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Abstract: Over the past three decades, chemical and biological water contamination has become a
major concern, particularly in the industrialized world. Heavy metals, aromatic compounds, and
dyes are among the harmful substances that contribute to water pollution, which jeopardies the
human health. For this reason, it is of the utmost importance to locate methods for the cleanup of
wastewater that are not genuinely effective. Owing to its non-toxicity, biodegradability, and biocom-
patibility, starch is a naturally occurring polysaccharide that scientists are looking into as a possible
environmentally friendly material for sustainable water remediation. Starch could exhibit significant
adsorption capabilities towards pollutants with the substitution of amide, amino, carboxyl, and other
functional groups for hydroxyl groups. Starch derivatives may effectively remove contaminants such
as oil, organic solvents, pesticides, heavy metals, dyes, and pharmaceutical pollutants by employing
adsorption techniques at a rate greater than 90%. The maximal adsorption capacities of starch-based
adsorbents for oil and organic solvents, pesticides, heavy metal ions, dyes, and pharmaceuticals
are 13,000, 66, 2000, 25,000, and 782 mg/g, respectively. Although starch-based adsorbents have
demonstrated a promising future for environmental wastewater treatment, additional research is
required to optimize the technique before the starch-based adsorbent can be used in large-scale in
situ wastewater treatment.

Keywords: starch; adsorbent; wastewater treatment; heavy metals; dye; oil; organic solvents;
pesticides; pharmaceutical pollutants; micropollutants
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1. Introduction

The Sustainable Development Goals (SDGs) [1] are a set of 17 global goals that aim to
promote sustainable development in economic, social, and environmental ways. Among the
listed SDG, SDG 6 is to ensure everyone has access to and can manage water and sanitation
in a sustainable way. This makes water quality issues a priority at the international level.
However, water pollution is still a major challenge to achieving SDG 6 and other goals for
sustainable development. According to the World Health Organization (WHO) [2], at least
2 billion people around the world consume contaminated water. This can cause health
problems like diarrhea, cholera, and typhoid fever. Additionally, water pollution has big
effects on ecosystems and biodiversity, leading to reduced aquatic life, the loss of wetland
areas, and damage to coastal zones. Water pollution causes economic and social problems,
such as making it harder for people and communities to obtain clean water. It is clear that
fixing water pollution is a key part of ensuring everyone has a good future [3–6].

Studies show that more than a billion people around the world do not have access
to clean water, and it is thought that water pollution is the cause of about 2.2 million
deaths in developing countries [7,8]. These significant numbers show how important it is
to take action to solve the global water crisis and provide clean water for human beings [9].
Water that has already been used in some capacity is considered wastewater, such as
water from houses or effluent from factories [10]. Human activities such as mining and
agriculture have caused water pollution, but rapid urbanization has made the situation
worse, as enormous amounts of wastewater have been discharged into the environment
without treatment [11–13]. Water resources in these circumstances must be constantly
protected because misuse could be harmful to humans. Chemical, biological, or physical
contaminants may be present in wastewater. It might be dangerous for human use as a
result. If untreated wastewater enters the public water system, it may result in serious
disease [14,15]. There are several pollutants such as heavy metal ions and pharmaceutical
pollutants which cause serious water pollution all around the world [13]. It is therefore
important to create a variety of effective technologies for the removal of contaminants from
wastewater due to stringent legislation on the release of these harmful products.

In the past, certain industry factories did not prioritize wastewater treatment due
to the high cost of setting up and operating treatment plants, as well as the lack of strict
legislative enforcement regarding effluent discharge. However, there has been a shift
in some countries towards a more serious approach, with stricter legislation governing
industrial effluent. For instance, China implemented the Water Pollution Control Plan in
2015, which requires businesses and industries to establish wastewater treatment facilities
for pollutant removal and water reuse [16,17]. Similarly, the European Nation (EN) intro-
duced the EU Water Frame Directive in 2000, following a similar approach [18,19]. These
measures aim to address the environmental impact of industrial wastewater by mandating
the implementation of wastewater treatment facilities to remove pollutants and promote
water reuse.

During the past three decades, several physicochemical, biological, and advanced
technologies have been used for wastewater treatment such as flotation, precipitation,
oxidation, biodegradation, advanced oxidation process, and others [20,21]. Researchers are
now investigating new wastewater pollution removal technologies and materials relevant
to sustainability. Considering the pressure on climate change and the needs in the clean
water, sustainable wastewater treatment is necessary to meet our needs [22]. In contrast
to conventional methods, adsorption technologies are crucial for the elimination of haz-
ardous pollutants because of their great efficiency, extensibility, and sensitivity to harmful
compounds [23]. In general, adsorption is a technique for treating wastewater that can be
used to remove several chemicals from industrial effluent. Adsorption takes place when
liquid molecules adhere to the surface of a solid substance. As a matter of fact, natural
biopolymer-based adsorbents that are less expensive have generated a lot of academic
interest [24,25].
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Starch is a carbohydrate and a natural component of most plants, is commercially
derived from grains and serves as an important raw material in various industries such
as medicine, food, chemicals, etc. Starch has been extensively studied for its potential
in wastewater treatment [26,27], it is a relatively good option for wastewater treatment
due to its chemical structure, biocompatibility, and biodegradability which can enhance
its utilization as green adsorbent. Cassava starch, rice starch, corn starch, and potato
starch are documented botanical sources of starch [28]. Starch molecules exist in two
structural forms: amylose and amylopectin. Amylopectin contains a higher glucose content
compared to amylose [29]. In its natural state, amylose accounts for about 20–30% of starch
and amylopectin accounts for 70–80%. Starch is primarily synthesized in the chloroplast
of plant leaves or the amyloplast of plant storage organs and contains lipids as well as
phosphate groups [30]. However, native starch has considerable limitations when used
in wastewater treatment. These limitations include low surface area, limited thermal
stability, low water solubility, low molecular weight, quick degradability in water, and
a lack of reactive functional groups [31,32]. To overcome these limitations and enhance
its adsorption capabilities for wastewater treatment, researchers have explored various
modifications of starch. Researchers discovered that incorporating a chemical functional
group into the starch backbone improves the adsorption efficacy of modified starch to a
variety of pollutants [31–33]. Several starch modifications, including starch-based grafts,
polymer nanocomposites, nanofibers, nanoparticles, activated carbon, biochar, hydrogels,
aerogels, and beads, have been developed to overcome these limitations [31]. Through
modification and functionalization approaches, ongoing research aims to improve the
adsorption capacity and selectivity of starch-based adsorbents.

The utilization of starch-based materials for environmentally friendly water treatment
is an increasingly explored area of research. In this comprehensive review, we aim to
provide a detailed overview of the current advancements in starch-based materials, in-
cluding their extraction from biomass, their suitability as adsorbents, and their potential
applications in wastewater treatment. The review will delve into the properties of these
materials and emphasize their distinctive advantages in the realm of wastewater treatment.
The central focus of this review is on sustainable water treatment, shedding light on how
starch-based materials can be utilized after modification to address the most pressing
environmental challenges, and how their implementation in wastewater treatment can
contribute to the attainment of the Sustainable Development Goals. Moreover, this review
will provide valuable insights into the adsorption capabilities of starch-based materials
and their most promising uses in removing various pollutants such as oil, organic sol-
vents, pesticides, heavy metals, dyes, pharmaceutical pollutants, and more. By exploring
the potential of starch-based materials in treating various types of pollutants, we aim to
provide a comprehensive understanding of their efficacy and potential impact in wastew-
ater treatment. Overall, this review aims to serve as a valuable resource for researchers
and professionals in the field of water treatment, providing a comprehensive analysis of
the current state of starch-based materials and their potential in sustainable wastewater
treatment practices.

