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Abstract: This research investigated a non-thermal, dielectric-barrier discharge (DBD) plasma-based
approach to prepare poly(acrylic acid) (PAA) from acrylic acid in its liquid state at atmospheric
temperature and pressure. Neither additives nor solvents were needed, and the polymerization
was accomplished both as a film and inside a sheet of mesoporous paper. All prepared samples
were characterized and the DBD plasma-initiated kinetics were analyzed for the polymerization of
acrylic acid. Using FTIR semi-quantitative analysis, the degree of polymerization was monitored,
and the reaction followed an overall second-order kinetic model with respect to the DBD-initiated
polymerization. Additionally, the application of a PAA-modified paper as a water retention cloth or
‘wet wipe’ was investigated. The results showed that the PAA-modified paper substrates using DBD
plasma increased water retention as a function of plasma treatment time.

Keywords: DBD plasma; non-thermal plasma; mesoporous materials; poly(acrylic acid)

1. Introduction

Poly(acrylic acid) (PAA) is a pH-responsive addition polymer with various applica-
tions, such as in hydrogels [1], superabsorbent materials [2], drug delivery [3], artificial tears
to treat dry eye syndrome [4], surface modifications for cell adhesion and proliferation [5],
and as a mucoadhesive gel coating [6]. PAA is biocompatible, biodegradable, and has low
toxicity in human blood [7,8]. PAA is usually formed via a free-radical polymerization
mechanism and initiated by conventional UV and chemical methods. These polymeriza-
tions are usually conducted in aqueous or organic solvents and require several reagents or
additives for a quality polymerization to occur. For example, nitroxide is required in an
acidic medium for the nitroxide-mediated polymerization of acrylic acid (AA) [9]. In atom
transfer radical-polymerization (ATRP) of AA, typical ATRP reagents are needed [10]. The
same is the case for reversible addition−fragmentation transfer (RAFT), where common
chain transfer agents are needed [11]. Only a few works have demonstrated the bulk
polymerization of AA and even then the use of initiators cannot be avoided [12]. These
initiators, due to their inherent properties, produce radicals which can be very dangerous
reactive species for many applications where PAA is suitable. The removal of the unreacted
initiators in many cases can be troublesome and even harder to quantify. For these reasons,
methods for polymerizing monomers without the need for any of these toxic chemicals
are needed.

Dielectric-Barrier Discharge (DBD) plasma is a less commonly used method for poly-
merization and is ideal for producing thin polymer films to coat many surfaces. DBD
atmospheric plasma uses ambient air to produce an ionized gas composed of charged and
free radical species at room temperature and atmospheric pressure. This is achieved by ap-
plying a high voltage between two electrodes [13]. To prevent electron flow between these
electrodes, a dielectric material is applied to at least one of them. The insulator prevents a
build-up of high currents between the electrodes, creating electrically safe plasma without
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substantial gas heating. Consequently, DBD plasma is considered safer to utilize and is
commonly referred to as “cold plasma” in contrast to high-temperature plasmas [14,15].
Notably, DBD devices can be designed as handheld devices, offering convenient operation
similar to handheld UV devices.

Research on the applications of discharged plasma is currently thriving in various
fields, including biomedical devices, environmental science, and agriculture [16,17]. Among
the wide range of plasma techniques, DBD plasma stands out due to its exceptional safety
and selectivity when interacting with biological systems [18,19]. The effects of DBD plasma
treatment encompasses numerous beneficial outcomes such as being antimicrobial and
utilized for the sterilizatiofwn of skin [20], facilitating wound healing [21], sterilizing root
canals [22], enhancing cell transfection [23], and promoting cell proliferation [24]. In order to
advance the understanding of the interactions between plasma and living cells and tissues,
and to facilitate the clinical applications of plasma, extensive research has been devoted to
the investigation of chemical species generated during plasma treatments. The majority
of studies investigating plasma treatments have focused on samples in aqueous solutions,
where the organic chemicals present include sugars, lipids, and amino acids, among others.
These organic compounds are significant constituents of a cell culture medium. In these
studies, it was observed that the organic chemicals underwent decomposition, leading to
the formation of smaller chemical species. However, recent investigations have revealed a
new and intriguing phenomenon when treating sugar powders, such as ribose and glucose,
in the solid phase. Contrary to the expected decomposition, these sugars, particularly
ribose, underwent polymerization. In following studies, DBD was also used to initiate the
bulk polymerizations of bithiophene [25] and aminophenol [26] inside a piece of paper
without any other chemicals added.

