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Abstract: Pharmaceuticals are acknowledged as emerging contaminants in water resources. The
concentration of pharmaceutical compounds in the environment has increased due to the rapid
development of the pharmaceutical industry, the increasing use of human and veterinary drugs,
and the ineffectiveness of conventional technologies to remove pharmaceutical compounds from
water. The application of biomaterials derived from renewable resources in emerging pollutant
removal techniques constitutes a new research direction in the field. In this context, the article reviews
the literature on pharmaceutical removal from water sources using microbial biomass and natural
polymers in biosorption or biodegradation processes. Microorganisms, in their active or inactive
form, natural polymers and biocomposites based on inorganic materials, as well as microbial biomass
immobilized or encapsulated in polymer matrix, were analyzed in this work. The review examines
the benefits, limitations, and drawbacks of employing these biomaterials, as well as the prospects for
future research and industrial implementation. From these points of view, current trends in the field
are clearly reviewed. Finally, this study demonstrated how biocomposites made of natural polymers
and microbial biomass suggest a viable adsorbent biomaterial for reducing environmental pollution
that is also efficient, inexpensive, and sustainable.

Keywords: biosorption; microbial biomass; natural polymers; pharmaceuticals; water treatment

1. Introduction

The ecosystem and all forms of life on Earth are currently in peril due to the unregu-
lated discharge of a variety of contaminants into water, air, or soil. The rapid industrial-
ization and global population increase during the last century determined the release of a
vast number of harmful substances into the environment. The majority of these organic
and inorganic contaminants were found in surface water, groundwater, soil, and drinking
water [1–4]. The removal methods of these pollutants have been extensively researched in
recent decades, but they remains a hot topic in the global scientific community [2,4–6].

Water use has expanded dramatically over the last century, resulting in the depletion
of natural water resources, the deterioration of fauna, and certain aspects of life quality. An
estimated 4 billion people worldwide do not have or have limited access to safe drinking
water, and millions die each year from debilitating diseases caused by contaminated wa-
ter [2,7,8]. This issue, together with rising energy usage, has prompted the development
of novel technology for producing drinking water with little energy consumption. As
a result, one of the primary global issues today is the development of innovative, envi-
ronmentally friendly, low-cost, and high-efficiency water treatment technologies [5,9,10].
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The negative impacts of organic and inorganic pollutants (dyes, pharmaceuticals, toxic
metals, metalloids, radionuclides, etc.) on ecosystems and their health dangers have been
demonstrated over time, necessitating the use of increasingly complicated pollutant detec-
tion methods [4,6,11]. The release of pharmaceutical compounds, organic dyes, and heavy
metal ions into the environment by companies such as the pharmaceutical, textile, pulp
and paper, and food industries endangers human health and ecosystems [12–14].

Pharmaceuticals represent an important part of the non-biodegradable or hardly
biodegradable compounds found in wastewater and wastewater treatment plant effluents
(WWTP). They have been extensively studied in the last 15 years, both in terms of quantify-
ing their presence in different environmental matrices, toxic effects (Table 1), and removal
methods [15].

Table 1. The toxic effects of some different therapeutic group of pharmaceuticals.

Therapeutic Group Ecological and Human Health Effects Reference

Antibiotics

Limit the therapeutic effectiveness of antibiotics used to treat human and animal
infections by causing the development of antibiotic-resistant bacteria in the environment.
Affects the growth of cyanobacteria and green algae, as well as leads to the
development of antibiotic resistance in microorganisms.
Acute and chronic exposure causes histopathological changes in some fish species

[5]

Analgesics

Increased production of antioxidant enzymes in mollusks (Dreissena polymorpha).
Generate higher oxidative stress in fishes.
Human exposure has been linked to serious health problems such as liver damage,
myocardial infarction, nephrotoxicity, hypertension, cerebrovascular accidents,
gastrointestinal bleeding, and fetal development impairment.

[16–19]

Anti-inflammatory Can cause tissue damage to aquatic communities, affecting their growth and
metabolism (i.e., alterations in gills and renal lesions at fish). [5]

Endocrine disruptors
Human exposure can cause changes in the reproductively relevant, sexually dimorphic
neuroendocrine system, alterations in endogenous steroid levels, diabetes,
cardiovascular problems, aberrant neural behaviors, and is associated to obesity.

[20]

The global annual production of drugs has been estimated to be in the thousands
of tons [2,6,21,22]. A wide range of methods (Figure 1), such as membrane separation,
ozonation, flocculation, advanced oxidation, photocatalysis, microbial degradation, electro-
chemical processes, and adsorption, have been utilized to remove pharmaceuticals from
aqueous matrices [3,7,8,23–27]. Most of these procedures involve the transfer of pollutants
between different phases, the employment of additional chemicals, or the use of huge
quantities of energy.

Furthermore, several of them generate trash and byproducts that must be treated in
the following phases. Some of them, such as biological methods used in treatment plants,
are ineffective at removing a variety of organic pollutants, such as contaminants of emerg-
ing concern, personal care products, pharmaceuticals, pesticides, endocrine disrupting
compounds, dyes, and so on. These substances are stable and difficult to degrade, which
has led to their accumulation in the environment [3,20,28].

Pharmaceutical products and their transformation products can pollute surface water,
underground water, and implicitly drinking water from a variety of sources (Figure 2),
including wastewater treatment plant effluents, uncontrolled leaching from waste dumps,
the pharmaceutical industry, hospitals, animal feed, improper disposal of unused medicines,
etc. [2,6,21,22].

The wastewater treatment plant effluents are regarded as the primary source since,
in most cases, these compounds are not eliminated and are detected in the treated
water [6,21,29,30].
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Figure 2. The main sources of water pollution with pharmaceuticals.

Researchers reviewed the occurrence and availability of pharmaceutical compounds in
the environment, especially in various aqueous matrices [4,30–34]. Javaid Akhtar et al. [3]
analyzed the presence of commonly detected pharmaceuticals in different water sources,
such as hospital effluents, wastewater treatment plant influents, industrial effluents, river
effluents, urban effluents, and surface water. It is evident from the examination of the
data that a variety of pharmaceuticals are present, including antibiotics, anti-inflammatory
drugs, lipid regulators, beta blockers, anticonvulsants, and contrast agents in concentrations
ranging from 2.9 ng/L to 1.1 × 105 ng/L.

Deblonde et al. [4] reported six classes of pharmaceutical compounds, including over
50 drugs, in WWTP influents and effluents ranging from 0.079 to 56.63 g/L. It has been
demonstrated that pharmaceuticals are removed in WWTP in varying percentages, ranging
from 1.4% for antiepileptics (trimethoprim) to 95.1% for antibiotics (tetracycline); however,
it was found that for the majority of studied compounds, the rate of removal is lowered.

Vasilachi et al. [20] conducted a study on the environmental and health risks associated
with emerging pollutants, in which they also made specific references to pharmaceutical
compounds. The authors reported the toxicity of 35 residues of pharmaceutical compounds
from 12 therapeutic groups in aquatic organisms and plants. The toxic effects of endocrine
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disruptors on human health were also presented, among which we mention: problems in
the cardiovascular system, abnormal neural behaviors linked to obesity, altered endogenous
steroid levels, etc., diabetes, and an altered reproductively relevant, sexually dimorphic
neuroendocrine system.

Antibiotic-resistant bacterial strains have emerged as a result of persistent sublethal
levels of antibiotic residues in aquatic environments [35]. The presence of these pollutants
in natural water constitutes a serious risk, as stated by existing legislation [2,36], and several
of them have already been designated as priority substances in water protection plans.

To assure the removal of pharmaceutical compounds from water, novel water treat-
ment technologies must be developed. Recent research has concentrated on a number of
techniques to accomplish this goal, but some of them come with the drawback that the
breakdown of organic molecules can lead to new products with toxicity levels that are often
even higher than the original chemicals [5,20,27].