2. Adsorption

Adsorption is a robust process in which adsorbate (gases, liquids, or solutes) adhere
to the surface of the adsorbent [34], reducing the effluent volume to a minimum [35].
Adsorption of adsorbate to adsorbent surfaces can happen both physically (physisorption)
and chemically (chemisorption) [36]. The interaction between the adsorbate and adsorbent
are weak chemical bonds and physical forces, such as functional group changes, hydrogen
bonding, electron donor acceptor, and electrostatic interaction. In water and wastewater
treatment industries, adsorption is chosen due to its cost-effectiveness and dependability
in comparison to other processes. Adsorption is found to be the best strategy because it is
efficient, moderately simple to operate, economical, and generates few by-products. It is
also extremely industrially advantageous due to its superior regeneration capabilities [37].
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In addition, its uses are vast and varied, ranging from the preparation of drinkable water
to the removal of non-biodegradable organic substances originating from groundwater.
With its numerous advantages, it is not surprising that adsorption is widely used in the
water and wastewater treatment industries. With its ability to selectively remove certain
contaminants from water and its comparatively low cost, adsorption offers a possible
solution to the pressing problems of water pollution and sustainability. As researchers
continue to investigate new and innovative applications of adsorption in water treatment,
it is anticipated that this process will play an ever-increasing role in protecting the health of
our communities and the world [38,39].

2.1. Adsorbents

Adsorbents are the materials that can perform adsorption itself. These materials come
in the form of porous solids with a large surface area [40]. Adsorbent selection is critical to
the success of any adsorption-based water treatment process. The criteria that need to be
considered to choose a material for an adsorbent is from its cost-effectiveness, availability,
sustainability, suitable mechanical properties, does not disintegrate in solution, longevity,
regeneration, etc. As to its performance, an adsorbent’s performance is dependent on the
physical structure, activation conditions, influence of process variables, solution conditions,
and the chemistry of its pollutants [41].

There are five different categories that can distinguish one adsorbent from another.
These categories are natural materials, manufactured materials, modified natural materials,
agricultural solid wastes and industrial by-products, and bio-sorbents. These then can be di-
vided again into two different, much more simplified groups. Conventional adsorbents and
non-conventional adsorbents. Conventional adsorbents include activated carbons, such as
wood, peat, coals, coconut shells; inorganic materials, such as silica gel, natural zeolites, acti-
vated alumina, and molecular sieves, which are synthetic zeolites; and ion-exchange resins,
such as polymeric organic resin, non-porous resins, and porous cross-linked polymers.
As for non-conventional adsorbents, these include activated carbons from solid wastes;
bio-sorbents, such as chitosan, cellulose, starch, and biomass; industrial by-products; agri-
cultural wastes; natural materials such as clays, siliceous materials, and inorganic materials;
and some miscellaneous adsorbents such as cotton waste, hydrogels, etc. [42,43]. Figure 1
presents the examples of conventional adsorbents and non-conventional adsorbents for
removal of pollutants from wastewaters.
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Several ways of utilizing non-conventional adsorbents have been investigated in order
to develop greener, cheaper, and highly effective adsorbents to adsorb pollutants [44].
There has been a surge in the development of non-conventional adsorbents, especially
those derived from biopolymers such as cellulose [45,46], chitosan [47,48], starch, and
their derivatives, because they are abundant and readily available, non-toxic, low-cost,
biodegradable, and renewable [49,50]. These biopolymers are intriguing owing to their
physicochemical properties, high reactivity, chemical structure stability, and selectivity
towards functional groups [51,52].

2.2. Starch-Based Adsorbents

Starch, the most abundant available biopolymer in the biosphere, is a homopolysac-
charide with linear and branched units derived from a variety of sources, including tuber
waste [53–56]. It is extensively utilized in the food industry as a source of energy in human
diets, and it has discovered usages as a raw material in non-food industries for instance
water treatment [57]. Native starch, on the other hand, has significant disadvantages such
as low thermal stability, low surface area, slight water solubility, low molecular weight,
rapid degradability in water, and a lack of reaction functional groups, which inhibit it from
being utilized as a wastewater treatment adsorbent. As a result, starch must be modified
to improve its adsorption efficiency towards various pollutants by changing its chemical
surface structure via incorporating functional groups into the starch backbone [31,32].

Starch is composed of numerous hydroxyl groups that are easily modified by the
incorporation of functional groups, such as primary amine, carboxylic or sulfonic acid
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to produce starch-based grafts, hydrogels and beads, polymer nanocomposites, aerogels,
nanofibers, and so on, to improve its adsorption capacity for wastewater treatment [31,58].
Owing to the presence of a carboxymethyl functional group, starch derivatives, particularly
carboxymethyl starch (CMS), have received a great deal of attention in both research and
industry [57]. Starch that has been functionalized, grafted or crosslinked with amine [59,60],
carboxylic [61], and carboxymethyl [62] groups along its chains, giving it a high affinity for
heavy metal ion removal.

Conventional adsorbents, such as activated carbon, are considered good adsorbents
due to their large surface area and excellent adsorption property [63], but starch-based ad-
sorbents have several advantages in the aspects of adsorption capacity, desorption capacity,
and lifetime. Starch-based adsorbents have been demonstrated to have a high adsorption
capacity for both organic and inorganic pollutants from wastewater when compared to con-
ventional adsorbents owing to their porosity and the presence of many functional groups.
Adsorption capacity of starch-based adsorbents can be increased not only by modifying
them with functional groups but also by combining them with other materials. For instance,
Li et al. [53] developed hydrogel microspheres by crosslinking hydroxyethyl starch and
carboxymethyl chitosan with epichlorohydrin for removal of heavy metal ions and dye.
In another study, starch-functionalized magnetic Fe2O3 has been shown to adsorb up to
2000 mg/g of lead ions from polluted water at 150–450 mg/L lead ions concentration [64],
whereas activated carbon functionalized magnetic iron oxide nanoparticles has a lower
adsorption capacity of 61.82 mg/g at 10–100 mg/L lead ions concentration [65]. Table 1
compares the adsorption capacities of starch-based and conventional adsorbents.

Table 1. Comparison of adsorption capacity between starch-based and conventional adsorbents.

Type of Adsorbent Type of
Pollutant

Pollutant
Concentration (mg/L)

Adsorption
Capacity (mg/g) Ref.

Starch-functionalized Iron(III) oxide
(Fe2O3) nanoparticles

Lead (II)

150–450 2000 [64]

Activated carbon functionalized magnetic
iron oxide nanoparticles 10–100 61.82 [65]

Activated carbon 50 30 [66]

Amine functionalized Fe3O4 magnetic
nanoparticle dialdehyde starch Mercury (II)

150 318.87 [59]

Activated carbon - 138 [67]

Starch-based amino-functionalized
microspheres Chromium (VI)

50 734.8 [60]

Activated carbon 200 145 [68]

Starch-g-polyacrylamide/Fe3O4/graphene
oxide nanocomposite Nickel (II)

20 290 [69]

Activated carbon prepared from coir pith 20 62.5 [70]

Starch derived zinc carbon foam-like
Malachite green (MG)

25–100 1200 [71]

Carbon prepared from waste jack fruit peel 20–60 166.37 [72]

Starch-based amino-functionalized
microspheres Indigo carmine (IC)

50 423.69 [60]

Activated carbon - 16.3–77.7 [73]

Starch-g-(acrylic acid-co-acrylamide)
functionalized catecholamine Methylene blue (MB)

2700 2276 [74]

Refused derived fuel 100 83 [75]
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Aside from adsorption capacity, desorption efficiency is critical for reusing utilized
starch-based adsorbents. According to Gunawardene et al. [76], modified starch has a
desorption efficiency of more than 97%. Starch-based adsorbents are renewable and can
be regenerated by washing them with reagent. Reagents for desorption include sodium
hydroxide (NaOH) [77], hydrochloride acid (HCl) [77], acetone [78], and more. On the other
hand, conventional adsorbents, such as activated carbon, need to be replaced periodically
due to their limited lifetime. The use of activated carbon is limited due to its regeneration
issues, high cost and not environmentally friendly during its production [63].

