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Abstract: Temperature–frequency sweep tests were performed on silicone rubber to investigate the
dynamic viscoelastic properties. The test results show that the viscoelasticity of silicone rubber
presents significant temperature dependence and frequency dependence. The dynamic viscoelastic
test curves at different temperatures can be shifted along the logarithmic frequency coordinate axis to
construct smooth master curves at the reference temperature of 20 ◦C, covering a frequency range of
10 decades, which indicates thermorheological simplicity on a macro level and frequency temperature
equivalence of the silicone rubber material in the experimental temperature range. The van Gurp–
Palmen plot and Cole–Cole plot for the test data at various temperatures merge into a common curve,
which further validates thermorheological simplicity. The temperature dependent shift factors of
silicone rubber material were well characterized by the Williams–Landel–Ferry equation. Moreover,
the fractional-order differential Kelvin (FDK) model, the fractional-order differential Zener (FDZ)
model, and the improved fractional-order differential Zener (iFDZ) model were used to model the
asymmetric loss factor master curve. The result shows that the iFDZ model is in good agreement
with the test results, indicating that this model is suitable for describing the asymmetry of dynamic
viscoelastic properties of silicone rubber.

Keywords: time–temperature equivalence principle; dynamic viscoelastic properties; master curve;
WLF equation; fractional-order derivative viscoelastic model

1. Introduction

Rubber has unique physical and mechanical properties such as hyperelasticity, vis-
coelasticity, wear resistance, and insulation. It is widely used in national production and
the defense industry, e.g., in automotive tire manufacturing, rail transportation, and un-
derground protection projects. A material is viscoelastic when it exhibits a combination of
both elasticity and viscosity. Rubber is one of the most common viscoelastic materials. The
dynamic viscoelastic properties are essential for the structural design and life assessment
of rubber.

Compared with general purpose rubbers, such as ethylene propylene diene monomer [1]
and polymerized styrene butadiene rubber [2], silicone rubber has excellent high- and
low-temperature resistance [3], chemical stability, oxygen aging resistance, gas perme-
ability, electrical insulation, resilience and flexibility [4], oil resistance, solvent resistance,
and radiation resistance. It is widely used in aerospace, electronics appliances, chemical
instrumentation, machinery manufacturing, construction, daily life, and other fields. In
addition, silicone rubber is widely used in engineering materials because of its excellent
properties of vibration and shock dampening [1]. Therefore, the study of the dynamic
mechanical properties of silicone rubber is of great practical significance for fatigue failure
analysis and life assessment. The main research in this regard examines the significant
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elasticity of rubber. Many constitutive models have been proposed to display the compli-
cated behavior of silicone rubber, which includes hyperelasticity [5], viscoelasticity [6], and
visco-hyperelastic behavior [7].

It was found that the mechanical properties of rubber are affected by temperature
and time. There is a certain equivalence between the two, which is referred to as the
time–temperature equivalence principle, also known as the time–temperature superposi-
tion principle (TTSP), and with the change of temperature, the rubber material can also
present three different mechanical forms, which are viscous flow state, rubber state, and
glass state. The TTSP is an essential tool for studying temperature–frequency effects of
viscoelastic materials. Based on the TTSP, dynamic frequency sweep test data of thermorhe-
ological simple materials at different temperatures can be shifted along the logarithmic
frequency axis to obtain a series of master curves at a reference temperature. These can
be used to predict the linear viscoelastic mechanical response of the material on a broader
time/frequency domain, which is widely used in the analysis of the mechanical behavior
of viscoelastic materials.

Most of the research on time–temperature equivalence is focused on the determina-
tion of the parameters of the Williams–Landel–Ferry (WLF) equation and its application
extension, the error between the WLF equation’s prediction and the actual results, the pre-
diction of new material properties, and the validation of dynamic mechanical models [8,9].
Paulo et al. [10] investigated the rheological behavior of tire rubber at a constant shear
rate using the time–temperature equivalence principle and obtained well-fitted results.
Lin et al. [11] applied the WLF equation to establish the relationship between temperature
and reversible phases for the shape memory of linear ether polyurethanes. Jacek et al. [12]
discussed the influential nature of the parameters in the WLF equation at the molecular
level. Zhang et al. [13] proposed the frequency spectrum–temperature spectrum mirror
relationship for viscoelastic materials and derived a six-parameter fractional-order model
for the temperature spectrum which was validated by dynamic mechanical analysis (DMA)
tests. Hu et al. [14] studied the Payne effect and hysteresis loss of carbon black-filled rubber
at different temperatures and proposed a method for accelerated assessment of the Payne
effect at arbitrary temperatures that can be based on fewer test data according to the WLF
equation. Liang et al. [15] proposed a fractional-order differential principal structure model
in order to accurately describe the linear viscoelastic properties of asphalt and asphalt
mastic—the generalized fractional-order differential Zener model. Luo et al. [16] deter-
mined the S-N curve in the traditional sense with the maximum principal strain as the
fatigue parameter, established the relationship between the steady-state temperature rise
and the maximum principal strain, and proved that the steady-state temperature rise could
effectively evaluate the fatigue life of rubber members.