Recent reviews mention the use of adsorption/biosorption processes for the removal
of emergent contaminants from water and wastewater [10,11,21,37,38], but they are not
focused on microbial biomass, its potential for drug removal, or the benefits and drawbacks
of its use. Biosorption has emerged as a technology with considerable potential for the
removal of these compounds from aqueous matrices in recent years, necessitating a linkage
of information on biomaterials and the biosorption processes in which they might be used.

The purpose of this study is to provide an overview of current advances in pharmaceu-
tical compound biosorption processes, with a special emphasis on microbial biomass and
natural polymers as biosorbent materials, as well as the impact and obstacles connected
with these investigations. This review also raises awareness about the importance of bioma-
terials in achieving a sustainable future. The biosorption potential of several biomaterials
is explored, including microbial biomass, residual microbial biomass, natural polymers,
biocomposites based on diverse inorganic compounds, and microbial biomass immobilized
in natural polymers.

2. Bibliographic Research Methodology

The selection of studies for this review was completed using the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses (PRISMA) statement published in 2020
(with the checklists, explanation and elaboration, and flow diagram) [39].

The literature research strategy was developed in accordance with the PICO (Problem,
Intervention, Comparison, Outcome(s)) framework, which is utilized to divide a topic into
searchable components (Table 2).

Table 2. PICO strategy applied in the present review.

P (Problem) Presence of pharmaceutical compounds as emergent pollutants in
different water sources

I (Intervention) Applying innovative biomaterials based on microbial biomass and
natural polymers to remove pharmaceuticals from aqueous matrices.

C (Comparison)
Biomaterials such as microbial cells, residual microbial biomass,
natural polymers and biocomposites used in pharmaceutical
compound removal processes

O (Outcome(s))
Improving pharmaceutical removal methods by identifying viable
and sustainable materials to enable large-scale application of
biosorption technologies.

The PICO strategy was used to conduct the research, and the following exclusion and
inclusion criteria were established.

Inclusion criteria:
I1. Research articles published from 2010 to the present, full text;
I2. Removal of emerging pollutants—for automated screening, only the term “pollu-

tant” was used;
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I3. Removal of pharmaceutical compounds—for automated screening, only the term
“pharmaceutical” was used;

I4. Evaluation of the application of microbial biomass (microbial cells, residual micro-
bial biomass) and natural polymers for the removal of pharmaceutical compounds—manual
screening;

I5. Relevance to the subject of the review (new information provided);
I6. Articles published or available in English.
Exclusion criteria:
E1. Articles published before 2010;
E2. Book or book chapters;
E3. Conference papers, notes, letters, short surveys, errata, or conference reviews;
E4. Articles published in languages other than English;
E5. Articles presenting the removal of pollutants monitored in routine studies (such

as dyes and heavy metals, intensively studied pollutants).
Using “biomaterial” as the primary search keyword, a literature search was conducted

using the Scopus database (a comprehensive bibliographic database). Based on the afore-
mentioned inclusion (I1 ÷ I3) and exclusion (E1 ÷ E4) criteria, papers were automatically
chosen, and the decision to include them in the current review was made after carefully
reading each manuscript (Figure 3).
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A total of 61 articles covering the removal of pharmaceuticals using microbial biomass
and natural polymers were chosen for inclusion in the present review after applying the full
set of exclusion/inclusion criteria, including title, abstract, and full-text reading (Figure 3).
Additional work has been added to the selected items in order to provide the required
context. These articles were retrieved manually by using a “search and find” strategy and
certain keywords (such as “biosorption”, “pharmaceutical removal”, etc.) in the Scopus
database. Studies revealing the removal of dyes and heavy metals on the one hand and
other biomaterials that are not based on microbial biomass and natural polymers on the
other hand were not taken into consideration for inclusion in the current study.

The papers selected for this review present applications of microbial biomass and
natural polymers for the removal of pharmaceutical compounds from aqueous matrices.

3. Biosorption—Concept and Current Perspectives

The remarkable capacity of microorganisms to remove organic and inorganic pol-
lutants has been exploited in the development of biological methods for environmental
depollution for a long time [11]. The concept of “biosorption” refers to a multifaceted pro-
cess that depends on a number of factors, including the availability of various mechanisms,
the type of bio-sorbent being employed, process parameters, and the presence or absence
of metabolic activities in living organisms.

According to Fomina M. and Gadd G. M. [11], one of the significant properties of active
and inactive microorganisms (and their components) is their ability to bind pollutants,
which is utilized for the remediation of contaminants by biosorption and biodegradation.
Their use, as well as the use of residual microbial biomass, microalgae, and agro-industrial
waste in biosorption processes has produced impressive results for the removal of per-
sistent, inorganic, and organic pollutants in low to medium concentrations in aqueous
effluents [21,40–42].

Due to its ease of use (operation that is similar to that of traditional ion exchange
technology), effectiveness in removing pollutants, and accessibility of biomass and resid-
ual biomass, biosorption has been regarded as a promising biotechnology for the re-
moval and/or recovery of pollutants from aqueous solutions since the beginning of
studies [11,21,41]. Great efforts have been made since the initial biosorption investiga-
tions to produce efficient, cheap, and adaptable biomaterials for wastewater treatment.
Initially, studies were concentrated on the removal of metals and associated chemicals,
but further biosorption research moved into additional areas of potential use, including
pharmaceuticals [11,21,37,38,42]. Due to its dependence on the physical-chemical and bi-
ological properties of components (both pollutant and biosorbent), as well as the lack
of clarity regarding the underlying mechanisms, biosorption is a complex process, as
demonstrated by decades of research [11,41].

Most of the time, biosorption is considered a passive physico-chemical process, with
mechanisms including: adsorption, ion exchange, and complexation. In reality, depending
on the biosorbent-pollutant system and the given biosorption conditions, this can be an
extremely complex process from the point of view of the mechanism [3,11]. In most cases,
the term” biosorption” is assigned generically without regard to the mechanism, even if
the process involves biodegradation or bioaccumulation.

Understanding the mechanism of interaction of target pharmaceutical compounds
with microbial biomass-based biosorbents is mainly determined by the type of microbial
cells involved, whether they are active or inactive. Thus, it can be said that in the case of
active cells, the compound is removed by biodegradation and in the case of inactive cells
by biosorption. Considering both the chemical structure of the pharmaceutical compounds
in which different functional groups are present (i.e., phenolic, carboxylic, amide, amino,
hydroxyl, alkoxide groups, etc.) or bonds (i.e., C=C aromatic) and the characteristics of the
biosorbent, possible interactions that could describe the mechanism can be evaluated.

As shown in Figure 4, four dominant mechanisms can be taken into account in the
biosorption of pharmaceutical compounds on biosobents based on natural polymers and
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microbial biomass (inactive cells): (i) electrostatic attraction between the bio-sorbent and
drug; (ii) π–π interaction between the surface of biosorbents and the pharmaceutical
compound; (iii) hydrogen bonding interaction; (iiii) physical adsorption in the pores
of the biosorbent. The pH value of the pollutant solution plays an important role in the
biosorption process. Thus, at pH < pHPZC, the electrostatic attraction is established between
the negatively charged pharmaceutical compounds and the positive charge present on the
surface of the biosorbent, and for pH values > pHPZC the surface of the biosorbent has a
negative charge, and H bonds (hydrogen bonds) can be made between the pharmaceutical
compounds and it.
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Figure 4. Schematic representation of the biosorption mechanism of pharmaceutical compounds (The
figure was created taking into account the mechanism descriptions presented by Rashtbari et al. [43]
(adapted with Elsevier permission, license 5578630226919, june 30, 2023); Grisales-Cifuentes et al. [44];
Samarghandi et al. [45]; Al-Gheethi et al. [46]; Yu et al. [47]; Akhtar et al. [3]; Rusu et al. [48];
Rusu et al. [49]).