One of the major advantages of DBD plasma is that it does not require any initiators,
nor chemical additives for polymerization, which allows for the bulk polymerization of
many gas, liquid, and solid-state monomers. There are also instances when UV and heat
cannot be used to polymerize certain heat- and UV-sensitive materials, nor can radiation
efficiently polymerize a monomer where direct radiation cannot occur, such as internally
to a material or a material that has a low radiation penetration depth. The air plasma
consists of reactive oxygen and nitrogen species. These species possess the capability
to initiate polymerization reactions due to their ability to penetrate thin monomer films
and/or mesoporous materials. The DBD plasma polymerization of AA has been studied
using other plasma generation setups, and the operating parameter effects on the polymer
film product have been discerned [27]. Several properties of the PAA films produced
using DBD plasma have also been investigated, such as the homogeneity and hydrophilic
characteristics [28]. However, in all of the works previously conducted, the polymerization
of AA using plasma-generating devices has come from depositing PAA onto a substrate
from AA in its gaseous state, and usually mixed with some other carrier gas to facilitate the
generation of plasma and free radicals [29–31].

Herein, AA was polymerized and studied from its liquid state using DBD plasma to
produce thin films of the polymer. Considering the distinct nature of the presented plasma-
based approach for synthesizing PAA films on a wide range of substrates, this method was
termed as DBD non-gaseous polymerization. This nomenclature serves to differentiate this
approach from the conventional gaseous plasma polymerization method. In comparison
to other polymerization methods, non-gaseous DBD plasma polymerization is a favored
method for polymerization in mesoporous materials since atmospheric-pressure plasma
has been seen to penetrate planar mesoporous substrates with thicknesses similar to paper
and even in thin wood planks (1–2 mm in thickness) [32]. This internal polymerization in
thicker substrates is mostly due to the sample preparation, where the mesoporous substrate
to be polymerized is soaked and effectively impregnated with the liquid monomer and then
subsequently polymerized by plasma initiation. For some low-pressure plasmas where the
monomer is deposited from its gas phase and on to non-planar substrates, this penetration
depth is much lower (less than 1 mm) [33]. In this work, the characterization and kinetics
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were studied for the bulk polymerization of AA using DBD plasma without any additives
or solvents added, and it was demonstrated that liquid-phase AA can indeed be bulk
polymerized as a film and in a piece of paper via the DBD plasma process at atmospheric
conditions. The plasma treated AA-modified paper samples showed improved water
retention properties relative to the untreated samples. This work will provide valuable
insights into the DBD non-gaseous plasma polymerization of PAA, which may be used
in industrial applications due to its lower cost, short treatment times, and free of solvents
and additives.

2. Experiments and Materials
2.1. Materials

Acrylic acid (>98% Beantown Chemical, Hudson, NH, USA) was used as received.
Poly(acrylic acid) (MW ~ 1,000,000, Polysciences, Inc., Warrington, PA, USA). Letter paper
(Office Depot ImagePrint, Boca Raton, FL, USA, 77–89% cellulose, uncoated).