The current research on viscoelastic materials’ dynamic mechanical frequency effects is
mainly based on the principal structure equation [17]. The dynamic mechanical properties,
such as storage modulus and loss factor containing frequency variables, are obtained by
extrapolating them from the real domain to the complex domain and separating their imag-
inary parts through Laplace transform [18]. Nutting et al. [19] first developed a fractional
exponential model to describe the stress relaxation phenomenon of rubber. Subsequently,
Muhammad et al. [20] and Bosworth et al. [21] first proposed a fractional-order deriva-
tive model for viscoelastic media, after which scholars at home and abroad conducted a
great deal of research on the fractional-order model of viscoelasticity and arrived at many
useful conclusions [22,23]. Tang et al. [24] proposed a five-parameter fractional derivative
rubber vibration isolator constitution model, extrapolated to the frequency domain, and
identified the parameters. Li et al. [25] established a fractional-order viscoelastic oscillator
model considering shape parameters and applied it to the dynamic analysis of viscoelastic
suspensions for tracked vehicles. Wharmby et al. [26] established a modified Maxwell
instanton equation for viscoelastic materials based on fractional-order derivatives and ob-
tained its frequency response function by pull-type transformation. Cao et al. [27] proposed
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a fractional-order weighted distribution parameter Maxwell model and obtained its time
domain response by pull-type inversion transformation.

Few studies have examined the time–temperature equivalence of silicone rubber,
the relationship between the WLF parameters and their variation, and the viscoelastic
constitutive description over a wide frequency domain, despite the fact that the rheological
behavior of viscoelastic materials and their constitutive models have received extensive
attention. In this study, we focus on the temperature-dependent dynamic rheological
behavior of silicone rubber and the appropriate fractional-order constitutive model. We
used the Gabo Eplexor 500 N dynamic thermodynamic analyzer to perform temperature–
frequency sweep tests (−35 ◦C~60 ◦C) on silicone rubber to obtain the test curves of storage
modulus E′, loss modulus E′′, and loss factor tan δ at different temperatures. Based on the
TTSP, the dynamic viscoelastic master curves were constructed at the reference temperature
of 20 ◦C. The WLF equation was applied to fit the temperature shift factors nonlinearly,
and the parameters of the WLF equation were discussed. The van Gurp–Palmen plot and
Cole–Cole plot for the test data at various temperatures were used to verify the thermal
rheological properties of silicone rubber. Moreover, the dynamic rheological behavior of
silicone rubber was characterized using the fractional-order differential Zener model and
the improved fractional-order differential Zener model.

2. Theory
2.1. Time–Temperature Superposition Principle

The viscoelastic mechanical behavior of a viscoelastic material can be measured both
at a lower temperature and longer time (lower frequency) action and presented at a higher
temperature and shorter time (higher frequency) action. The effect of temperature is the
same as the effect of action time, and the viscoelastic material is said to be a thermorheolog-
ical simple material on a macro level when the material satisfies the TTSP [28]. According
to the TTSP, the isothermal curve can be realized to be shifted down to the reference tem-
perature, extending the range of the frequency spectrum at the reference temperature with
the relation:

Y( f , T) = Y
(

fr

φT
, Tr

)
(1)

where Y is the dynamic property of the viscoelastic material (e.g., storage modulus E′,
loss modulus E′’, or loss factor tan δ); f and f r are the load frequency and scaling fre-
quency, respectively; T and Tr are environmental temperature and reference temperature,
respectively; and φT is frequency conversion factor. Then:

f =
fr

φT
(2)

Furthermore:
φT =

fr

f
(3)

The frequency-transformation factor φT is the amount of translation to achieve the
frequency spectrum of dynamic mechanical properties at temperature T to the reference
Tr. The master curve is the broadband performance of the material at the reference tem-
perature Tr, thus extending the predictive capability of the dynamic properties at the
reference temperature.