In terms of durability and longevity, conventional adsorbents and properly maintained
starch-based adsorbents can degrade/decompose in a few months to a few years. However,
the degradation rate of starch-based materials is accelerated at high temperatures and high
humidity levels, reducing their performance [79]. Extreme operating conditions, such as
high humidity, harsh chemical environments, high temperatures, or pressure, will reduce
the lifetime of starch-based materials even further [80,81]. In addition, starch-based materi-
als are easily attacked by soil microorganisms and degrade rapidly [82]. Junlapong et al. [83]
developed cassava starch hydrogels adsorbents that were 80% degraded after 30 days when
buried in soil. The duration of biodegradation and decomposition of starch-based adsor-
bents is affected by several factors, including adsorbent composition, operating conditions,
and the presence of microorganisms.

2.3. Starch-Based Adsorbents for In situ and Ex Situ Water Remediation

Starch-based adsorbents can be used in the adsorption stage of water treatment. Var-
ious adsorbents will be applied at this stage to remove pollutants from the wastewater
via adsorption mechanism. Starch-based adsorbents derived from cornstarch [84–87],
rice flour [88], cassava starch [83,89,90], graham flour [88], and potato starch [84,85,91,92]
are safe compounds with the potential to be used for in situ water remediation. Starch-
functionalized iron oxide nanocomposite, for example, has been utilized to adsorb heavy
metal ions from wastewater produced from different industries [64]. The adsorption effi-
ciency of Cd(II) from tap, marine, and industrial wastewater samples ranged from 87 to
93%, 84 to 91%, and 76 to 90%, respectively, whereas the adsorption efficiency of Hg(II)
ranged from 69 to 93%, 40 to 89%, and 70 to 94%, respectively. Pb(II) had the maximum
adsorption efficiency of 97 to 98%, 92 to 97%, and 93 to 98% for tap, marine, and industrial
wastewater samples. Additionally, these starch-based nanocomposites have the potential
to be a sustainable adsorbent for metal ions removal from industrial wastewater, marine
water, and tap water with 76 to 93%, 70 to 94%, and 93 to 97% of percentage recovery,
respectively [64]. Table 2 provides examples of starch-based adsorbents used for in situ
water treatment. Comparing wheat starch with and without methanol pretreatment, the
adsorption efficiency increased from 20.50% to 32.72% with methanol pretreatment. How-
ever, corn starch pretreated with methanol has a lower adsorption efficiency than corn
starch without pretreatment [93]. In another investigation conducted by Kim et al. [94],
a facultative psychrophilic denitrifier (strain 47) was immobilized on macro-porous cel-
lulose carriers, and soluble starch was utilized as an electron donor to remove nitrate
contaminants from groundwater resources. Groundwater temperature was found to be an
important factor in affecting nitrate removal effectiveness in in situ water remediation. At
a hydraulic retention time of one hour, nitrate removal efficiency of 99.5% can be attained.
These findings emphasize the importance of considering factors such as pretreatment
methods and environmental conditions when utilizing starch-based adsorbents for in situ
water remediation.
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Table 2. Starch-based adsorbents for in situ water remediation.

Starch-Based Adsorbents Pollutants
In Situ Remediation

Ref.
Adsorption (%) Desorption (%)

Corn starch without pretreatment

Betalain

36.40 35.20

[93]
Corn starch with methanol pretreatment 21.80 58.30

Wheat starch without pretreatment 20.50 75.01

Wheat starch with methanol pretreatment 32.72 44.40

Soluble starch and facultative psychrophilic
denitrifier immobilized on macro-porous cellulose Nitrate 99.5 - [94]

The optimum conditions for ex situ water remediation using starch-based adsorbents
will vary depending on the type of pollutant, structure (functional group, chain length, etc.)
of the starch-based adsorbent, adsorbent dose, pollutant concentration, pH of the treating
bath, treatment duration, and agitation speed [35]. Starch-based adsorbents have been
found to be effective at removing pollutants at concentrations ranging from a few mil-
ligrams per liter to several hundred milligrams per liter [61], as reported in Table 1. The
initial pollutant concentration is a driving force in overcoming the mass transfer resistance
of pollutants between water and adsorbent [95]. Nevertheless, the effectiveness of starch-
based adsorbents may decrease at higher pollutant concentrations due to adsorbent surface
saturation, increasing the electrostatic repulsion force between the saturated adsorbent and
adsorbate in the aqueous solution [96]. Other factors, such as reaction time, pH, temper-
ature, and competing ions in the water, may also have an impact on the performance of
starch-based adsorbents [95,97].

In this case, the adsorbent of interest is starch, one of the non-conventional “green” ad-
sorbents that are highly effective at removing a wide variety of pollutants from wastewater.
They have higher adsorption capacities and longer lifetimes than conventional adsorbents.
Additionally, they are highly advantageous compared to the conventional adsorbents due to
their physiochemical nature, abundance, and relatively inexpensive pricing, showing their
effectiveness in pollutant adsorption in water treatment processes [98,99]. Furthermore,
their renewability and biodegradability make them an appealing alternative to conventional
adsorbents, promoting sustainable and eco-friendly industrial process solutions.

3. Chemical Structure and Properties of Starch
Chemistry and Properties

Starches with basic chemical formula, (C6H10O5)n is a carbohydrate naturally found in
many grains and vegetables, such as wheat, maize, and potatoes [100,101]. Starch is a part
of polysaccharide which exists in two structural forms: amylose and amylopectin [102,103].
One of the most abundant polysaccharides in nature, starch provides us with a good supply
of additional carbs [104]. The size of starch granules varies, ranging from the sub-micron
elongated chloroplast granules to the comparatively enormous oval granules of potato and
canna [105,106]. Biosynthesis of starch is a complex process [101,106]. It is also composed
of glucose molecules [107] as shown in Figure 2.
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Amylopectin and amylose are parts of starch that are layered and packed in semi-
crystalline and amorphous layers in concentric growth rings [109]. Amylose, which predom-
inantly contributes to the amorphous phase, is a basically unbranched (0.1–0.5% branched)
polymer made up of α-(1–4)-linked glucose units [110]. Since amylopectin has more α-(1–6)
branch points, it has a more branched structure [110]. Amylose, one of the structural forms
of starch, exists as a glucose bonded together in a linear chain or helical chain. Amylose
also does not dissolve in water [107]. Figure 3 shows the chemical structural of amylose.
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Figure 3. Chemical structure of amylose.

Amylose has an interesting solution property: it can form complexes with iodine and
some organic reagents [111]. The amylose/cellulose nanofiber combination has numerous
exceptional qualities, including strong heat resistance and storage stability [110]. Starch
has a relative amount of amylose which varies according to its source. For example, corn
starch has about 28 wt.% compared to cassava starch, with 17 wt.% [112].

Amylopectin is the other structural form of starch. Depending on the botanical origin,
the amylose percentage of starch granules varies, although conventional cereal starches typ-
ically include between 20 and 30 percent amylose [113]. The ability to control the functions
of starch depended on the production of lengthy branch-chains of amylopectin [114]. The
ability of long branch-chains of amylopectin to self-assemble structured structures and form
complexes with lipids or sodium palmitate resulted in a considerable reduction in starch
viscosity and slowing of starch digestion [114–116]. Amylopectin is a linear chain of glucose
molecules, and it contains a much larger amount of glucose compared to amylose [107].
The structural form of amylopectin can be seen in Figure 4.
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Figure 4. Chemical structure of amylopectin.