2.2. DBD Plasma Generation

The DBD air plasma was generated by using a microsecond-pulsed power supply
(FID Technology, Burbach, Germany) and an electrode dielectric-barrier discharge setup as
shown in Figure 1. The DBD electrode works by creating a plasma stream between a high
voltage 25 mm thick copper plate and the ground. A 1 mm thick quartz dielectric plate is
used as an insulating barrier to cover the copper plate. The plasma discharge gap between
the bottom of the quartz plate and the surface of the samples was kept constant at 5 mm.
The plasma is generated by using a variable voltage and variable frequency power supply
that applies a pulsed alternating polarity voltage of 20 kV (peak to peak) with a 10 ns pulse
width and a rise time of 5 V/ns. For all the experiments, a peak voltage of 11.2 kV and
repetition frequency of 690 fHz were used. The input energy used was calculated to be
around 10 mJ/pulse. The working area of plasma treatment was equivalent to the copper
plate dimensions of 38 mm × 64 mm.
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Figure 1. Scheme for the DBD plasma device.

2.3. DBD Plasma Polymerization of AA

A thin film of AA was applied on a 1 cm × 1 cm gold-coated silicon substrate by
drop casting 10 µL of the monomer using an autopipette. This yielded a liquid AA film of
approximately 100 µm in thickness. The gold substrates were used for their IR inactivity,
which allowed the AA bands to be discerned along the plasma treatment process without
any IR band interference from the substrate. The AA-coated substrates were then treated
with DBD plasma under ambient conditions (normal temperature and pressure), and the
relative humidity fluctuated day-by-day between 60 and 70%. Three AA-coated substrates
were then treated with DBD plasma under atmospheric conditions for 30 s, 1, 2, 3 and
5 min intervals.
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2.4. FTIR Characterization and Analysis

A PerkinElmer Spectrum One FT-IR Spectrometer (Waltham, MA, USA) was used to
obtain the Fourier-transform infrared (FTIR) spectra of the samples before and after plasma
polymerization. FTIR sampling was performed by attenuated total reflection (ATR) over
the range 650 cm−1 to 4000 cm−1 with a resolution of 4 cm−1. The background FTIR spectra
were collected on a clean gold substrate for the thin films and in air for the AA-modified
samples. OriginLab was used for deconvolution and quantification of IR peaks to analyze
the spectra at the various time intervals of DBD plasma treatment.

2.5. Wet Wipe Application

The 15 mm × 10 mm paper samples were modified with AA by allowing them to soak
overnight in 20 mg of the monomer. This was enough AA to fully submerge the entire
sample. The samples were removed from the soaking liquid and dabbed off with a paper
towel to remove excess AA on the surface. Several samples were then subjected to the same
plasma treatment times of 1, 2, and 5 min. After the plasma treatment, 100 µL of distilled
water was auto pipetted on to each sample and the weight of the samples was taken every
five minutes over the course of one hour. All masses were measured on a pre-calibrated
analytical balance with 0.1 mg resolution. These results were compared to a paper with
just monomer (not polymerized) and pristine paper. The environmental conditions were
controlled and kept constant during this time period, with a room temperature of 23 ◦C
and a relative humidity of 53%.

3. Results and Discussion
3.1. Characterization of AA and PAA Using Infrared Spectroscopy

Figure 2 shows the infrared spectrum of AA and a reference PAA sample. Based on
previously reported IR spectra of AA and PAA [34], the polymerization of AA to PAA upon
exposure to DBD plasma could be validated. The vibrational band located at 1700 cm−1,
which is attributed to the stretching mode of the carbonyl bond, was observed throughout
all of the samples, regardless of plasma treatment time—as expected. The other peaks of
interest are displayed in the table inset of Figure 2 and are in reference to the vinylidene
group of AA. The band at 1636 cm−1 for the C=C out-of-phase stretching mode is observed
to completely disappear in the FTIR spectrum of PAA. Many of the other vibrational
modes are seen to be suppressed in PAA relative to AA but only the 1636 cm−1 band
fully disappears, as is expected in a fully polymerized AA sample where no more C=C
bonds remain. This 1636 cm−1 band that should decrease with respect to the degree of
polymerization was used in the kinetic study to monitor the ability of DBD plasma to
polymerize AA films.
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3.2. Kinetic Study