2.2. The WLF Equation

Using the frequency conversion factor φT as a function of temperature, Williams, Lan-
del, and Ferry found that near the glass transition temperature, for almost all amorphous
polymers, the relationship between the shift factor logφT and (T − Tr) satisfies the equation:

log φT =
−C1(T − Tr)

C2 + (T − Tr)
(4)
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This is the WLF equation, where C1 and C2 are the material parameters.
Using the conversion factor φT, the conversion frequencies wr at different temperatures

can be obtained to achieve the correlation of the dynamic viscoelasticity at different temperatures:

ωr = ωφT (5)

where w is the angular frequency.

2.3. Fractional-Order Derivative Viscoelastic Model

Viscoelastic materials have mechanical properties between elasticity and viscosity and
can, therefore, be simulated by a viscoelastic model that combines elastic and viscous com-
ponents. The constitutive models describing the mechanical behavior of viscoelasticity can
be divided into two types: differential and integral models. Among these, the differential
constitutive model is more common. The differential constitutive model can be divided
into the integer-order differential constitutive model and fractional-order differential con-
stitutive model.

The fractional-order differential Kelvin–Voigt model can be obtained by replacing the
viscous pot in the classical integer-order Kelvin–Voigt model with the Koeller pot [29], as
shown in Figure 1.
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The present constitutive equation is obtained by:

σ(t) = (E1 + E2ταDα)ε(t) (6)

where E1 is the modulus of the spring element; E2, τ, and α are the modulus, average relax-
ation time, and fractional order of spring pot element, respectively; 0 < α < 1; D represents
the Riemann Liouville fractional derivative operator; and Dα is defined as [30]:

Dα f (t) =
1

Γ(1− α)

d
dt

∫ t

0
(t− τ)−α f (τ)dτ, f (0) = 0 (7)

In the formula, Γ(x) is the Eulerian gamma function.
To describe the dynamic viscoelastic properties of the material, the Fourier transform

of Equation (6) yields the complex modulus of the fractional-order differential Kelvin–
Voigt model:

E∗(iω) = E1 + E2τα(iω)α (8)

Substituting iα = cos(απ/2) + i sin(απ/2) into Equation (8) and separating the real
and imaginary parts yields the storage modulus E′(w), loss modulus E′′(w), and loss factor
tan δ:

E′(ω) = E1 + E2(τω)α cos(απ/2) (9)

E′′ (ω) = E2(τω)α sin(απ/2) (10)

tanδ =
E2(τω)α sin(απ/2)

E1 + E2(τω)α cos(απ/2)
(11)

The fractional-order differential Zener model can be obtained by replacing the viscous
pot in the classical integer-order Zener model with the Koeller pot, as shown in Figure 2.
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The present constitutive equation can be expressed by:

σ(t) =
(

E1 +
E2E3ταDα

E2 + E3ταDα

)
ε(t) (12)

In the same way, it can be deduced that the storage modulus E′(w), loss modulus
E′′(w), and loss factor tan δ:

E′(ω) =
E1E2

2 + (2E1 + E2)E2E3(ωτ)α cos(απ/2) + (E1 + E2)E3
2(ωτ)2α

E22 + 2E2E3(ωτ)α cos(απ/2) + E32(ωτ)2α
(13)

E′′ (ω) =
E2

2E3(ωτ)α sin(απ/2)

E22 + 2E2E3(ωτ)α cos(απ/2) + E32(ωτ)2α
(14)

tan δ =
(ωτ)α sin

(
απ
2
)

E1
E3

+
(

1 + 2E1
E2

)
(ωτ)α cos

(
απ
2
)
+
(

1 + E1
E2

)
E3
E2
(ωτ)2α

(15)

The fractional-order differential Zener model describes the instantaneous elasticity
of a solid with steady-state asymptotic values. It is usually used to describe the dynamic
mechanical properties of viscoelastic materials over a wide frequency range. The Koeller
pots of the Zener model can be extended into two pots in series to obtain a kind of improved
fractional-order differential Zener model [31], as shown in Figure 3. To reduce the number
of model parameters, the elastic modulus and mean relaxation time of the two pots are set
to be the same, denoted by E3 and τ, and the fractional-order differentiation is different,
denoted by α and β.
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After simple derivation, the constitutive equation of the improved fractional-order
differential Zener model can be obtained:

