiratory system, digestive system, and
metabolic system.
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Histological analysis of subcutaneous tissue of the wounds after embedding surgery at 14 days.
Photographs and histological analysis for rat internal organs (heart, lung, stomach, liver, spleen, and
kidney) after 14 days embedding experiment with PCL–PDA (B) and blank group (C), respectively.

3.5. Evaluation of In Vitro Blood Clotting of Membranes

We evaluated the blood coagulability of membranes in vitro. Blood after adding
calcium ions was dripped onto the surface of the membrane, and sample photos and BIC
were recorded at different time points to measure the coagulation ability of membranes. As
shown in Figure 5A, at 10 min, the supernatant clarity of PCL–PDA–TB fiber membrane was
significantly higher than that of the control group, PCL, and PCL–PDA groups. This result
corresponded to the BCI index result. At 10 min, the BCI of PCL–PDA–TB fiber membrane
(20.29 ± 4.05%) was significantly lower than that of PCL fiber membrane (114.83 ± 18.53%,
p < 0.001) and PCL–PDA fiber membrane (94.96 ± 11.33%, p < 0.01). During the whole
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experiment, the BCI of PCL–PDA–TB membrane was lower than that of PCL and PCL–PDA
membrane, indicating that the coagulability and efficiency of PCL–PDA–TB membrane
were significantly improved after thrombin loading.
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Figure 5. (A) Photographs from the in vitro blood-clotting measurement and the blood clotting index
of the supernatant absorbance for PCL, PCL–PDA, and PCL–PDA–TB (n = 3, * p < 0.05, versus PCL
group; ** p < 0.01, versus PCL group; *** p < 0.001, versus PCL group; # p < 0.05, versus PCL–PDA
group; ## p < 0.01, versus PCL–PDA group). The SEM images of blood cells (B) and activated platelets
(C) on the PCL, PCL–PDA, and PCL–PDA–TB surface (blue arrow).

Further, we evaluated the coagulation properties of PCL, PCL–PDA, and PCL–PDA–
TB membranes at the microscopic level by SEM images of red blood cell adhesion to
platelets. Thrombin can perform hemostasis by converting fibrinogen to fibrin and ac-
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tivating clotting factor XIII to obtain stable fibrin clots. In addition, thrombin activates
proteinase-activating receptors on the surface of platelets, causing platelets to activate and
promoting platelet adhesion. This is because thrombin on the scaffold causes stable fibrin
grids to form quickly in the blood to trap and adsorb more blood material. It can be seen
from Figure 5C that compared with PCL and PCL–PDA fiber membranes, there was more
activated platelet adhesion on the surface of PCL–PDA–TB. These results indicated that
PCL–PDA fiber membranes can maintain thrombin activity and exert coagulation ability
after thrombin loading.

3.6. Evaluation of Hemostatic Performance In Vivo

We first tested the hemostatic performance of PCL, PCL–PDA, and PCL–PDA–TB
membranes in the femoral artery bleeding model of SD rats (Figure 6A). As can be seen from
Figure 6B,C, the amount of blood loss (198.33 ± 2.91 mg) and bleeding time (45.00 ± 1.69 s)
in the PCL–PDA–TB group were significantly lower than those in the control group
(1099.67 ± 3.14 mg, 106.83 ± 6.43 s, p < 0.001), PCL group (775.50 ± 5.41 mg, 66.50 ± 1.50 s,
p < 0.001), and PCL–PDA group (444.00 ± 13.47 mg, 50.33 ± 1.50 s, p < 0.001). There was
no significant difference in blood loss and bleeding time between the PCL–PDA–TB group
and the commercial group (186.00 ± 4.55 mg, 39.50 ± 0.96 s, p > 0.05).
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Then, we tested the hemostatic performance of PCL, PCL–PDA, and PCL–PDA–TB
membranes in a liver dissection model of SD rats (Figure 7A). We found that the amount
of blood loss (292.35 ± 5.75 mg) and bleeding time (56.83 ± 4.49 s) in the PCL–PDA–
TB group were significantly lower than those in the control group (1296.51 ± 15.28 mg,
118.50 ± 5.44 s). p < 0.001), PCL group (831.77 ± 11.67 mg, 95.17 ± 4.49 s, p < 0.001), and
PCL–PDA group (449.33 ± 9.73 mg, 77.00 ± 2.16 s, p < 0.001). There was no significant
difference in blood loss volume and bleeding time between the PCL–PDA–TB group and
the commercial group (275.34 ± 12.75 mg, 49.33 ± 3.86 s, p > 0.05) (Figure 7B,C). The above
results indicate that PCL–PDA–TB has good hemostatic performance in vivo, which is close
to that of commercial dressings.