The weakly bonded linkages between bonding molecules make amylopectin a water-
soluble component. Amylopectin is responsible for the crystalline properties of starch.
Since amylose is a minor component of starch, amylopectin is the counterpart of amylose.
Amylopectin is the major component of starch by weight and one of the largest molecules
found in nature [117].
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4. Applications for Water Treatment

Current environmental degradation on a global scale presents a serious problem for
contemporary society. Industrialization, urbanization, agricultural methods, and human
activities are all contributing to significant increases in pollution levels in the environment.
These contaminants have the potential to have devastating effects on human health, animal
health, and ecosystem health. Negative health effects may occur after these substances are
ingested, absorbed, or inhaled [118,119]. Additionally, persistent organic contaminants in
biota and fish, as well as the bioaccumulation of several heavy metals along the food chain,
pose a major hazard to people and wildlife [19]. To detect, monitor, and remove dangerous
pollutants, effective, affordable, and sustainable methods are required.

While starch can be used as one method of sustainable water treatment, native starch
has low solubility in organic solvents and low adsorption ability [50,120]. The highly
active hydroxyl groups on the backbone of starch can be modified by different functional
groups (amino, carbonyl, carboxyl, ester, etc.) using various reaction routes like grafting,
cross-linking, esterification, oxidation, and irradiation to increase its adsorption efficacy
towards dyes [50,121], heavy metals [122], phenols [123], etc. Phosphorylation, followed
by grafting of polymethacrylic acid onto native starch, produces phosphate and carboxylic
functional groups on the starch backbone, leading to a higher tendency to make hydrogen
bond with phenol [123]. In order to increase the solubility of corn and potato starches, they
were modified via the acetylation method [84]. The acetylation of starch increases swelling
power and solubility by weakening the bond strength between amylose and amylopectin
molecules [124], conforming to the starch microparticle and favoring electrodynamic mech-
anisms for flocculation processes [84].

Various modified starches, like cationic starches, carboxymethyl starches, starch phos-
phate, starch xanthate, starch sulphate, starch carbamate, carboxyl methyl starch and so
on, are cheap and have been used as efficient adsorbents for remediation over the past
10–15 years [50,122]. The modified starch-based adsorbents, such as starch-based com-
posites and nanoparticles and starch-based hydrogels, are more useful due to their large
surface area, available polar sites, and reproducibility in the degree of activation [50]. Type,
botanical origin, branching/networking, chain length, granule size, degree of depoly-
merization, and applied modification (enzymatic, physical, chemical, etc.) all affect the
desired properties of starch [125]. Starches also can be modified from activated carbon
starch to starch nanocrystals and chitosan–starch nanocomposites. Other various of starch
related can also be made for the adsorption process are HMS-SiO2@MSC, mesoporous
activated carbon from starch (ACS), MNPs@Starch-g-poly(vinyl sulfate) nanocomposite,
silica-sand/anionized-starch composite (CMS-SS), and Starch-Mg/Al layered double hy-
droxide (S-Mg/Al LDH).

Additionally, β-cyclodextrin (β-CD), a naturally occurring cyclic oligosaccharide
consisting of seven glucose units, has emerged as a highly promising adsorbent for the
removal of organic micropollutants from contaminated water [126]. β-CD is derived from
starch through enzymatic conversion and has demonstrated remarkable efficacy in the
removal of various organic micropollutants in recent years. Dyes [127], pesticides [127],
metals [126], and pharmaceuticals such as ibuprofen [128,129], naproxen [130], imipramine,
bisphenol-S, procaine, ciprofloxacin [126], acetaminophen [131], salbutamol, atenolol [132],
estradiol (E2) [133], and 17β-estradiol [134] have all been successfully removed using β-
CD-based adsorbent. β-CD has hydroxyl groups on the exterior of the torus, making it
hydrophilic, while the interior is hydrophobic [135]. As β-CD has good solubility in water,
it cannot be directly used in water treatment. Nevertheless, by cross-linking β-CD with
a suitable cross-linking agent, a β-CD-based adsorbent can be developed [136–138]. In
fact, there are few types of cyclodextrin (CD): alpha-cyclodextrin (α-CD), beta-cyclodextrin
(β-CD), and gamma-cyclodextrin (γ-CD). The cavity volume of α-CD is approximately
17.4 nm3, the cavity volume of β-CD is approximately 26.2 nm3, and the cavity volume
of γ-CD is approximately 25.6 nm3. These cavity volumes control the size and shape of
the cavity within each cyclodextrin molecule, which influences their ability to encapsulate
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pollutants of varied sizes and shapes [139]. These findings contribute valuable insights into
the design and manufacturing of effective adsorbents from starch for wastewater treatment.
The utilization of β-CD as a potential adsorbent material opens new possibilities in the
field of water treatment, particularly for the removal of organic micropollutants.

4.1. Removal of Oil and Organic Solvent

There is a significant amount of concern about different contaminants inside the
contaminating water, including traditional pollutants like heavy metals and organics, as
well as developing micropollutants, personal care products, and substances that interfere
with hormones. For purging toxins from wastewater, several researchers are investigating
more sustainable materials and methods. The industries that produce chemical extraction,
petrochemistry, textiles, and food all produce large amounts of oily wastewater, and this
wastewater’s excessive discharge has significantly endangered both human health and the
environment. These problems can be successfully overcome with starch-based adsorbents
for oil and organic solvent removal. Table 3 shows examples of starch-based adsorbents for
oil and organic solvent removal.

Table 3. Starch-based adsorbents for oil and organic solvent removal.

Starch-Based Adsorbents Pollutants Adsorption Capacity (mg/g) Ref.

Sweet potato/Corn/Starch-based adsorbents Ethanol 150 [85]

Superhydrophobic starch-based adsorbent
Chloroform 7560

[140]
n-hexane 2500

Superhydrophobic starch/iron oxide (Fe3O4)/silylated
silicon dioxide (SiO2) nanoparticles/cryogel

Chloroform 7780
[141]

n-hexane 2720

Rice straw-cationic starch aerogel Oil 13,000 [142]

Superhydrophobic/oleophilic starch cryogel
Chloroform 7530

[143]
n-hexane 2610

Superoleophilic starch-based cryogels coated by silylated
porous starch/Fe3O4 hybrid micro/nanoparticles

Chloroform 7570
[144]

n-hexane 2590

Magnetic modular cryogel
Chloroform 6190

[145]
n-hexane 2060

Starch derived zinc carbon foam-like
Castrol 2T 2937%

[71]
Gear oil 2375%

Starch-graft-styrene hypercrosslinked polymers
Acetophenone, 93.6%

[146]
1-phenylethanol 74.4%

Starch-based amino-functionalized microspheres Oil/water separation 99.9% [60]

Sweet potato/Corn/Starch-based adsorbents tert-butyl alcohol (TBA),
isopropanol, ethanol - [91]

Sweet potato/Corn/Starch-based adsorbents TBA - [92]