σ(t) =

E1 +
1

1
E2

+ 1
E3ταDα + 1

E3τβDβ

ε(t) (16)

Similarly, we can deduce the storage modulus E′(w), loss modulus E′′(w), and loss
factor tan δ:

E′(ω) =
E1E2

2λ1 + (E1 + E2)E2
3(ωτ)2(α+β) + (2E1 + E2)E2E3(ωτ)α+βλ2

E32(ωτ)2(α+β) + E22λ1 + 2E2E3(ωτ)α+βλ2
(17)
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E′′ (ω) =
E2

2E3(ωτ)α+βλ3

(ωτ)2(α+β)E32 + E22λ1 + 2E2E3(ωτ)α+βλ2
(18)

tan δ =
(ωτ)α+βλ3

E1
E3

λ1 +
(

1 + E1
E2

)
E3
E2
(ωτ)2(α+β) +

(
1 + 2 E1

E2

)
(ωτ)α+βλ2

(19)

Among them: λ1 = (ωτ)2α + (ωτ)2β + 2(ωτ)α+β cos
(

α−β
2 π

)
, λ2 = (ωτ)β cos

(
απ
2
)
+

(ωτ)α cos
(

βπ
2

)
, λ3 = (ωτ)β sin

(
απ
2
)
+ (ωτ)α sin

(
βπ
2

)
.

3. Experimental Section

The test material was semitransparent silicone rubber sheet, obtained through vul-
canization and extrusion, with a ShorE′s hardness of around 65 degrees, from Care Mea-
surement and Control Test System (Tianjin) company. The thin rectangular strip used for
DMA testing was 50 mm long, 5 mm wide, and 2 mm thick. The DMA test equipment was
a Gabo Eplexor 500 N dynamic thermodynamic analyzer, as shown in Figure 4. In order to
avoid the Mullins effect on the deformation cycle of the material, mechanical pretreatment
was performed on all specimens. A sinusoidal strain was applied to the silicon rubber
specimens with a prestrain of 0.8% and a superimposed dynamic strain amplitude of 0.2%
which was kept in the linear viscoelastic region of the measurement.
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Temperature–frequency sweep tests were carried out on the samples of silicon rub-
ber in the 0.1 Hz to 70 Hz range and repeated at different temperatures from −35 ◦C
to 60 ◦C with 5 K intervals. During these sweep measurements, the stress response to
strain excitation was automatically recorded and E′, E′′, and tan δ were calculated from
these measurements.

4. Results and Discussion
4.1. Master Curve Analysis

The curves of storage modulus versus loading frequency for silicone rubber at different
temperatures are shown in Figure 5a. The storage modulus E′ represents the energy stored
in the material during deformation due to elastic deformation. As shown in the figure,
the value of the storage modulus E′ of the silicone rubber specimen varies from 0.13 to
24.59 MPa with temperature and frequency. The variation law of the storage modulus E′ of
the material with temperature and frequency is consistent with the results of Sawai [32],
Placet [33], and others. In general, for viscoelastic solid materials, the storage modulus
E′ increases with the increase of test frequency [34]. As the test frequency increases,
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the molecular chain segment motion of the silicone rubber specimen lags behind the
change in external force and the internal consumption decreases. The material becomes
more rigid and exhibits the mechanical properties of the glassy state, which is manifested
macroscopically as an increase in the value of the storage modulus E′.
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corresponding master curve at a reference temperature of 20 ◦C (b).

According to the TTSP, the frequency conversion factor can be used to shift the test
frequency spectrum at multiple sets of temperatures to obtain the master curve at the
reference temperature, thus enabling the prediction of dynamic mechanical properties in
the high/low-frequency band that the test equipment cannot cover. Before conducting
the time–temperature equivalence analysis, the reference temperature that constitutes the
master curve must be selected. In this experiment, 20 ◦C was used as the reference temper-
ature for the storage modulus master curve. In the logarithmic frequency coordinate, the
measured storage modulus test curve at the reference temperature does not shift. However,
the test curve above or below this temperature is shifted horizontally by CFS algorithm [35]
to the left or right along the frequency axis so that all the curves are superimposed on each
other and connected. Then, the smooth master curve of storage modulus is constructed
only through horizontal shift, without vertical shift, as shown in Figure 5b, and the corre-
sponding frequency conversion factors are shown in Table 1. It is worth mentioning that the
shifting error caused by CFS algorithm is at least 10–50 times smaller than the underlying
experimental error, which indicates that the master curve constructed is accurate enough.