Polymers 2023, 15, 3122 13 of 18 
 

 

Figure 6. (A) Schematic diagram of the rat femoral artery hemostasis model. (B) Blood 
loss and (C) hemostatic time on the rat femoral artery hemostasis model by using control, 
PCL, PCL–PDA, PCL–PDA–TB and commercial. (D) Images of the hemostasis (from left 
to right) by use of control, PCL, PCL–PDA, PCL–PDA–TB, and commercial (n = 6, *** p < 
0.001). 

Then, we tested the hemostatic performance of PCL, PCL–PDA, and PCL–PDA–TB 
membranes in a liver dissection model of SD rats (Figure 7A). We found that the amount 
of blood loss (292.35 ± 5.75 mg) and bleeding time (56.83 ± 4.49 s) in the PCL–PDA–TB 
group were significantly lower than those in the control group (1296.51 ± 15.28 mg, 118.50 
± 5.44 s). p < 0.001), PCL group (831.77 ± 11.67 mg, 95.17 ± 4.49 s, p < 0.001), and PCL–PDA 
group (449.33 ± 9.73 mg, 77.00 ± 2.16 s, p < 0.001). There was no significant difference in 
blood loss volume and bleeding time between the PCL–PDA–TB group and the commer-
cial group (275.34 ± 12.75 mg, 49.33 ± 3.86 s, p > 0.05) (Figure 7B,C). The above results 
indicate that PCL–PDA–TB has good hemostatic performance in vivo, which is close to 
that of commercial dressings. 

 
Figure 7. (A) Schematic diagram of the rat liver homeostasis model. (B) Blood loss and (C) 
hemostatic time on the rat liver homeostasis model by using control, PCL, PCL–PDA, 
PCL–PDA–TB and commercial. (D) Images of the hemostasis (from left to right) by use of 
control, PCL, PCL–PDA, PCL–PDA–TB and commercial (n = 6, *** p < 0.001). 

4. Discussion 
The ideal hemostatic material should have the following characteristics: rapid, clear 

hemostatic effect; portable and easy to make and use ; safe and non-toxic, good biocom-
patibility; and multiple bleeding scenarios [38,39]. Due to the complexity and 

Figure 7. (A) Schematic diagram of the rat liver homeostasis model. (B) Blood loss and (C) hemostatic
time on the rat liver homeostasis model by using control, PCL, PCL–PDA, PCL–PDA–TB and
commercial. (D) Images of the hemostasis (from left to right) by use of control, PCL, PCL–PDA,
PCL–PDA–TB and commercial (n = 6, *** p < 0.001).

4. Discussion

The ideal hemostatic material should have the following characteristics: rapid, clear
hemostatic effect; portable and easy to make and use; safe and non-toxic, good biocompat-
ibility; and multiple bleeding scenarios [38,39]. Due to the complexity and coordination
of coagulation mechanisms, no hemostatic material has been able to fully meet the above
hemostatic criteria so far. Therefore, this study designed and prepared a nanofiber mem-
brane packed with thrombin for wound hemostasis.