Samarghandi et al. [45] highlight the role of pH in the biosorption of amoxicillin (AMX)
from aqueous solutions using Saccharomyces cerevisiae. The ionization of the substance
in solution is influenced by pH, which also affects the adsorbent’s surface charge and
biosorption capacity. The key components of AMX biosorption are functional groups
on the biosorbent cell wall and active sites. As a result, the amines are proteinized, and
their electrostatic charge changes to positive, allowing AMX to bind to the absorbent. The
efficiency of AMX removal is significantly impacted by changes in the initial pH value. At
a pH of 5, the removal efficiency was at its highest (81%).

The potential of living microorganisms to biodegrade pharmaceutical compounds
underlies many of their removal processes.

In the case of biodegradation, a primary degradation (Figure 5) can take place in
which the pollutant in question is used as an energy source and is directly metabolized by
the microbial strain to obtain energy. This type of degradation process takes place inside
the cell, and the pollutant must be able to travel through the microbial cell wall to the
cytoplasm. However, in many cases, due to the complexity of metabolic activities, complete
metabolism of the pollutant is not achieved, and hazardous biodegradation products
may result.
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Figure 5. Predicted pharmaceutical compounds biodegradation mechanism. The biochemical degra-
dation pathways represented here are created based on studies by Poddar et al. [16]; Adel et al. [50];
Wang et al. [51].

The Pseudomonas PrS10 strain of bacteria uses paracetamol as an energy source, ac-
cording to an estimate of the biodegradation mechanism provided by Poddar et al. [16].
This is supported by a GC-MS study that reveals an insignificant presence of metabolites in
the biodegradation broth.

Since studies so far have primarily concentrated on the removal of a single pollutant
under static operating conditions and the use of biosorbents that are not viable for treating
large volumes of water, biosorption has not yet achieved commercial success in its tradi-
tional direction as a low-cost and environmentally friendly depollution process [11,41].
Recently, there has been an increase in interest in the study of biosorption processes for
binary or multiple solute systems, which are more typical of real-world wastewater and
waste valorization problems [12]. The immobilization of biomass, which provides easy
handling of biosorbents with good mechanical characteristics and easy separation, has
markedly advanced the field of biosorbents domain [15,52].

In this context, it’s important to keep in mind the present trend of employing renewable
bioresources to produce biosorbents [49,53]. On the other hand, both pragmatic market
and cost justification should be considered when directing future research, so attention
should be directed to alternative applications such as the recovery of pharmaceuticals,
valuable metals, and elements, the manufacture of enriched feed and fertilizers, and the
detoxification of food.

4. Biosorbents—Types and Applications in the Removal of Pharmaceutical Residues

Biosorbents are based on low-value products or wastes that are readily accessible
in sufficient quantities, non-hazardous, cheap to acquire, and easy to use [11,12,37,40,41].
Analyzing the studies conducted so far (more than 13,000 scientific papers have been
published in peer-reviewed journals to date), it appears that practically all biological
materials have an affinity for organic and inorganic pollutants, indicating the enormous
potential for biosorption [3,11,20,37,54,55].

As research has concentrated on identifying efficient and economical biosorbents
as well as new opportunities for pollution control, a wide range of microbial and plant
biomasses, as well as derived products, have been studied in various forms and in connec-
tion to various types of pollutants. As a result, the various biologically derived materials
that have been extensively investigated to develop biosorbents include: microbial biomass
(bacteria, cyanobacteria, filamentous fungi, yeasts, microalgae), marine algae (macroal-
gae), industrial waste (fermentation waste, food waste, activated sludge, sludge recovered
from anaerobic fermentations, etc.), agricultural waste (fruit/vegetable waste, rice straw,
wheat bran, sugar beet pulp, soybean husks, etc.), natural residues (residues of plants,
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sawdust, tree bark, weeds, peat), and other materials (chitosan, cellulose, seashell waste,
etc.) [13,14,41,54,56–58].

Biosorbents as biological materials can be obtained using polymeric materials (alginate,
chitosan, etc.) but also using microbial biomass, either free or immobilized. The microbial
cells easily grown or available in large quantities in nature (bacteria, yeast, filamentous
fungi) can be used in the pollutant’s removal process as active cells, when they are able to
grow and reproduce in the polluted medium, but also in their inactive form, as dead cells,
when the functional groups from the cell membrane or cell wall can still bind pollutants, but
the cells do not need conditions compatible with life. In industrial activities (biotechnology:
production of organic acids, amino acids, antibiotics, etc.), at the end of the biosynthetic
process, the biomass is considered a by-product (industrial waste) that needs to be either
valorized or disposed of. This is considered residual biomass (usually in inactive form) and
can be used for the production of biosorbents. Most studies on pharmaceutical elimination
use inactive microbial cells as biosorbents as the preferred approach to reduce complexity,
as a microbial biosorbent that has been autoclaved performs better in biosorption as a result
of the degradation of the cell wall, which leads to the appearance of additional binding sites.
Active biosorbents have other advantages, as they could, through an active metabolism,
modify the structure of the pollutant. Additionally, results on active biomass should not
be disregarded because they have been utilized successfully to remove toxic metals and
residues of persistent organic pollutants like dyes and pharmaceuticals [50,59].

The biosorptive capacities of different types of biomass have been reported in thou-
sands of research papers and quantitatively compared in many reviews, from which it is
evident that they can vary considerably and depend to a large extent on the experimen-
tal conditions and possible pretreatments applied [10,11,21,37,41,42,55,60]. The selection
of the most promising biosorbents from a wide range of affordable and easily accessi-
ble biomaterials has been and continues to be the key problem. The goal is to obtain or
choose biosorbents that are appropriate for industrial application for the greatest variety of
large-scale persistent organic pollutants.

From this perspective, it could be based on (i) industrial waste (by-products from
fermentative processes), which could be available for free or at a reduced cost; (ii) organ-
isms that are readily obtainable in vast quantities in nature; and (iii) organisms that are
easily cultivable.

4.1. Microorganisms and Residual Microbial Biomass

The use of microorganisms in biosorption processes began with the ability of biomass
composed of active and inactive cells to form complexes with metal ions and was later
expanded to include additional substances such as dyes and pharmaceutical contaminants.
The inactive biomass has advantages such as low cost, low toxicity, ease of regeneration,
ion exchange capacity, and adaptation to diverse pH and temperature values.

Biomass action is influenced not just by its chemical composition but also by ex-
ternal physico-chemical variables. Chelation, complexation, adsorption, ion exchange,
degradation, electrostatic interaction, microprecipitation, coordination, and donor-acceptor
interaction are frequently cited as mechanisms for micropollutant removal utilizing
biomass [10,11,21,38,41]. Different types of microorganisms and residual microbial biomass
have been used in the removal of pharmaceutical compounds by biosorption or biodegra-
dation (Table 3).

Among the microorganisms used in biosorption/biodegradation processes are bac-
teria (Pseudomonas, Enterobacter, Streptomonas, Aeromonas, Acinetobacter, Klebsiella,
Bacillus) and fungi (Myceliophthora thermophile, Trametes versicolor, Phanerochaete
chrysosporium, Ganoderma lucidum), etc.

Numerous studies show that they can remove various pharmaceutical micropollutants
from contaminated environments, e.g., ciprofloxacin, sulfamethoxazole, lomefloxacin,
ofloxacin, norfloxacin, paracetamol, amoxicillin, sulfapyridine, sulfamethazine, diclofenac,
ibuprofen, naproxen, iopromide, venflaxin, caffeine, and metoprolol [61–67].



Polymers 2023, 15, 2923 10 of 36

Table 3. Various microorganisms and microbial biomass used for removal of several pharmaceuticals residues from aqueous matrices.

Biosorbent Therapeutic Group/
Pharmaceutical Compound Process Parameters Obtained Results Ref.