Table 1. Temperature shift factors at various temperatures (Tr: 20 ◦C).

T/◦C −35 −30 −25 −20 −15 −10 −5 0 5 10

logφT 5.27 4.48 3.89 3.35 2.84 2.36 1.74 1.43 1.00 0.63

T/◦C 15 20 25 30 35 40 45 50 55 60
logφT 0.30 0 −0.34 −0.44 −0.64 −0.84 −1.11 −1.28 −1.49 −1.66

The acquired shift factors of the storage modulus in Table 1 are used to construct the
master curves for the loss modulus and loss factor at a reference temperature of 20 ◦C. The
resulting master curves are quite smooth and cover a frequency range of 10 decades from
10−2~108 Hz., as seen in Figures 6 and 7, revealing the thermorheological simplicity of
silicone rubber. This indicates that the time temperature equivalence principle is applicable
to viscoelastic mechanical behavior of silicone rubber within the test temperature range
and presents an excellent accelerated characterization to expand the frequency range.
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master curve at the reference temperature of 20 ◦C (b).

The temperature shift factor, which represents the movement of each viscoelastic unit
and the ratio of the material’s relaxation time at a given temperature to the relaxation
time at the reference temperature, is used to create the master curve by characterizing
the horizontal displacement of each experimental curve in the frequency coordinate. The
temperature shift factor φT is a function of temperature, and the WLF Equation (4) is
often used to analyze the φT of the master curve of the dynamic viscoelastic parameters
of the material in addition to obtaining the value of φT by means of a computation of the
experimental data. Figure 8 shows the temperature shift factor φT and the fitted curve
of the WLF equation for the master curves of dynamic modulus of silicone rubber at the
reference temperature of 20 ◦C. As can be seen from the figure, the WLF equation is in good
agreement with the temperature shift factors obtained from the experiment. The fitting
determination coefficient is 0.9982.
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by WLF equation.

As can be seen from Figure 8, as the difference between the test temperature and the
reference temperature increases, i.e., (T − Tr), the temperature shift factor φT decreases,
and when (T − Tr) is less than 0 ◦C, φT is more obvious; when (T − Tr) is greater than 0 ◦C,
φT declines slowly. This indicates that the closer the test temperature is to the reference
temperature in constituting the master curve, the shorter the distance for the test curve at
that test temperature to make shifts, indicating a smaller φT. When the test temperature
is higher than the reference temperature, the logarithmic temperature shift factor logφT is
negative, indicating that the relaxation time of the material molecular motion shortens as
the temperature increases. This corresponds to a higher frequency of the alternating load.
The fitted curve of the WLF equation is well approximate to the test data and can predict
the temperature shift factor φT to a certain extent.

The WLF equation to the experimental data at the reference temperature of 20 ◦C
yields C1 = 7.219, C2 = 129.1 K, from which it can be seen that the product of the obtained
material parameters C1 and C2 matches the empirical value of the product of C1 and C2 for
polymeric materials, which is approximately equal to 900 K [36].

To further investigate the law of the WLF equation, C1 and C2 at different reference
temperatures were obtained by the same method, as shown in Table 2 and Figure 9. From
Figure 9a, one can see that the product of material parameters C1 and C2 is stable between
900 K and 1100 K, and from Figure 9b, one can observe that C1/C2 shows a rational function
relationship with reference temperature:

C1/C2 = p/(Tr − q) (20)

Table 2. Parameters C1 and C2 of WLF equation at various reference temperatures.