By incorporating nanoparticles into starch cryogel, Wang et al. [141] created a brand
new super-hydrophobic sorbent, also known as HMS-SiO2@MSC, that may be utilized to
clean up oil spills (Figure 5). HMS-SiO2@MSC showed good viability in cleaning the oil
slick magnetically and by removing oil underwater. The material’s extraordinary ability
to absorb oil is in part due to the barrier of trapped air where the chemical inertness of
covalent bonding (Si-O-C/Si), and the structural support provided by pore walls. Pore-rich
starch or Fe3O4 is being mixed with micro-/nanoparticles (SPF@SC), developed in another
study by Wang et al. [144], which was intended to remove occasional oil patches. To clean
up occasional oil slicks, magnets remotely control SPF@SC.
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There are also variety of other methods to remove oil from the wastewater, for exam-
ple, gravity sedimentation, and oil absorption by biomaterials. In contrast to emulsions
stabilized by surfactants, immiscible oil or water mixtures are what these approaches are
meant to separate. Membrane separation, which in this context is an advantage of the
sieve effect, is widely recognized as being an effective method of handling emulsified oil
or water mixtures. However, its extensive use is constrained by the unavoidable fouling
caused by oil droplets or absorbed surfactants. Using pH-responsive SNPs as the coating
material, starch, which is also referred to as a biological macromolecule, is employed as
biodegradable super hydrophilicity and underwater superoleophobicity filter paper in a
low-cost, easy, and eco-friendly manner. The SNPs were only coated and adhered to the
filter paper’s surface. The improved filter paper has switchable super hydrophilicity and
underwater superoleophobicity wetting behavior due to its hierarchical structure. The filter
paper worked well as designed when used to filter out oil from water and oil in water
emulsions at the same time. Additionally, the filter paper displayed a unique pH-sensitive
quality as well as exceptional stability and recyclable qualities. Above all, the filter pa-
per covered with starch-based nanospheres offers a creative way to separate challenging
oil-in-water emulsions [147]. Figure 6 shows the application of SNPs for oil removal.
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4.2. Removal of Pesticides

Given the possible risk to human health, pesticide poisoning of water has drawn a
lot of attention. Many academics have recently shown interest in the removal of pesticides
from water. Table 4 presents a list of starch-based adsorbents for pesticide removal. For
the first time, mesoporous activated carbon from starch (ACS) was utilized to remove
pesticides from water. Figure 7 illustrates the application of mesoporous ACS to remove
pesticides. Scanning electron microscopy (SEM), FT-IR, X-ray photoelectron spectroscopy,
and Brunauer–Emmet–Teller theory (BET) were used to investigate the mesoporous ACS,
and it was shown to be highly efficient at cleaning water of contaminants. In fact, it removed
11 pesticides from water better than commonly used adsorbents, such as graphitized
carbon black (GCB), activated carbon (AC), C18, and primary secondary amine (PSA)
adsorbent. The inclusion of functional groups such as oxygen, nitrogen, and benzene ring
bonds dramatically affected adsorption. This study contributes new information to the
viability of using starch-based activated carbon as an effective pesticide adsorbent in water
treatment [86].

Table 4. Starch-based adsorbents for pesticide removal.

Starch-Based Adsorbents Pollutants Adsorption Capacity (mg/g) Ref.

Corn/starch-based mesoporous activated carbon (ACS) pyraclostrobin 66.2 [86]

Microporous maize starch immobilized laccase
atrazine 0.2527

[148]
prometryn 0.1323

P-doped biochar from corn straw triazine 79.6 [149]

Iron-starch modified with 3,5-diaminobenzidine and
(3-aminopropyl) triethoxysilane

(Fe-starch@DABA-APTES)

Endosulfan 0.00025–0.00200

[150]

Heptachlor 0.00001–0.00075

Aldrin 0.00001–0.00075

Isobenzan 0.00001–0.00075

Chlordane 0.00010–0.00100

Dieldrin 0.00001–0.00075

Endrin 0.00010–0.00100
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Pesticides can be removed via a variety of techniques, including as adsorption, oxi-
dation, enzymatic biodegradation, and photocatalytic degradation. Starch-derived meso-
porous activated carbon adsorption is recognized as a highly effective method due to its low
starting cost, ease of operation, flexibility, simplicity of design, and insensitivity to harmful
pollutants. It is also one of the few methods capable of removing pollutants while remaining
unaffected by them. Additionally, it is one of the few methods that can clear contaminants
without being harmed by them, making it an extremely helpful tool [151]. Aside from this,
starch has been investigated for its potential to be modified in order to achieve a balance
between magnetism and van der Waals interaction on magnetic surfaces [152]. In one study,
a magnetic starch material, known as Fe-starch@DABA-APTES, was synthesized by modify-
ing starch with 3,5-diaminobenzoic acid and 3-aminopropyltriethoxysilane. This magnetic
starch material was then utilized as an adsorbent for the extraction of organochlorine
pesticides (OCPs) [150].

4.3. Removal of Heavy Metal Ions

Industrial wastewater and groundwater often contain various inorganic components,
including arsenic (As), cadmium (Cd), chromium (Cr), cobalt (Co), copper (Cu), lead (Pb),
mercury (Hg), nickel (Ni), zinc (Zn), and others [153]. Modified starches demonstrated
substantial adsorption capabilities towards heavy metals by replacing hydroxyl groups
with chemically active groups [55]. A wide range of starch derivatives with amino, amide,
carboxyl and other groups were synthesized and used in water treatment [154]. Corn
starch, for example, can be cross-linked and carboxymethylated to actively capture harmful
divalent cations, which include Cu, Pb, Cd, and Hg ions present in water. By distributing
1% of the starch for a couple of minutes and then filtering the starch–metal complex, it
was possible to efficiently remove about several hundred ppm of these metal ions from
water at a low degree of substitution of carboxymethyl groups [57]. The starch can be
easily restored through weak acidic washing, and the success of metal removal depends on
avoiding highly acidic metal solutions. Increasing the levels of carboxymethylation and
cross-linking can enhance the metal scavenging activity of starch, making it suitable for
industrial applications [62,64,155–157].

Furthermore, starch can be used for the removal of heavy metal ions by grafting it with
various vinyl monomers, including acrylic acid (AA), acrylic amide (AM), acrylonitrile,
alkylmethacrylates, methylacrylonitrile, vinyl ketones, and 2-(dimethylamino) ethylacry-
late. These polymers, despite their loosely crosslinked network structure and hydrophilic
side groups, exhibit remarkable water absorption and retention capabilities [158]. In a
study by Bai et al. [89], a cassava-starch-based copolymer was created by grafting AA and
AM for the purpose of Cd(II) removal. This adsorbent demonstrated an adsorption capacity
of 347.46 mg/g for Cd(II). Additionally, incorporating two or more polymers has become
an increasingly significant strategy for the synthesis of novel biomaterials with improved
properties that individual polymers could not achieve [154].

Heavy metal ions were effectively eliminated by hydrogels with charged surfaces,
one example being Chen et al. [159]’s Laponite RD (LRD) cross-linked hydrogels created
by repeatedly freezing and thawing. Starch and polyvinyl alcohols were employed to
create synthetic hydrogels (starch/PVA/LRD hydrogels), which were used to get rid of
Cd(II). The LRD concentration in the hydrogels had a significant impact on the starch-
based hydrogel’s capacity for adsorption. Strongly negative charges on the surface of LRD
increased with an increase in LRD content in the hydrogel, which resulted in greater Cd(II)
adsorption [159]. Figure 8a depicts a diagram for heavy metal removal from wastewater
using a hydrogel-based adsorbent [160]. Upon changes in pH, temperature, etc., hydrogel
adsorbents can release heavy metal ions, as illustrated in Figure 8b [160].
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An alternative example is the utilization of a crosslinked carboxymethyl sago starch/citric
acid (CMSS/CA) hydrogel for the adsorption of Pb(II), Cu(II), Ni(II), and Zn(II). The
CMSS/CA hydrogel exhibited optimal adsorption capacities of 64.48 mg/g for Pb(II),
36.56 mg/g for Cu(II), 16.21 mg/g for Ni(II), and 18.45 mg/g for Zn(II) [62]. Chitosan,
which contains several hydroxyl and amine functional groups, can be combined with vari-
ous functional groups (carboxyl, hydroxyl, and amino groups) to produce carboxylmethyl
chitosan (CMC). Hydrogel microspheres (HMs) were created by combining hydroxyethyl
starch and carboxymethyl chitosan for the removal of Cd(II), Cu(II), and Ni(II). The maxi-
mum adsorption capacities were found to be 32.51 mg/g for Cd(II), 47.87 mg/g for Cu(II),
and 27.18 mg/g for Ni(II) [53]. Additional examples of starch-based adsorbents for heavy
metal ion removal are presented in Table 5.