BACTERIAL BIOMASS
Antibiotics

Bacillus subtilis
1156WTNCC strain
(active cells)

Amoxicillin

pH = 6.5; temperature = 35 ◦C; time = 12 days; initial
concentration of pharmaceutical compound =

0.2 ÷ 5.0 mg/mL; aerobic conditions;
batch system

Maximum biodegradation efficiency 25.03% for
C0 = 1 mg/mL

[68]Ampicillin Maximum biodegradation efficiency 15.59% for
C0 = 0.8 mg/mL

Cephalexin Maximum biodegradation efficiency 22.59% for
C0 = 1.0 mg/mL

Cefuroxime Maximum biodegradation efficiency 10.62% for
C0 = 1.0 mg/mL

Ciprofloxacin Maximum biodegradation efficiency 2.45% for
C0 = 0.6 mg/mL

Bacterial community composed of
Desulfovibrio, Enterococcus and
Peptostreeptococcus spp.
(active cells)

Ciprofloxacin

sulfate-reducing conditions; temperature = 25 ± 2 ◦C
in the dark; time = 6 days; initial concentration of

pharmaceutical compound = 1.0 mg/L;
anaerobic conditions;

batch system

Biodegradation efficiency was 85%, after 6 days [64]

Bacterial community composed of
Comamonas, Arcobacter, Dysgonomonas,
Macellibacteroides and Actinomyces,
genera
(active cells)

Ciprofloxacin

nitrate-reducing conditions; temperature = 25 ± 2 ◦C
in the dark; time = 6 days; initial concentration of

pharmaceutical compound = 1.0 mg/L;
anaerobic conditions;

batch system

Biodegradation efficiency was 83%, after 6 days [64]

Acinetobacter sp.
(active cells) Sulfamethoxazole

pH = 7.0; temperature = 25 ◦C in the dark; time =
6 days; initial concentration of pharmaceutical

compound = 30.0 mg/L; in a shaker at 150 rpm;
batch system

Biodegradation efficiency was 98.8%, after 10 h [51]

Bradyrhizobium sp.
GLC_01 strain
(active cells)

Ciprofloxacin

biodegradation via cometabolism with another
carbon substrate (glucose and sodium acetate);

temperature = 25 ◦C; time = 8 days; initial
concentration of pharmaceutical compound =

0.05 ÷ 10 mg/L; in a rotatory shaker at 150 rpm;
batch system

Over 70% biodegradation was achieved at
0.05 mg/L whereas decreased to 26% at 10

mg/L
[69]
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Table 3. Cont.

Biosorbent Therapeutic Group/
Pharmaceutical Compound Process Parameters Obtained Results Ref.

Bacillus subtilis strain
(active cells) Cephalexin

pH = 6.5; temperature = 35 ◦C; time = 12 days; initial
concentration of pharmaceutical compound =

1.0 g/L; batch system

Biodegradation potential was 27, 22 and 21% in
the presence of Ni2+, Cu2+, Zn2+ ions in

solution at 10 mg/L concentration
[50]

Bacterial consortium of Burkholderia
cepacia, Chrysomonas luteola,
Pseudomonas fluorescens, Bacillus subtilis,
Bacillus megaterium, Bacillus
sterothermophilus, Citrobacter freundii,
Kluyvera
(active and inactive cells)

Cephalexin

pH = 6.0; temperature =25 ◦C; time = 90 min; initial
concentration of pharmaceutical compound =

0.2 ÷ 5.0 mg/L;
in an orbital shaker at 125 rpm; batch system

Maximum biosorption efficiency (94.73% vs.
92.98% for living and dead cells respectively)

was recorded at C0 = 0.4 mg/L, while for C0 =
5 mg/L dead cells exhibited more efficiency

compared with living cells (82.36% vs. 46.66%
respectively)

[46]

Bacterial consortium composed of
Acinetobacter lwoffii ACRH76, Bacillus
pumulis C2A1, and Acinetobacter sp.
HN3)
(active cells immobilized or in
suspension)

Ciprofloxacin

environmental conditions; temperature = 30 ± 2 ◦C;
time = 20 days; initial concentration of

pharmaceutical compound = 100.00 mg/L; floating
treatment wetland strategy (FTWs)

Maximum biodegradation was 97% in the
FTWs having immobilized bacteria [70]

Achromobacter sp. JL9
with in-situ generated biogenic
manganese oxides
(active cells)

Sulfamethoxazole
pH = 7.0; temperature = 30 ± 1 ◦C; time = 84 h;

initial concentration of pharmaceutical compound =
5.0 mg/L; in a shaker at 125 rpm; batch system

Maximum biodegradation was 97.43% for the
Mn (II) concentration of 2 mg/L [71]

Microbial community including
Proteobacteria, Bacteroidetes, Firmicutes,
Actinobacteria and Armatimonadetes
(active cells)

Chlortetracycline

pH = 7.2; temperature = 5 ÷ 45 ◦C; time = 28 days;
initial con-centration of pharmaceutical compound =

100 µg/L;
aerobic conditions; in a shaker at 120 rpm; batch

system

Biodegradation rates of 48.7% and 84.9% were
achieved by acclimated microbial populations

in one and four weeks, respectively for the
initial chlortetracycline level of 100 µg/L

[72]

Mixed culture of heterotrophic bacteria
from activated sludge from sewage
treatment plants
(active cells)

Sulfamethoxazole

pH = 7.0; initial concentration of pharmaceutical
compound = 20 ÷ 50 µg/L; suspended growth
reactor SGR with stirring at 400 rpm; 24-cycle
biodegradation experiment in a single SGR;

simultaneous removal of 5 drugs; aerobic conditions

Removal rates by biodegradation of
73.2 ± 21.3% were achieved by simultaneous

removal of drugs
[73]

Pseudomonas sp. CE22 strain isolated
from activated sludge
(active cells)

Cephalexin
temperature =26 ◦C; time = 10 h; initial concentration

of pharmaceutical compound = 10 mg/L;
in a shaker at 200 rpm; batch system

Biodegradation over 90% after incubation for
10 h [74]
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Table 3. Cont.

Biosorbent Therapeutic Group/
Pharmaceutical Compound Process Parameters Obtained Results Ref.

Activated sludge bacteria
(inactivated biomass)

Ofloxacin

pH = 7.0; temperature =25 ◦C; time = 48 h; initial
concentration of pharmaceutical compounds =

100 ÷ 700 ng/mL;
in an orbital shaker at 120 rpm; batch system

Removal efficiency 45% for C0 = 100 ng/mL
and 21% for C0 = 700 ng/mL; maximum
biosorbtion capacity 1.5 ± 0.03 mg/g TSS [75]

Norfloxacin
Removal efficiency 50% for C0 = 100 ng/mL

and 39% for C0 = 700 ng/mL; maximum
biosorbtion capacity 3.24 ± 0.05 mg/g TSS

Ciprofloxacin
Removal efficiency 59% for C0 = 100 ng/mL

and 43% for C0 = 700 ng/mL; maximum
biosorbtion capacity 3.39 ± 0.06 mg/g TSS

Bacterial consortium of Burkholderia
cepacia, Chrysomonas luteola,
Pseudomonas fluorescens, Bacillus subtilis,
Bacillus megaterium, Bacillus
sterothermophilus, Citrobacter freundii,
Kluyvera
(active and inactive cells)

Cephalexin

pH = 6.0; temperature =25 ◦C; time = 90 min; initial
concentration of pharmaceutical compound =

0.2 ÷ 5.0 mg/L;
in an orbital shaker at 125 rpm; batch system

Maximum biosorption efficiency (94.73% vs.
92.98% for living and dead cells respectively)

was recorded at C0 = 0.4 mg/L, while for
C0 = 5 mg/L dead cells exhibited more

efficiency compared with living cells
(82.36% vs. 46.66% respectively)

[46]

Antipyretics and analgesics

Pseudomonas PrS10 strain
(active cells) Paracetamol

pH = 7.2 ÷ 7.4; temperature =30 ◦C; time = 4–7 days;
initial concentration of pharmaceutical compound =