Thrombin is a coagulation system protease excited by sodium ions that plays a key
role in the coagulation cascade [40]. After a traumatic event, thrombin rapidly converts
from inactive prothrombin to thrombin and immediately participates in coagulation and
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hemostasis [41]. Therefore, thrombin is widely used in hemostasis due to its excellent
biocompatibility and hemostatic performance. However, because it is not viscous and the
powder state is easily dispersed by the blood flow and autolysis, its hemostatic stability is
reduced [19,20]. Some studies have tried to incorporate thrombin into hemostatic materials,
but failed to solve outstanding problems such as low thrombin load and poor storage
conditions [42,43]. In this study, the PCL–PDA loading system was prepared by electro-
spinning technology and PDA modification strategy, which can increase the thrombin
load and stability while ensuring the biological activity of thrombin. By transforming
the thrombin powder into a new hemostatic dressing with good hemostatic performance
and easy preservation, the advantages of the nanostructure of electrospun fiber and the
hemostatic activity of thrombin can be utilized while overcoming the disadvantages of
the thrombin powder being easily dispersed. During in vitro experiments, the good mi-
crostructure, high thrombin load and biocompatibility of the new hemostatic material were
effectively verified by SEM, CLMS, cell proliferation experiment, cell adhesion experiment,
and extract cytotoxicity experiment. Erythrocyte adhesion, platelet adhesion, dynamic
coagulation time, and animal model experiments proved the good coagulation effect of
thrombin nanofiber membrane.

Electrospinning is a common method for preparing hemostatic materials [44,45]. Elec-
trospinning technology mainly includes four parts: high voltage, propel pump, syringe,
and receiving device [46]. Nanofibers prepared by electrospinning technology have high
porosity, gas permeability, and can provide a high specific surface area [47], which are
conducive to removing exudate and achieving hemostasis. Commonly used polymers
for hemostatic materials include PEO, PLA, PCL, PVA, etc., often have high mechanical
properties, but worse biocompatibility than natural materials [48,49]. In fact, in the actual
hemostatic scene, it is difficult to achieve efficient hemostasis by relying only on the physi-
cal properties and morphological characteristics of the nanofibers, so adding additional
drugs with excellent hemostatic performance is a potential solution.

PDA can simulate the mucous components secreted by marine mussel byssus from
the perspective of bionics, and bind to the surface of inorganic, organic, metal, polymer,
and other substrates [50]. In addition, the PDA on the surface of the material has many
functional groups, such as amino, carboxyl, catechol, and other functional groups, which
are easy to form covalent or non-covalent coupling with the amine and mercaptan parts
of the protein to achieve efficient loading while maintaining protein activity. Cell surface
or protein-like bioactive substances usually have these groups [51]. Studies performed
by Ku et al. have demonstrated that PDA did not hinder the viability or proliferation of
many kinds of mammalian cells such as fibroblasts, osteoblasts, neurons, and endothelial
cells [52]. A lot of investigations have illustrated that PDA-coating even promoted cell
adhesion and proliferation on substrates in a material-independent manner compared
with the pristine substrates, which further provided strong evidence for the negligible
cytotoxicity of PDA [53,54]. In addition, the polydopamine coating is surprisingly stable.
Park et al. found that using polydimethylsiloxane as substrate, PDA film can maintain very
stable adhesion ability and maintain long-term cell adhesion even under harsh conditions
(such as organic solvents, strong acids, ultrasound, and heat treatment) [55]. In this study,
dopamine was self-polymerized to form PDA by covalent bond, hydrogen bond, and π–π
bond in alkaline environment. PDA has a high content of amines, catechol (3, 4-dichol).
The coexistence of these two functional groups contributes to the high adhesion of PDA.
This strong adhesion enables the PDA to form a stable PDA coating on the surface of
the PCL nanofiber film. As a protein, thrombin has rich amine and mercaptan groups,
which can be combined to the surface of PDA by Michael addition or Schiff base reaction,
so as to improve the quantity and stability of thrombin load. Through SEM image and
surface chemical element analysis, it was found that PDA was successfully coated on the
PCL fiber membrane surface without damaging the microstructure of the membrane. The
results of water contact showed that the surface hydrophilicity of PCL fiber membrane
increased significantly after PDA coating. Studies have shown that hydrophilic surfaces



Polymers 2023, 15, 3122 14 of 17

are more conducive to cell adhesion and proliferation [56]. In addition, CLMS observation
and SEM image results showed that the thrombin load on PCL fiber membrane increased
significantly after PDA coating. These results indicate that the thrombin loading system
based on the PDA surface modification has been successfully developed.