Table 5. Starch-based adsorbents for heavy metal ion removal.

Starch-Based Adsorbents Pollutants Adsorption Capacity (mg/g) Ref.

Starch–chitosan-based hydrogel microspheres

Cd(II) 32.51

[53]Cu(II) 47.87

Ni(II) 27.18

Starch-functionalized iron(III) oxide (Fe2O3) nanoparticles

Pb(II) 2000

[64]Hg(II) 133.3

Cd(II) 322.58

Crosslinked carboxymethyl sago starch/citric acid hydrogel

Pb(II) 64.48

[62]
Cu(II) 36.56

Ni(II) 16.21

Zn(II) 18.45
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Table 5. Cont.

Starch-Based Adsorbents Pollutants Adsorption Capacity (mg/g) Ref.

Walnut shell ash/starch/iron oxide (Fe3O4) Cu(II) 45.4 [95]

Silica-sand/anionized-starch composite Cu(II) 383.08 ± 13.50 [161]

Starch/Fe3O4-g-p(AA-r-HEMA) Cu(II) 75.5 [162]

Magnetic starch-g-polyamidoxime/montmorillonite/
Fe3O4 nanocomposites Cu(II) 163 [163]

Starch-based amino-functionalized microspheres Cr(VI) 734.8 [60]

Starch-crosslinked magnetic ethylenediamine Cr(VI) 210.7 [164]

Starch-functionalized iron oxide nanoparticles Cr(VI) 9.02 [165]

Polyethyleneimine-modified magnetic starch microspheres
(PEI/MSMs) Cd(II) 187.00 [166]

Magnetic starch microspheres (AAM- MSM) Cd(II) 39.98 [167]

Cassava-starch-grafted copolymerized AA and AM Cd(II) 347.46 [89]

Eggshell/starch/Fe3O4 nanocomposite
Cd(II) 48.54

[168]
Pb(II) 57.14

Starch-stabilized magnetic nanoparticles Ni(II) - [169]

Starch-g-polyacrylamide/Fe3O4/graphene oxide nanocomposite Ni(II) 290 [69]

Dialdehyde cornstarch Gold(III) 298.5 [170]

Polyethylene-g-poly (acrylic
acid)-co-starch/organo-montmorillonite hydrogel Pb(II) 430 [61]

Starch graft poly(acrylic) acid
Pb(II)

118.61
[171]

Starch graft poly(acrylonitrile) 115.83

Amine-functionalized Fe3O4 magnetic nanoparticle
dialdehyde starch Hg(II) 318.87 [59]

Magnetic starch/polyethyleneimine Hg(II) 244.87 [153]

Starch-functionalized maghemite nanoparticles As(III) 8.88 [172]

CO2-assisted modified magnetic starch-Fe3O4 nanoparticles As(III) 124 [173]

Starch-functionalized magnetite nanoparticles
As(III) 68.3

[174]
As(V) 74.8

Starch-bridged magnetite nanoparticles As(V) 248 [175]

Carboxymethyl starch-g-polyvinyl imidazole

Cu(II) 83.6

[154]Cd(II) 53.2

Pb(II) 65

4.4. Removal of Dye

The manufacturing processes of industries, like the leather, paper, and textile indus-
tries, release extremely dangerous and carcinogenic chemicals into wastewater. The release
of waste dyes from textile finishing poses a significant threat to both natural water resources
and human well-being. [83]. Polymers, and more specifically biopolymers, have a wide
structure that affords several binding sites for dye molecules. This helps to neutralize
the charge that the dye molecules carry, which in turn enables effective precipitation. In
applications involving the coagulation of blood, biopolymers are the material of choice
since, in contrast to traditional coagulants, they do not pose a threat to human health and
have a lower impact on the environment [176].
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Starch is a key component in enhancing the quality of the overall nanocomposite due
to its amylose chains, which have a strong affinity for anionic dye molecules. A highly
recommended alternative method for removing anionic-charged dyes involves using a
mixture of starch, chitosan, and glutaraldehyde in specific proportions. This mixture
works by utilizing the attractive properties of starch and chitosan to effectively remove the
dyes [176]. The combination of starch and chitosan creates electrostatic and hydrophobic
interactions that provide benefits in dye removal effects compared to just chitosan alone.
These chitosan starch nanocomposites have the potential of 90% in the removal of anionic-
charged dye through coagulation-flocculation [177–179].

As for cationic dyes such as methylene blue (MB), MNPs@Starch-g-poly(vinyl sulfate)
nanocomposite can effectively remove such dyes. This nanocomposite showed excellent
adsorption of MB with a capacity of 621 mg/g and could remove as much as 90% [180].
Additionally, radical polymerization can be used to create cassava-starch-based (CS-g-PAM)
hydrogels using varied cassava starch contents and polyacrylamide (PAM). At increasing
cassava starch concentrations, the hydrogels’ porous structure/pore size decreased. The
CS-g-PAM hydrogel with 50% cassava starch showed an outstanding MB elimination
adsorption capacity of 1917 mg/g [83]. Additionally, the incorporation of catecholamine
functional groups onto starch-g-(acrylic acid-co-acrylamide) superabsorbent, a type of
hydrogel, was achieved through the oxidative polymerization of dopamine (DA) for the
purpose of adsorbing MB. A maximum adsorption capacity of 2276 mg/g was achieved at
pH 9 within a 100 min timeframe [74].

Another way of removing cationic dyes such as MB and crystal violet (CV) is by
utilizing silica–sand/anionized-starch composite (CMS-SS). With effects such as pH, CMS-
SS can produce a high yield of adsorption capacity towards MB and CV, as illustrated
in Figure 9. This is because of the high efficiency of electrostatic interactions amongst
the cationic pollutants with carboxylmethyl groups. As evident in the graph below, the
increase in pH results in the staggering and stable increase of adsorption capacity of CMS-
SS towards cationic dye pollutants. Even compared to other adsorbents, CMS-SS still shows
superior quality in cationic dye removal [161].
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CMS-SS is very recyclable and easy to recover. Due to its combination with silica–sand
(SS), it is very easy to separate it from aqueous solutions. After being recovered from the
first adsorption cycle of removing MB and CV, CMS-SS can still be utilized in adsorbing
acid green 25 (AG25) anionic dyes [161]. This is because the surface charges were changed
during the separation process. All in all, CMS-SS is much cheaper and has better resistance
towards acid compared to other adsorbent materials, such as magnetic adsorbents [180,181].
Its rapid settling properties put it in a beneficial position and it is perfect for water treatment
industries [182,183].

Starch-based high-performance adsorptive hydrogel (STAH) is another type of adsor-
bent suited for the removal of MB. Synthesized by grafting polyacrylic acid (PAA) onto
starch, the process continues to crosslink with N,N′-methylene-bisacrylamide (MBA). STAH
comes with different isomers. These isomers are STAH10, STAH20, STAH30, STAH40, and
STAH50. Based on Figure 10, five of the STAH isomers showed great adsorption capability.
Among five of them, STAH20 shows the best adsorption capacity of 2967.66 mg/g. STAH
adsorbent can be reused more than three times [184]. More starch-based adsorbents for dye
removal are presented in Table 6.

Table 6. Starch-based adsorbents for dye removal.