3 g/L;
in an orbital shaker at 140 rpm; batch system

Maximum biodegradation efficiency 96.37%,
with 4.8 g/L of carbohydrate added, after

7 days
[16]

Anti-inflammatories

Mixed culture of heterotrophic bacteria
from activated sludge from sewage
treatment plants
(active cells)

Ibuprofen

pH = 7.0; initial concentration of pharmaceutical
compound = 20 ÷ 50 µg/L; suspended growth
reactor SGR with stirring at 400 rpm; 24-cycle
biodegradation experiment in a single SGR;

simultaneous removal of 5 drugs; aerobic conditions

Removal rates by biodeg-radation of
24.2 ± 14.6% were achieved by simultaneous

removal of drugs
[73]

Nitrifying bacteria isolated from
activated sludge
(active cells)

Ibuprofen pH at approximately 7.5–8.0 during the incubation
period; temperature =25 ◦C; initial concentration of

pharmaceutical compounds = 25 ÷ 200 µg/L;
in an orbital shaker at 80 rpm; batch system

Complete biodegradation (100%) at the lower
concentration levels (25–100 µg/L) in 24 h [76]

Ketoprofen Complete biodegradation (100%) at the lower
concentration levels (25–100 µg/L) in 150 h
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Table 3. Cont.

Biosorbent Therapeutic Group/
Pharmaceutical Compound Process Parameters Obtained Results Ref.

Activated sludge bacteria
(active cells)

Ibuprofen pH = 7.0; initial concentration of pharmaceutical
compound = 50 ÷ 300 mg/L; temperature =30 ◦C; in
a shaker at 100 rpm in the dark; aerobic conditions;

batch system

Biodegradation to undetectable concentrations
within 4 days for C0 = 250 mg/L [77]

Diclofenac Biodegradation rate of 75% within 3 weeks for
C0 = 300 mg/L

Brevibacterium sp.
D4 strain
(active cells)

Diclofenac

temperature =25 ◦C; initial concentration of
pharmaceutical compounds = 10 mg/L; time =

30 days;
in an orbital shaker at 150 rpm; batch system

Biodegradation was 35% for C0 = 10 mg/L of
drug as a sole carbon source; Periodic feeding
with acetate as a supplementary carbon source

increased biodegradation by up to 90%

[78]

Anti-epileptics

Mixed culture of heterotrophic bacteria
from activated sludge from sewage
treatment plants
(active cells)

Carbamazepine

pH = 7.0; initial concentration of pharmaceutical
compound = 20 ÷ 50 µg/L; suspended growth
reactor SGR with stirring at 400 rpm; 24-cycle
biodegradation experiment in a single SGR;

simultaneous removal of 5 drugs; aerobic conditions

Removal rates by bio-degradation of 4.2 ± 2.3%
were achieved by simultaneous removal of

drugs
[73]

Bacterial consortium of Burkholderia
cepacia, Chrysomonas luteola,
Pseudomonas fluorescens, Bacillus subtilis,
Bacillus megaterium, Bacillus
sterothermophilus, Citrobacter freundii,
Kluyvera
(active and inactive cells)

Cephalexin

pH = 6.0; temperature =25 ◦C; time = 90 min; initial
concentration of pharmaceutical compound =

0.2 ÷ 5.0 mg/L;
in an orbital shaker at 125 rpm; batch system

Maximum biosorption efficiency (94.73% vs.
92.98% for living and dead cells respectively)

was recorded at C0 = 0.4 mg/L, while for
C0 = 5 mg/L dead cells exhibited more

efficiency compared with living cells
(82.36% vs. 46.66% respectively)

[46]

Starkeya sp. C11 strain and Rhizobium
sp. C12 strain
(active cells)

Carbamazepine

temperature =25 ◦C; initial concentration of
pharmaceutical compounds = 10 mg/L;

time = 30 days;
in an orbital shaker at 150 rpm; batch system

Biodegradation was 30% for C0 = 10 mg/L of
drug as a sole carbon source [78]

Antidepressants

Labrys portucalensis F11 strain
(active cells)

Fluoxetine (racemic mixture)
and its enantiomers FLX

temperature = 25 ◦C; initial concentration of
pharmaceutical compounds = 2 µM ÷ 21 µM;

time = 56 days;
in an orbital shaker at 130 rpm; protected from light;

batch system

Complete biodegradation of both enantiomers
at C0 = 2 µM for FLX as sole carbon source was

achieved in 30 days; The enantiomers were
partially degraded at initial concentrations of 4
and 9 µM. Complete biodegradation of the two
enantiomers occurred in the presence of acetate

as an additional carbon source at 4, 9, and
21 µM

[79]
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Table 3. Cont.

Biosorbent Therapeutic Group/
Pharmaceutical Compound Process Parameters Obtained Results Ref.

Antiseptics

Enterobacter hormaechei ssp.
Xiangfangensis KG216S strain
(active cells)

Basic fuchsine

temperature = 37 ± 2 ◦C; initial concentration of
pharmaceutical compounds = 20 ÷ 100 mg/L; time =

72 h; in an orbital shaker at 100 rpm;
batch system

Maximum biosorption capacity was
140.54 mg/g for C0 = 20 mg/L, with 4 g/L of

sucrose added
[80]

Histamine-2 blockers

Mixed culture of heterotrophic bacteria
from activated sludge from sewage
treatment plants
(active cells)

Ranitidine

pH = 7.0; initial concentration of pharmaceutical
compound = 20 ÷ 50 µg/L; suspended growth
reactor SGR with stirring at 400 rpm; 24-cycle
biodegradation experiment in a single SGR;

simultaneous removal of 5 drugs; aerobic conditions

Removal rates by biodegradation and
biosorption of 60.8 ± 15.0% were achieved by

simultaneous removal of drugs
[73]

Bacterial consortium of Burkholderia
cepacia, Chrysomonas luteola,
Pseudomonas fluorescens, Bacillus subtilis,
Bacillus megaterium, Bacillus
sterothermophilus, Citrobacter freundii,
Kluyvera
(active and inactive cells)

Cephalexin

pH = 6.0; temperature =25 ◦C; time = 90 min; initial
concentration of pharmaceutical compound =

0.2 ÷ 5.0 mg/L;
in an orbital shaker at 125 rpm; batch system

Maximum biosorption efficiency (94.73% vs.
92.98% for living and dead cells respectively)

was recorded at C0 = 0.4 mg/L, while for
C0 = 5 mg/L dead cells exhibited more

efficiency compared with living cells
(82.36% vs. 46.66% respectively)

[46]

Hormones

Bacterial community composed of
Comamonas, Arcobacter, Dysgonomonas,
Macellibacteroides and Actinomyces,
genera
(active cells)

17β-estradiol

nitrate-reducing conditions; temperature = 25 ± 2 ◦C
in the dark; time = 6 days; initial concentration of

pharmaceutical compounds = 1.0 mg/L;
anaerobic conditions;

batch system

Biodegradation efficiency was 84%, after 6 days [64]

Psycho-stimulants

Mixed culture of heterotrophic bacteria
from activated sludge from sewage
treatment plants
(active cells)

Caffeine

pH = 7.0; initial concentration of pharmaceutical
compound = 20 ÷ 50 µg/L; suspended growth
reactor SGR with stirring at 400 rpm; 24-cycle
biodegradation experiment in a single SGR;

simultaneous removal of 5 drugs; aerobic condition

Removal rates by biodegradation and
biosorption of 5.3 ± 4.4% were achieved by

simultaneous removal of drugs
[73]
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Table 3. Cont.

Biosorbent Therapeutic Group/
Pharmaceutical Compound Process Parameters Obtained Results Ref.