Thrombin can convert fibrinogen to fibrin and activate platelets, causing platelet
aggregation to promote clotting or hemostasis [57]. In the test of blood coagulation in vitro,
we found that PCL–PDA fiber membrane loaded with thrombin can rapidly promote blood
coagulation. These results indicate that thrombin can exert normal coagulation function
in PCL–PDA loading system, promote the formation of fibrin mesh and platelet adhesion,
and form stable thrombus. On the basis of the positive results in vitro, the effect of these
membranes on hemostasis in vivo was further evaluated. The PADD-modified PCL fiber
membrane is used to connect thrombin to form thrombin membrane, which overcomes
the shortcomings of thrombin powder, such as poor strength, easy to fall off, and unstable
hemostatic effect caused by premature autolysis [58]. In the experimental model of femoral
artery bleeding and liver bleeding in SD rats, PCL–PDA–TB fiber membrane can quickly
infiltrate and absorb blood, and maintain a stable shape during hemostasis, so that thrombin
can continue to play the hemostatic function. The above properties make the hemostatic
performance of PCL–PDA–TB significantly better than the other two membranes, and there
is no significant difference with commercial hemostatic dressing. The loading capacity of
thrombin on nanofiber membrane was improved by surface modification of polydopamine.
It is possible that in the early stage of bleeding, our material increased the release of
thrombin at the bleeding site, promoted the conversion of fibrinogen to fibrin, and enhanced
platelet activity, thus speeding up the thrombin-related exogenous coagulation reaction
and achieving effective hemostasis.

However, this study also has some shortcomings that need to be further improved
in the future, mainly including: (1) limited by research conditions as we have not been
able to explore the related repair mechanism of hemostasis, which caused the lack of theo-
retical support, and hemostatic repair mechanism can be an important research direction
in the future; (2) the traumatic bleeding models in this study were SD rats, we did not
use larger animals such as Bama pigs for further hemostasis verification studies. The
application of more advanced traumatic bleeding models and human trials are important
research directions for research on hemostatic materials;(3) the small number of animal
samples in this study may cause certain bias in the study, and multi-angle multiple hemo-
static effect verification will be carried out to further confirm the hemostatic effect of the
hemostatic material.

5. Conclusions

Hemorrhagic shock is the primary cause of death in all kinds of severe trauma patients.
It is of great significance to develop rapid and efficient hemostatic methods to promote the
life treatment of trauma patients. In this study, polycaprolactone (PCL) nanofiber mem-
brane was prepared by electrospinning. Inspired by mussel adhesion protein, a PCL–PDA
loading system was developed by modifying the surface of polydopamine (PDA), which re-
alized efficient and stable loading of thrombin (TB). The cell experiment and subcutaneous
embedding test confirmed that the novel PCL–PDA–TB membrane has good biosecurity.
Red cell adhesion, platelet adhesion, dynamic coagulation time, and animal models con-
firmed that PCL–PDA–TB membrane has a good hemostatic effect. The PCL–PDA–TB
membrane prepared in this study can maintain the stable load and biological activity of
thrombin, exert the functions of thrombin, and PDA in vitro coagulation experiment, and
significantly promote red blood cell adhesion and platelet activation. In conclusion, the
PCL–PDA–TB membrane prepared in this study has the advantages of simple preparation
method, high hemostatic performance, and low preparation cost, and is expected to be
widely used in various traumatic hemostatic scenarios.
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