Starch-Based Adsorbents Pollutants Adsorption Capacity (mg/g) Ref.

Hydrogel microspheres
Methylene blue (MB) 106.97

[53]
Eosin yellow (EY) 143.55

Zinc–starch and zerovalent iron extrudates MB 61.03 [185]

Magnetism carboxymethyl starch/poly(vinyl alcohol) gel MB 23.53 [186]

Zinc–starch–metal–organic coordination polymers-Fe3O4
NPs composite MB 37.42 [187]

Double-cross-linked amphoteric hydrogel
MB 133.65

[188]
Congo red (CR) 64.73

Starch derived zinc carbon foam-like

Crystal violet (CV) 25,000

[71]Malachite green (MG) 1200

CR 1428.57

Cationic tapioca starch (CTS)-functionalized magnetic
nanoparticles (CTS@Fe3O4)

Caffeic acid (CA) 185

[189]Gallic acid (GA) 160

Melanoidin (ME) 580

Rice starch Methyl orange (MO) 173.24
[88]

Graham starch MO 151.27

Cassava starch-based hydrogels grafted polyacrylamide MB 2000 [83]

Starch-g-(acrylic acid-co-acrylamide)-functionalized
catecholamine MB 2276 [74]

Starch–magnesium/aluminum-layered double hydroxide

Amaranth 665

[190]
Tartrazine 186

Sunset yellow (SY) 71

EY 65

Clinoptilolite/Starch/CoFe2O4

MB 31.81

[191]Methylene violet (MV) 31.15

CV 32.84
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Table 6. Cont.

Starch-Based Adsorbents Pollutants Adsorption Capacity (mg/g) Ref.

Corn starch magnetic carbonaceous adsorbent MV 344.92 [78]

Carboxymethyl starch-g-polyvinyl imidazole CR 83.66
[154]

CV 91.58

Silica-sand/anionized-starch composite
MB 653.31 ± 27.30

[161]
CV 1246.40 ± 34.10

Clay/starch/MnFe2O4
SY 67.82

[192]
Nile blue (NB) 72.25

Magnetic nanoparticles@starch-g-poly(vinyl sulfate)
nanocomposite

MB 621
[180]

MG 567

Starch-coated Fe3O4 magnetic nanoparticles Option Blue (OB) 128.83 [193]

Magnetic starch-based composite hydrogel microspheres MB 64.05 [181]

Starch-functionalized multiwall carbon nanotube composites MO 135.8 [194]

Starch-based amino-functionalized microspheres Indigo carmine (IC) 423.69 [60]
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4.5. Removal of Pharmaceutical Pollutants

The discharge of trace amounts of pharmaceuticals into ecosystems is acknowledged
as a serious environmental issue, resulting in persistent and immediate impacts on the
environment [195]. Starch-Mg/Al-layered double hydroxide (S-Mg/Al LDH) is a syn-
thesized composite utilized in the adsorption of non-steroidal anti-inflammatory drugs
(NSAIDs) found in various water and wastewater sources. This adsorbent performs well
due to its efficiency and high adsorption rate. S-Mg/Al LDH also showed good reusability
performance when tested with optimized experimental parameters. As shown in Figure 11,
the recovery for this adsorbent is at a high-end percentage. This is clearly a huge benefit for
industries that aim for economical workflow [196]. Examples of starch-based adsorbents
for pharmaceutical pollutants removal are listed in Table 7.
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Table 7. Starch-based adsorbents for pharmaceutical pollutants removal.

Starch-Based Adsorbents Pollutants Adsorption Capacity (mg/g) Ref.

Magnetic metal–organic frameworks (MOFs)-starch hydrogel Fluvastatin 782.05 [197]

Carboxymethyl-starch-grafted magnetic bentonite Tetracycline 169.7 [198]

Starch-stabilized magnetic nanocomposite Tetracycline 24.194 [199]

Magnetic starch polyurethane polymer Tetracycline 19.272 [200]

Magnetic starch nanocomposite Tetracycline 8.79 [201]

Carboxymethyl cassava starch (CMCS)-functionalized
Fe3O4 magnetic nanoparticles

Doxorubicin
hydrochloride (Dox) 235.17 ± 1.75 [90]

Fe3O4 magnetic nanoparticles crosslinked
gelatin-starch microspheres Bovine serum album 120 [202]

Rape straw/β-CD/Fe3O4 Ibuprofen 48.29 [128]

β-Cyclodextrin nanosponge (β−CD−M) Ibuprofen 86.21 [129]

Nanocomposite adsorbent based on β-cyclodextrin-PVP-clay Naproxen 3.46 [130]

Bio-derived chitosan-EDTA-β-cyclodextrin (CS-ED-CD)
trifunctional adsorbent

Bisphenol-S
Ciprofoxacin

Procaine Imipramine

43.66
47.11
47.98
41.94

[126]

Calcium(II)-doped chitosan/β-cyclodextrin composite Acetaminophen 200.86 [131]

Electronegative silanized β-cyclodextrin adsorbent Salbutamol Atenolol 140.24
236.92 [132]

Polyethersulfone nanofibers impregnated with β-cyclodextrin Estradiol (E2) 0.000115–0.00029 [133]

β-cyclodextrin/poly (l-glutamic acid) supported magnetic
graphene oxide 17β-estradiol 85.5 [134]
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To remove tetracycline, carboxymethyl-starch-grafted magnetic bentonite [198], starch-
stabilized magnetic nanocomposite [199], magnetic starch polyurethane polymer nanocom-
posite [200], and magnetic starch nanocomposite [201] were created. Shen et al. [198]
compared corn-starch-grafted magnetic bentonite (SMB) to carboxymethyl-starch-grafted
magnetic bentonite (CSMB) and discovered that the CSMB had a 28% higher tetracycline
adsorption capacity compared to SMB. Regarding recyclability, the adsorption capacities
of CSMB experienced a decrease of over 20% after the initial cycle due to the destructive
effects of nitric acid treatment on some of the functional structures, resulting in a loss of
adsorption capacity. After three cycles, the adsorption capacity of CSMB was reduced by
47% to 89.5 mg/g, compared to the initial capacity of 169.7 mg/g. On the other hand, SMB
exhibited a slightly lower reduction in adsorption capacity after three cycles compared to
CSMB. This indicates that SMB demonstrates better recyclability.

Other pharmaceutical pollutants, such as fluvastatin [197], dox [90], and bovine
serum albumin [202], have also been investigated using starch-based adsorbents. The
removal of fluvastatin can be accomplished using the magnetic MOF–starch hydrogel
created by Mohamed and Mahmoud [197]. The magnetic MOF–starch hydrogel was de-
veloped via microwave irradiation and demonstrated several remarkable properties. It
exhibits a maximum equilibrium adsorption capacity of 782.05 mg/g, a high surface area of
528.39 m2/g, a mesoporous structure with a pore size of 2.90 nm, and a highly crystalline
structure. Within this system, three types of bonding are expected to occur. Firstly, there
is H-bonding between carboxylic and OH groups, leading to physisorption. Secondly,
covalent bond formation between carboxylic and OH groups facilitate ester formation,
resulting in chemisorption. Lastly, coordinate bond formation occurs between the oxygen
donor atoms in fluvastatin and the Zinc(II) ion in the magnetic MOF–starch hydrogel,
leading to chemisorption [197].