FUNGAL BIOMASS
Antibiotics

Saccharomyces cerevisiae
(active cells) Amoxicillin

pH = 2 ÷ 8, initial concentration of pharmaceutical
compound = 5 ÷ 5 mg/L, the amount of biosorbent

= 0.1 ÷ 1.5 g/L; contact time = 10 ÷ 240 min

The highest removal efficiency, 93%, was
obtained for C0 = 5 mg/L, bioadsorbent dose
0.75 g/L, pH = 5, time = 120 min; the highest
value of adsorption capacity was 12 mg/g in

the same conditions

[45]

Trametes versicolor ATCC 42530 strain
(active cells)

Sulfapyridine pH = 4.5 ± 0.3; temperature = 25 ◦C; biomass dose
1.8 g/L (measured as dry weight); tank bioreactor

with mechanical agitation at 115 rpm; 5 g/L of
glucose added; aeration condition; batch model

Complete biodegradation (100%) for C0 = 21.4
ng/g within 26 days

[66]
Sulfathiazole Removal efficiency by biodegradation was

85.9% for C0 = 143.0 ng/g within 26 days

Bacterial consortium of Burkholderia
cepacia, Chrysomonas luteola,
Pseudomonas fluorescens, Bacillus subtilis,
Bacillus megaterium, Bacillus
sterothermophilus, Citrobacter freundii,
Kluyvera
(active and inactive cells)

Cephalexin

pH = 6.0; temperature =25 ◦C; time = 90 min; initial
concentration of pharmaceutical compound =

0.2 ÷ 5.0 mg/L;
in an orbital shaker at 125 rpm; batch system

Maximum biosorption efficiency (94.73% vs.
92.98% for living and dead cells respectively)

was recorded at C0 = 0.4 mg/L, while for
C0 = 5 mg/L dead cells exhibited more

efficiency compared with living cells
(82.36% vs. 46.66% respectively)

[46]

Anti-inflammatories

Trametes versicolor ATCC 7731 strain
(living cells and chemically inactivated
cells)

Naproxen pH = 4.0; temperature = 25 ◦C; initial concentration
of pharmaceutical compounds = 50–100 µg/L;

biomass dose 0.4 g/L (measured as freshly grown
fungus culture); time = 24 h; rotary shaker at 70 rpm;

batch model

Biodegradation efficiency was over 60% with
living cells and biosorption efficiency was

14 ± 5% with inactivated cells [81]

Ibuprofen
Biodegradation efficiency was over 60% with

living cells and biosorption efficiency was
32 ± 1% with inactivated cells

Trametes versicolor
Ganoderma lucidum
(active cells)

Diclofenac
pH = 4.5; temperature = 25 ◦C; initial concentration

of each pharmaceutical compounds = 50 µg/L;
biomass dose 1 g/L (measured as dry weight); time
= 7 days; shaken conditions (150 rpm); batch model

The overall removal (100%) of diclofenac and
ibuprofen after 7 days of incubation were
achieved by both strains, T. versicolor and

G. lucidum, by abiotic, biosorption and
biodegradation

[82]Ibuprofen
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Table 3. Cont.

Biosorbent Therapeutic Group/
Pharmaceutical Compound Process Parameters Obtained Results Ref.

Trametes versicolor
Irpex lacteus
Trichoderma reesei
(active cells)

Diclofenac

pH = 5.5; temperature = 25 ◦C; initial concentration
of each pharmaceutical compounds = 2.5 ÷ 5 mg/L;
time = 3 h ÷ 14 days; shaking incubator (150 rpm);

batch model and fungal biofilm

T. versicolor and I. lacteus was able to completely
(>99.9%) remove diclofenac after 7 days, by

both mechanisms: enzyme activity and
biosorption

[83]

Fusarium solani
Pleurotus ostreatus
(active cells)

Diclofenac

F. solani indicated a maximum reduction of 90%
of diclofenac after 21 days;

P. ostreatus removed the diclofenac >99.9% after
14 days;

The combination of F. solani and P. ostreatus
showed >80% removal of diclofenac after

14 days

[83]

Trametes versicolor
(active cells) Ketoprofen Only T. versicolor was able to reduce more than

80% of ketoprofen after 21 days of incubation [83]

Phanerochaete chrysosporium
(active cells) Naproxen

pH = 3.2 ÷ 4.5; temperature = 30 ◦C; initial
concentration of pharmaceutical compound =

1.0 mg/L; continuous aerating mode; time = 28 days;
batch system

Removal efficiency was 80.55 ± 3.26 on day 7;
A removal higher than 95% was achieved after
the addition of 8.25% sodium hypochlorite for

inhibiting contamination in the reactor, on
day 21;

More than 90% naproxen C0 = 10 mg/L) was
removed by the crude enzyme in the first

two days

[84]

Bacterial consortium of Burkholderia
cepacia, Chrysomonas luteola,
Pseudomonas fluorescens, Bacillus subtilis,
Bacillus megaterium, Bacillus
sterothermophilus, Citrobacter freundii,
Kluyvera
(active and inactive cells)

Cephalexin

pH = 6.0; temperature =25 ◦C; time = 90 min; initial
concentration of pharmaceutical compound =

0.2 ÷ 5.0 mg/L;
in an orbital shaker at 125 rpm; batch system

Maximum biosorption efficiency (94.73% vs.
92.98% for living and dead cells respectively)

was recorded at C0 = 0.4 mg/L, while for C0 =
5 mg/L dead cells exhibited more efficiency

compared with living cells (82.36% vs. 46.66%
respectively)

[46]

Ganoderma lucidum (FP-58537-Sp strain)
(active cells) Diclofenac

pH = 4.5 ± 0.5; temperature = 25 ◦C; initial
concentration of pharmaceutical compound = 47 ÷

184 µg/L; time = 6–26 days; first batch system,
orbital shaking (135 rpm), dark conditions

Total removal was 98 ± 15% of which 58 ± 8%
by biodegradation and 40 ± 6%by biosorption [63]
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Table 3. Cont.

Biosorbent Therapeutic Group/
Pharmaceutical Compound Process Parameters Obtained Results Ref.

Anti-epileptics

Trametes versicolor
Ganoderma lucidum
(active cells)

Carbamazepine

pH = 4.5; temperature = 25 ◦C; initial concentration
of each pharmaceutical compounds = 50 µg/L;

biomass dose 1 g/L (measured as dry weight); time
= 7 days; shaken conditions (150 rpm); batch model

Maximum removal was 32%, achieved by
biosorption, using the combined fungal system [82]

Trametes versicolor
(active cells) Carbamazepine

pH = 7.5; temperature = 34–37 ◦C; initial
concentration of pharmaceutical compound =

1 ÷ 20 mg/L; time = 5 h–7 d; first batch operation,
then a continuous mode

Around 80% was eliminated when the diluted
synthetic medium was applied as feeding. An
effective elimination was achieved in ~100 days

continuous operation, if sufficient nutrients
were supplied

[85]

Phanerochaete chrysosporium
(active cells) Carbamazepine

pH = 3.2 ÷ 4.5; temperature = 30 ◦C; initial
concentration of pharmaceutical compound =

1.0 mg/L; time = 28 days; aerating mode; batch
system

Removal efficiency was 32.55 ± 1.22% on day 7 [84]

Stropharia rugosoannulata (FBCC 475
strain)
(active cells)

Carbamazepine pH = 4.5 ± 0.5; temperature = 25 ◦C; initial
concentration of pharmaceutical compound = 47 ÷

184 µg/L; time = 6–26 days; first batch system,
orbital shaking (135 rpm), dark conditions

Total removal was 86 ± 7%, of which 84 ± 7%
by biodegradation and 2% by biosorption [63]

Ganoderma lucidum (FP-58537-Sp strain)
(active cells) Carbamazepine Total removal was 36 ± 7%, of which 31 ± 6%

by biodegradation and 5 ± 1% by biosorption [63]

Antidepressants

Trametes versicolor (ATCC #42,530
strain)
(active cells)

Venlafaxine

pH = 4.5 ± 0.5; temperature = 25 ◦C; initial
concentration of pharmaceutical compound = 47 ÷

184 µg/L; time = 6–26 days; first batch system,
orbital shaking (135 rpm), dark conditions

Total removal was 55 ± 8%, of which 53 ± 8%
by biodegradation and 2% by biosorption [63]

Bacterial consortium of Burkholderia
cepacia, Chrysomonas luteola,
Pseudomonas fluorescens, Bacillus subtilis,
Bacillus megaterium, Bacillus
sterothermophilus, Citrobacter freundii,
Kluyvera
(active and inactive cells)

Cephalexin

pH = 6.0; temperature =25 ◦C; time = 90 min; initial
concentration of pharmaceutical compound = 0.2 ÷

5.0 mg/L;
in an orbital shaker at 125 rpm; batch system

Maximum biosorption efficiency (94.73% vs.
92.98% for living and dead cells respectively)

was recorded at C0 = 0.4 mg/L, while for
C0 = 5 mg/L dead cells exhibited more

efficiency compared with living cells
(82.36% vs. 46.66% respectively)

[46]
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Table 3. Cont.