Tr (K) C1 C2 (K) C1 × C2
(K)

C1/C2
(K−1) R2 Tr (K) C1 C2 (K) C1 × C2

(K)
C1/C2
(K−1) R2

238.15 12.98 82.55 1071.50 0.16 0.999 288.15 7.40 123.20 912.17 0.06 0.9984
243.15 12.27 89.38 1096.70 0.14 0.9988 293.15 7.22 129.10 931.97 0.06 0.9982
248.15 11.48 90.57 1039.74 0.13 0.999 298.15 6.97 132.90 926.58 0.05 0.9957
253.15 11.32 98.96 1120.23 0.11 0.9985 303.15 7.14 146.00 1042.73 0.05 0.999
258.15 11.25 109.80 1235.25 0.10 0.998 308.15 6.75 149.70 1010.03 0.05 0.9987
263.15 11.07 119.20 1319.54 0.09 0.9978 313.15 6.33 152.30 963.60 0.04 0.9985
268.15 8.74 103.20 902.38 0.08 0.9986 318.15 6.40 159.90 1023.20 0.04 0.999
273.15 9.34 119.80 1118.45 0.08 0.9989 323.15 6.04 162.90 983.59 0.04 0.9989
278.15 8.36 117.50 982.65 0.07 0.999 328.15 6.02 169.70 1020.92 0.04 0.999
283.15 7.75 119.00 922.49 0.07 0.9986 333.15 5.86 174.90 1024.91 0.03 0.999
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To further verify the thermorheological simplicity of silicone rubber, van Gurp–Pal-
men plots and the Cole–Cole plot are provided. Van Gurp and Palmen [37] proposed a 
method to verify the time–temperature equivalence principle by plotting the hysteresis 
phase δ against the absolute value of the complex modulus |E*| and found that if it holds, 
the frequency curves of the isotherms merge into a typical curve. This plotting method 
avoids shifting the data along the frequency axis and results in a temperature-independ-
ent curve. Thus, any breakdown of the time–temperature equivalence principle can be 
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To further verify the thermorheological simplicity of silicone rubber, van Gurp–Palmen
plots and the Cole–Cole plot are provided. Van Gurp and Palmen [37] proposed a method
to verify the time–temperature equivalence principle by plotting the hysteresis phase δ

against the absolute value of the complex modulus |E*| and found that if it holds, the
frequency curves of the isotherms merge into a typical curve. This plotting method avoids
shifting the data along the frequency axis and results in a temperature-independent curve.
Thus, any breakdown of the time–temperature equivalence principle can be easily seen
from the van Gurp–Palmen diagram. This has proven to be a practical tool for detecting
the simplicity of thermorheology. By graphing E′′ vs. E′, the Cole–Cole plot describes the
time-dependent dynamic viscoelastic moduli. While E′′ and E′ are depicted on linear axes
in the standard Cole–Cole plot, logarithmic axes are used in the modified Cole–Cole plot.

Figures 10 and 11 show the van Gurp–Palmen plot and the Cole–Cole plot of the
test data. It can be seen from both plots that no processing of the data is required to
superimpose the isothermal sweep curves into a single curve. Thus, a strong case can be
made that silicone rubber is thermorheologically simple from the macroscopic view, which
means it meets the equivalence of time and temperature in the experimental temperature
range. It is worth noting that the single Cole–Cole curve and the van Gurp–Palmen curve
indicate that the microstructure of the silicone rubber used in the test hardly changes with
temperature in the experimental range. Perhaps because silicone rubber is an excellent
high-temperature- and low-temperature-resistant material, its microstructure does not
undergo significant changes with temperature.
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4.2. Application Analysis of Fractional Derivative Model

Both the differential rheological model and integral rheological model are widely used
to describe the viscoelasticity mechanical behavior of rheological material. The integral
rheological model is generally used for creep and stress relaxation, which is convenient
to describe the load history-dependent viscoelasticity behavior. However, the differential
rheological model is more graphical for its visual model diagram than the integral model
and can be more conveniently applied to the field of dynamic viscoelasticity for it is easy to
perform Fourier transform from time domain to frequency domain.