On the contrary, carboxymethyl cassava starch (CMCS)-functionalized Fe3O4 magnetic
nanoparticles were synthesized using a one-pot co-precipitation method for the removal of
dox [90], whereas Fe3O4 magnetic nanoparticle-crosslinked gelatin–starch microspheres
were prepared using a modified emulsion cross-linking method with glutaraldehyde as
the cross-linking agent for bovine serum album removal [202]. The functionalized CMCS
core structure swelled rapidly and had more carboxyl functional group sites for effectively
adsorbing dox molecules [90]. Between the pH range of 4 to 9, the carboxyl groups un-
derwent conversion into the negatively charged carboxylate form, while dox existed in a
zwitterionic form. This conversion enhances the interaction between positively charged dox
ions and the negatively charged CMCS-2@Fe3O4, thus increasing the efficiency of adsorp-
tion [203]. The interaction between carboxyl groups and dox molecules involves various
intermolecular forces, such as H-bonding, π-interactions, and electrostatic interactions [90].
The adsorption process of dox by CMCS-2@Fe3O4 follows a multistep mechanism [204],
primarily involving chemisorption through valency forces via electron sharing or exchange
between CMCS-2@Fe3O4 and dox molecules [205], potentially accompanied by physical
adsorption [90]. Initially, dox molecules rapidly transfer to the surface of CMCS-2@Fe3O4
through boundary layer diffusion. Subsequently, they continue to diffuse into the ad-
sorptive sites within the pores of CMCS-2@Fe3O4 until the adsorption capacity reaches
equilibrium [90].

Adsorbents made from rape straw biomass fiber/β-CD/Fe3O4 and β-cyclodextrin
nanosponge (β−CD−M) have been proven to be effective in removing ibuprofen from
water and sewage. The maximum adsorption capabilities of these adsorbents are 48.29
and 86.21 mg/g, respectively [128,129]. Ibuprofen can be removed from wastewater using
β-CD-M with 84% to 100% efficiency for concentrations ranging from 2.06 to 0.021 mg L−1,
respectively [129]. β−CD−M can be compared to a honeycomb, with the cells being β−CD
molecules and the backbone consisting of elastic urethane and allophanate chains. When
the β−CD−M is added to the ibuprofen solution, it is preorganized to allow the host to
better suit the requirements of the guest molecules. It has a flat ring that is substituted with
linear groups, which allows the molecule to be inserted into the β−CD cavity while also
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incorporating the functional groups in system stabilization. The complex is formed by all
aromatic and even aliphatic protons [129]. The advantages of nanosponges include high
adsorption efficiency despite a small surface area, non-toxicity, the potential for multiple
regeneration and reuse, modeling of specific interactions, and low production and usage
cost. However, large-scale application of β-cyclodextrin in wastewater treatment may be
economically unfeasible due to its relatively expensive production cost.

Table 7 contains other examples of modified β−CD composite adsorbents. For in-
stance, imipramine, bisphenol-S, procaine, ciprofloxacin [126], and acetaminophen [131] can
all be removed with β−CD grafted chitosan. With an adsorption capacity of 200.86 mg/g,
0.01 g of calcium(II)-doped chitosan/-cyclodextrin composite adsorbent was able to re-
move 99.88% of acetaminophen from 20.0 mL of 20.0 mg/L aqueous solution at pH 7.2.
Salbutamol and atenolol can be effectively removed using an electronegative silanized
β-cyclodextrin adsorbent [132], while estradiol (E2) [133] and 17β-estradiol [134] can
be removed using polyethersulfone nanofibers impregnated with β-cyclodextrin and
β-cyclodextrin/poly (l-glutamic acid)-supported magnetic graphene oxide, respectively. An
electronegative surface modified by introducing carboxyl groups via N-[(3-Trimethoxysilyl)
propyl]ethylenediamine triaceticacid trisodium salt (EDTS) enables an electronegative
silanized β-cyclodextrin adsorbent to effectively interact with various types of organic
pollutants while maintaining excellent adsorption performance over a wide pH range.
After modification with EDTS, there was a substantial increase in the maximum adsorption
capacities of salbutamol and atenolol, which rose by 162% and 706% respectively, reaching
values of 140.24 mg/g and 236.92 mg/g. These results highlight the potential for further
advancements in the field of intelligent starch derivative-based adsorbents.

5. Outlook and Challenges

The most important challenges to using starch-based polymer materials as advanced
adsorbents for sustainable water treatment is the production of sludge volume and its
impact on the efficiency of water treatment. Starch-based materials, while suitable for
sustainable water treatment, tend to produce lower sludge volume, which will slow the
process of water treatment compared to chemical-based water treatment. Additionally, the
high-cost implementation of starch-based materials is another challenge, as they require
several modification processes before they can be used as adsorbents. Moreover, the
application of starch-based materials on a large scale for water treatment poses a challenge,
as they are currently only feasible for small-scale implementation. These challenges affect
the overall effectiveness of starch-based materials for water treatment and limit the scale at
which they can be used sustainably.

Starch is an organic and biocompatible material suitable for both ex situ and in situ
water treatment as it is non-toxic and not harmful to living organisms. Second, starch-based
adsorbents are abundant, biodegradable, and renewable. Starch-based adsorbents can
be regenerated and reused until the end of their lifetime. These adsorbents are safely
decomposed by bacteria or other living organisms or disposed of through incineration
and landfilling. Prior to disposal, non-biodegradable pollutants can be removed using
desorption. Desorption requires the use of chemical reagents, which raises the cost; how-
ever, the use of starch-based adsorbents reduces pollution and solves waste disposal issues.
Therefore, starch-based adsorbents hold significant potential to be used as eco-friendly
materials for sustainable water treatment.

6. Concluding Remarks and Future Perspectives

The effective use of starch for wastewater treatment comes from its vast availability
and sustainability as a natural polysaccharide. In wastewater treatment applications,
modified starch products have showed promise in the removal of a range of contaminants,
including oil, organic solvents, pesticides, heavy metal ions, dyes, and pharmaceutical
pollutants. An example of innovative use of starch-based materials is the development
of raspberry-like starch-based polymer microspheres. These microspheres are created
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through Pickering polymerization and grafting of poly(ethylene imine) (PEI) onto amino-
functionalized composite particles. These microspheres not only have the capability to
separate oil and water, but they also exhibit simultaneous removal of Cr(VI) and Indigo
carmine. The efficiency of oil and water separation is influenced by the dosage of PEI.
The resulting composite particles possess unique characteristics, such as rough structures,
distinctive surface wettability, and positive charge. This combination enables them to
simultaneously separate water-in-oil (W/O) and oil-in-water (O/W) emulsions within a
specific dosage range of PEI. Moreover, the amino-functionalized composite particles carry
a positive charge, which enhances their ability to effectively absorb anionic water-soluble
pollutants. The removal rate of these pollutants during the oil/water separation process
can reach nearly 90%.

While there are promising applications for starch-based adsorbents in environmental
wastewater treatment, there is still considerable potential for future advancements in the
development of intelligent adsorbents based on starch derivatives. The utilization of a
trifunctional chitosan-EDTA-β-cyclodextrin adsorbent allows for the simultaneous removal
of metals and organic micropollutants. This adsorbent demonstrated a monolayer adsorp-
tion capacity of 0.803 mmol g−1 for Pb(II) and 1.258 mmol g−1 for Cd(II), while exhibiting
a heterogeneous adsorption capacity of 0.177 mmol g−1 for bisphenol-S, 0.142 mmol g−1

for ciprofloxacin, 0.203 mmol g−1 for procaine, and 0.149 mmol g−1 for imipramine, respec-
tively. Further research is necessary to enhance the adsorption properties of starch- and
starch-derivative-based adsorbents, optimize their adsorption capacity, and investigate
methods for regeneration and reuse while minimising the reduction in adsorption capacity.
Additionally, the potential applications of starch-based adsorbents can be expanded beyond
wastewater treatment. Industries such as food and packaging, pharmaceuticals, and others
could benefit from the utilization of starch-based adsorbents. Further exploration and
discovery in this area are warranted to uncover new possibilities and opportunities.
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