Biosorbent Therapeutic Group/
Pharmaceutical Compound Process Parameters Obtained Results Ref.

Lipid regulators

Trametes versicolor
Ganoderma lucidum
(active cells)

Gemfibrozil pH = 4.5; temperature = 25 ◦C; initial concentration
of each pharmaceutical compounds = 50 µg/L;

biomass dose 1 g/L (measured as dry weight); time
= 7 days; shaken conditions (150 rpm); batch model

Complete removal (100%) is attributed to high
intracellular oxidative biological pathway [82]

Clofibric acid
Removal efficiency was 14%, achieved by

biosorption with T. versicolor strain and 41%
with both strains simultaneously

Hormones

Trametes versicolor
Ganoderma lucidum
(active cells)

Progesterone

pH = 4.5; temperature = 25 ◦C; initial concentration
of each pharmaceutical compounds = 50 µg/L;

biomass dose 1 g/L (measured as dry weight); time
= 7 days; shaken conditions (150 rpm); batch model

Total removal (100%) of progesterone was
achieved by both strains, T. versicolor and G.

lucidum, predominantly through
biodegradation

[82]

Histamine-2 blockers

Trametes versicolor
Ganoderma lucidum
(active cells)

Ranitidine

pH = 4.5; temperature = 25 ◦C; initial concentration
of each pharmaceutical compounds = 50 µg/L;

biomass dose 1 g/L (measured as dry weight); time
= 7 days; shaken conditions (150 rpm); batch model

Total removal (100%) of ranitidine was mainly
attributed to biological removal of the live
fungal biomass by intra- or extracellular

oxidative mechanisms

[82]
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The characteristics of bacterial cell walls (type, nature, and number of active
sites; acidity and basicity; chemical composition; morphology, etc.) influence
biosorption, with the main responsible mechanisms being extracellular ones, biodegrada-
tion through co-metabolism, biodegradation through substrate consumption, and
adsorption [11,64,68,73,74,79]. In the case of fungi, the cell wall is responsible for these
microorganisms’ ability to remove pharmaceutical contaminants. Their application is
particularly widespread due to the enhanced availability afforded by the possibility of
large-scale cultivation with high yields as well as the numerous genetic alterations they can
undergo, among other things.

As can be observed from the information in Table 3, pH, temperature, biomass type and
nature, the presence or absence of oxygen, the addition of an additional carbon source, light,
and initial pollutant concentration are the primary variables that affect the biodegradation
process.

The process is influenced by factors such as biomass dose, biomass type and nature,
pH, ionic strength, and initial pollutant concentration. Because of the small size of the
microbial cells, it is necessary to apply hydrostatic pressure in the treatment of polluted
water, which might cause cell disintegration. However, when the biomass is immobilized
using various techniques, very good results are obtained [45,63,66,81,83,86,87].

4.2. Biosorbents Based on Natural Polymers

Natural polymers have become increasingly used in wastewater treatment for pharma-
ceutical removal during the last few years, as can be seen from Table 4. Superior values are
obtained for the removal of pharmaceuticals using alginate-based biosorbents compared
with chitosan in the case of tetracycline and ibuprofen.

According to numerous studies on the subject, one of the key factors contributing
to biopolymers’ perceived benefits in wastewater treatment is their potential to be both
environmentally and economically sustainable [88]. Natural polymers are also renewable,
sustainable, biodegradable, cost-effective, eco-friendly, non-toxic, biocompatible, and hy-
drophilic [89,90]. They also have a range of functional groups, such as hydroxyls (-OH)
and amines (-NH2), to which contaminants might bind via chemisorption or physical
adsorption during the water purification process [91].
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Table 4. Various biosorbent based on natural polymers designed for removal of several pharmaceuticals residues from aqueous matrices.

Biosorbent Therapeutic Group/
Pharmaceutical Compound Process Parameters Obtained Results Ref.

ALGINATE
Antibiotics

Alginate-graphene-ZIF67 aerogel
(AG-ZIF)
Alginate-graphene-Co aerogel
(AG-Co)

Tetracycline

pH = 6.0; room temperature; time = 720 min; initial
concentration of pharmaceutical compound =
100 mg/L; adsorbent dose = 1 g/L; shaker at

150 rpm; batch system

Maximum adsorption capacities for AG-ZIF and
AG-Co were 456.62 and 105.49 mg/g, respectively [92]

Ga-based metal-organic
gel/sodium alginate composite beads

Chlortetracycline hydrochloride

pH = 4.0 ÷ 8.0; temperature = 25 ◦C; initial
concentration of each pharmaceutical compound =
20 mg/L; adsorbent dose = 1.00 g/L (measured as

dry weight); time = 72 h; shaken conditions
(150 rpm); batch model; dark environment

Maximum adsorption capacity was 1085.19 mg/g [93]
Ciprofloxacin hydrochloride Maximum adsorption capacity was 862.07 mg/g [93]

Polyvinyl alcohol-copper alginate gel
beads Tetracycline

pH = 3 ÷ 11; temperature = 20–45 ◦C; initial
concentration of each pharmaceutical compound =
20 mg/L; adsorbent dose = 0.2 ÷ 2 g/L, time = 24 h;

shaker at 150 rpm; batch system

Removal efficiency was 97.8% and the maximum
adsorption capacity was 231.431 mg/g, when the

dose of adsorbent is 2 g/L and temperature = 45 ◦C
[94]

Anti-inflammatories

Alginate/
Carbon-based films Diclofenac

pH = 3 ÷ 11; temperature = 30–68 ◦C; initial
concentration of each pharmaceutical compound =

10 ÷ 50 mg/L; adsorbent dose = 0.25÷2.0 g/L,
time = 6 h;

batch system under stirring of 400 rpm

Maximum DCF adsorption of 29.9 mg/g was
obtained at pH = 3 and 30 ◦C [95]

Alginate/polypyrrole/
ZnFe2O4 beads Ibuprofen

pH = 5 ÷ 7; initial concentration of the
pharmaceutical compound = 50–350 mg/L; beads
dosage = 0.2–1 g/L (dry weight); temperature =

25–55 ◦C; contact time = 3 h; orbital shaking 150 rpm;
batch system

Maximum adsorption capacity was 108.2 mg/g,
that increase with 12% under an external magnetic

field (EMF); C0 = 350 mg/L; adsorbent dose =
0.2 g/L, pH = 7.0, temperature = 25 ◦C; stirring

100 rpm

[96]

Antipyretics and analgesics

Calcium alginate/activated
hydrochar composite beads Paracetamol

pH = 6.5; initial concentration of the pharmaceutical
compound = 100–250 mg/L; temperature = 15–35 ◦C;

time = 10 h; shaker 150 rpm; batch system

Maximum adsorption capacity was 165.94 mg/g,
for C0 = 250 mg/L, after 4 h at temperature = 25 ◦C [97]
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Table 4. Cont.