The carbonyl band was used as an internal standard reference peak to determine
the degree of polymerization of AA as a function of DBD plasma treatment time. The IR
transmittance data were converted to absorbance data and the peak areas were calculated
for the IR bands at 1636 cm−1 and 1700 cm−1. Using OriginLab, deconvolution for the
peaks of interest was accomplished during the various plasma treatment times. The peak
area ratio of the 1636 cm−1 (A1) band to that of the 1700 cm−1 (A0) band was calculated
for each plasma treatment time, and this value was plotted against the treatment time to
display the degree of polymerization. As can be seen in Figure 3a, the peak area ratio
(A1/A0) of these two bands were used to semi-quantitatively demonstrate the successful
polymerization of AA by DBD plasma.
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The semi-quantitative analysis method for determining the reaction rate order using
FTIR was adapted from Pintar et al. [35] and was used in a previous paper to demonstrate
the degree of conversion of PEGDA using DBD plasma [32]. A second-order treatment
of the data yielded the best linear fit, with an R-squared value of 0.98218 (Figure 3b).
This implies that the overall order of the plasma-initiated polymerization of AA is second
order. Equivalent results were seen in two previous works using DBD plasma, which may
imply that DBD plasma polymerization for bulk and solid-state polymerizations follows a
second-order kinetic mechanism.

3.3. Wet Wipe Application

One major advantage of the DBD plasma bulk polymerization method over other
methods is the ability to initiate a polymerization inside a mesoporous material, such as
inside a piece of printing paper. A paper substrate was soaked in acrylic acid and subjected
to plasma for several time intervals. Figure 4 shows the FTIR spectra of an AA-modified
paper sample before and after 5 min of plasma exposure. The band at 1636 cm−1 decreases
significantly relative to the 1700 cm −1 band after 5 min of plasma exposure, indicating a
high degree of polymerization.
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Due to the hydrophilic properties of PAA, one potential application of the PAA-
modified paper is its use as a wet wipe that retains water longer than a pristine sheet of
paper. The water retention property of the paper was assessed by monitoring its weight
loss over time and the results are displayed in Figure 5.
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5 min, respectively.

To determine the rate of water loss in each sample, a linear fit was applied to each set
of data, and the slope values gave an approximation of the water loss over time. The rate of
water loss was found to be almost identical for the pristine paper and AA-modified paper.
For the pristine paper, the water loss rate was calculated to be 2.8 mg/min, and the rate
was 2.9 mg/min for the AA-modified paper. However, for the plasma-treated samples, the
rate decreased by more than half in all cases. The samples subjected to plasma for 1, 2, and
5 min were found to lose water at a rate of 1.4, 1.3, and 0.9 mg/min, respectively. Water
retention increased as a function of plasma treatment time.
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4. Conclusions

The characterization and kinetics for the polymerization of liquid-phase acrylic acid
using a non-thermal dielectric-barrier discharge plasma method without the use of any
additives or solvents has been demonstrated. The acrylic acid can also be polymerized
inside a piece of paper using the DBD plasma method and the water retention property
of the plasma-treated paper samples showed that water retention increases as a function
of plasma treatment time. The successful DBD polymerization of liquid AA at room
temperature and using atmospheric conditions allows for the production of any polymer
film directly from its monomer liquid state. The polymer films can be formed on virtually
any planar substrate using a very simple plasma-generating device as the one demonstrated.
This makes the plasma polymerization of AA more straightforward and possible without
the need of complex setups as used in gas-phase plasma polymerization.

In comparison to other polymerization methods, atmospheric-pressure plasma is
unique in its ability to penetrate mesoporous materials, such as paper, and facilitate poly-
merization of the monomers within. It was shown that using AA and other vinyl monomers
(in previous works), it is possible to polymerize monomers internally, which allots differ-
ent substrates new and/or improved properties relative to the pristine samples. Using
other polymerization methods requires the use of toxic initiators and additives that in
applications such as wet wipes can leave behind unreacted chemical residues that are
hard to remove post polymerization. DBD plasma polymerization is a favorable method
for bulk polymerization in these porous environments and provides a greener and safer
approach. In future work, a parametric study will be conducted to determine the effect
of the plasma discharge conditions on the properties of the polymer films produced from
liquid-state monomers.
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