The Maxwell model, Kelvin-Voigt model, and Zener model are the classical differential
rheological models and are binary or ternary models with few parameters. The Maxwell
model presents the properties of fluids and the object characterized by the Maxwell model is
usually referred to as Maxwell fluid. In contrast, the Kelvin–Voigt model and Zener model
present the properties of a rheological solid. The fractional-order derivative model has
greater descriptive power than the corresponding integer-order differential model and can
degenerate into integer-order differential models as necessary when their fractional order
is close to one or zero. For some viscoelasticity materials, the master curves of loss factor
and loss modulus are asymmetric. The Maxwell model, Kelvin model, and Zener model
and their corresponding fractional-order derivative models cannot effectively describe the
asymmetry of dynamic viscoelasticity. The improved fractional order Zener model, due
to its two fractional orders, can be used to describe the asymmetry of material dynamic
mechanical properties. Although the generalized Kelvin–Voigt and generalized Maxwell
model can also represent dynamic viscoelasticity, they have too many parameters [38]. In
this research, the fractional-order differential Kelvin–Voigt (FDK) model, the fractional-
order differential Zener (FDZ) model and the improved fractional-order differential Zener
(iFDZ) model were introduced to approximate and analyze the loss factor master curve of
silicone rubber. The results are shown in Figure 12, and the model parameters are listed in
Table 3. In the table, R2 represents the coefficient of determination, and SD represents the
standard deviation.

Table 3. The material parameters of the fractional-order differential models.

Model E1 (MPa) E2 (MPa) E3 (MPa) α β τ (s) R2 SD

FDK 7.19 8.49 / 0.15 / 1.25 0.93 0.0079
FDZ 0.10 821.10 0.15 0.14 / 0.57 0.94 0.0073
iFDZ 0.65 55.21 0.22 0.16 0.66 179.70 0.97 0.0053
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In the FDK model, FDZ model, and iFDZ model, E1, E2, and E3 are the elastic moduli
in the models. Generally, the higher the crosslinking density of rubber, the greater they
are. τ means the average relaxation time; here, it refers to the time required for the silicone
rubber material to transition from an equilibrium state through polymer motion to a new
equilibrium state that is suitable for the external field.

As shown in the figure and table, it can be seen that the FDK model can describe the
trend of the master curve of the loss factor of silicone rubber material in the wide frequency
range, to a certain extent, but slightly worse so than the FDZ model. In contrast, the iFDZ
model closely resembles the asymmetric master curve of the loss factor of silicone rubber
and is obviously superior to the FDK model and FDZ model based on the value of R2 and
SD in Table 3.

According to the constitutive equations of the aforementioned FDK model, FDZ model,
and iFDZ model, it can be seen that the FDK model and the FDZ model contain only one
fractional order, α, which only describes a symmetric loss factor curve, while the iFDZ
model can describe a dynamic viscoelastic curve with asymmetry because it contains
two fractional orders, α and β, when α and β are not equal. If we let E1 = E2 = E3 = 1
and τ = 1, and let α = 0.25, 0.5, and 0.75, the loss factor curve is plotted as shown in
Figures 13 and 14, demonstrating the above conclusions.
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Although the iFDZ model contains six material parameters, its parameters are not too
numerous compared to many rheological models. Additionally, due to its two fractional
orders, α and β, it can describe the asymmetry of dynamic viscoelasticity of materials, which
indicates that it is a powerful tool to characterize the asymmetric dynamic viscoelasticity of
rheological materials. Noteworthily, the material’s structure and composition may have
an impact on the symmetry of dynamic viscoelasticity of materials. In general, when the
molecular structure is homogeneous, the curve is symmetric; when the material’s structure
is a blend system or heterogeneous, as in microheterogeneous systems, the dynamic
viscoelastic curves are asymmetric. For the silicone rubber in this study, asymmetry is
related to its vulcanization and fillers [39].

5. Conclusions

In this work, the dynamic mechanical thermal analyzer was used to test the frequency
spectrum scan of silicone rubber material in the range of different temperatures (−35 ◦C
to 60 ◦C) levels, and the test showed that the dynamic viscoelastic properties of silicone
rubber have obvious temperature–frequency dependence. The dynamic viscoelastic test
curves at different temperatures can be shifted along the logarithmic frequency coordinate
axis to construct smooth master curves, covering a frequency range of 10 decades, which
indicates the thermorheological simplicity and frequency temperature equivalence of the
silicone rubber material in the experimental temperature range. Furthermore, the van
Gurp–Palmen plot and Cole–Cole plot for the test data at various temperatures merge
into a common curve, verifying the material’s thermorheological simplicity on a macro
level. In addition, the asymmetric loss factor master curve was approximated by the FDK
model, the FDZ model, and the iFDZ model. The results showed that the iFDZ model is
in good agreement with the experimental master curve at the angular frequency spans
from 10−2~108 rad/s, indicating that this model is suitable for describing the asymmetry of
dynamic viscoelastic properties of silicone rubber.
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