Biosorbent Therapeutic Group/
Pharmaceutical Compound Process Parameters Obtained Results Ref.

Alginate/polypyrrole/
ZnFe2O4 beads Paracetamol

pH = 5 ÷ 7; initial concentration of the pharmaceutical
compound = 50–350 mg/L; beads dosage = 0.2–1 g/L
(dry weight); temperature = 25–55 ◦C; contact time =

3 h; orbital shaking 150 rpm; batch system

Maximum adsorption capacity was 106.7 mg/g,
that increase with 14% under an EMF; C0 =

350 mg/L; adsorbent dose 0.2 g/L, pH = 7.0,
temperature = 25 ◦C; stirring 100 rpm

[96]

Biomarkers

Alginate-graphene composites Rhodamine B
initial concentration of the pharmaceutical compound

= 5 mg/L; contact time = 24 h; darkness and gentle
stirring; batch system

Maximum adsorption capacity of 178 mg/g was
achieved for reduced graphene oxide-based beads [98]

Antiretroviral

Activated carbon encapsulated
in sodium alginate Tenofovir disoproxil fumarate

pH = 4, an initial TDF concentration = 0.1 mM;
temperature = 25 ◦C; adsorbent dose = 1 g of wet
beads to 10 mL of TDF solution, the beads were

whirled at 350 rpm

Maximum removal efficiency by adsorption was
92.68% after a contact time of 120 min [99]

CHITOSAN
Antibiotics

Chitosan-alginate-bentonite
composites Tetracycline

pH = 5.5; temperature = 25–50 ◦C; initial concentration
of each pharmaceutical compound = 10–550 mg/L;

adsorbent dose = 1–4 g/L; time = 240 min; batch
system under continuous agitation

Adsorption efficiency was 97.7% for C0 = 10 mg/L
at

50 ◦C after 30 min
[100]

Chitosan
Rifampicin pH = 6.7; temperature = 20–45 ◦C; initial concentration

of each pharmaceutical compound = 20–200 mg/L;
adsorbent dose = 0.5–10 g/L; time = 240 min; orbital

shaker (100 rpm);
batch technique

Maximum adsorption capacity was 66.91 mg/g
for C0 = 30 mg/L and adsorbent dose = 1.5 g/L [101]

Streptomycin Maximum adsorption capacity was 11.00 mg/g
for C0 = 30 mg/L and adsorbent dose = 1.5 g/L [101]

Chitosan-based magnetic
composite Tetracycline hydrochloride

pH = 4 ÷ 12; temperature = 15–35 ◦C; initial
concentration of pharmaceutical compound =

20–200 mg/L; adsorbent dose = 0.5 g (dry weight);
time = 12 h; shaking speed of 140 rpm; dark

environment; batch system

Maximum adsorption capacity was 50.2 mg/g
for C0 = 100 mg/L at pH = 10 and

temperature = 25 ◦C
[102]
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Table 4. Cont.

Biosorbent Therapeutic Group/
Pharmaceutical Compound Process Parameters Obtained Results Ref.

Metal and clay embedded
cross-linked chitosan Tetracycline

pH = 2 ÷ 12; temperature = 25–45 ◦C; initial
concentration of pharmaceutical compound =

20 mg/L; adsorbent dose = 0.5 g (dry weight); time =
24 h; orbital shaker 140 rpm; dark environment;

batch system

Maximum adsorption capacity was 104.17 mg/g
using zirconium loaded chitosan modified by

perlite (Zr/Cht/Pt) composite at pH = 4;
temperature = 25 ◦C

[103]

CuCoFe2O4—Chitosan magnetic
nanohybrid Tetracycline

pH = 3.5 ÷ 11.5; temperature = 25–40 ◦C; initial
concentration of pharmaceutical compound =

5–30 mg/L; adsorbent dose = 0.2–1 g/L; time =
30 min; batch system

Highest adsorption efficiency was 93.07% for
C0 = 5 mg/L, pH = 3.5, contact time of 20 min, the

dose of 0.4 g/
L, and temperature of 25 ◦C

[104]

Chitosan-curdlan composite
magnetized by zinc ferrite Tetracycline

pH = 1.0 ÷ 11.0; temperature = 10–65 ◦C; initial
concentration of pharmaceutical compound =

20–160 mg/L; adsorbent dose = 0.25–0.85 g/L; time
= 120 min; batch system

Maximum adsorption capacity was 371.42 mg/g at
55 ◦C, C0 = 160 mg/L, 0.65 g/L dosage of

adsorbent and pH = 6
[105]

Chitosan-carbon black waste
composite beads Amoxicillin pH = 6.5 ÷ 8.5; temperature = 22 ◦C; initial

concentration of pharmaceutical compound =
25–50 mg/L; composite beads dose = 10–20 g/L;

time = 24 h;
batch system

Maximum adsorption capacity was 12 mg/g for C0
= 25 mg/L (in demineralized water) and 15 mg/g

for C0 = 25 mg/L (in tap water); pH = 6.5 ÷ 7.5
[106]

Chitosan-carbon black waste
composite beads Tetracycline

Maximum adsorption capacity was 39 mg/g for C0
= 25 mg/L (in demineralized water) at

pH = 7.5 ÷ 8.5
[106]

Anti-inflammatories

Chitosan Ibuprofen

pH = 6.7; temperature = 20–45 ◦C; initial
concentration of each pharmaceutical compound =
20–200 mg/L; adsorbent dose = 0.5–10 g/L; time =

240 min; orbital shaker (100 rpm);
batch system

Maximum adsorption capacity was 24.21 mg/g
for C0 = 30 mg/L and adsorbent dose = 1.5 g/L [101]

Chitosan-based magnetic
composite

Diclofenac
sodium

pH = 4 ÷ 12; temperature = 15–35 ◦C; initial
concentration of pharmaceutical compound =

20–200 mg/L; adsorbent dose = 0.5 g (dry weight);
time = 12 h; shaking speed of 140 rpm; dark

environment; batch system

Maximum adsorption capacity was 123 mg/g
for C0 = 100 mg/L at pH = 6 and temperature =

25 ◦C
[102]
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Table 4. Cont.

Biosorbent Therapeutic Group/
Pharmaceutical Compound Process Parameters Obtained Results Ref.

Chitosan/Zr-MOF (UiO-66)
composite foams Ketoprofen

pH = 2 ÷ 9; initial concentration of pharmaceutical
compound = 5–50 mg/L; adsorbent dose = 0.2 g/L;
time = 10 h; shaking speed of 180 rpm; batch system

Maximum adsorption capacity of 209.7 mg/g was
achieved for C0 = 50 mg/L at pH 4 [107]

Magnetic Fe/Cu–alginate
nanocomposite beads Naproxen pH = 5.0; temperature = 25 ◦C; initial concentration

of each pharmaceutical compound = 25 mg/L;
adsorbent dose = 25 mg/30 mL of drug solutions;

mixed at 250 rpm for 10 min; batch system

Removal efficiency was 84% for C0 = 25 mg/L and
adsorbent dose = 25 mg/50 mL [108]

Magnetic Fe/Cu-chitosan
nanocomposite beads

Diclofenac
sodium

Removal efficiency was 92% for C0 = 25 mg/L and
adsorbent dose = 25 mg/50 mL [108]

Psycho-stimulants

Chitosan/activated carbon
composite beads Caffeine

natural pH; temperature = 25 ◦C; initial
concentration of each pharmaceutical compound =
50–800 mg/L; adsorbent dose = 1 g/L; time = 48 h;

orbital shaker at 150 rpm; batch system

Maximum adsorption capacity was 391.00 mg/g
for C0 = 10 mg/L [109]

Non-ergot dopamine agonists

Chitosan grafted with sulfonic acid Pramipexole

pH = 10; temperature = 25 ◦C; initial concentration of
the pharmaceutical compound = 0–500 mg/L;

adsorbent dose = 1 g/L; orbital shaker at 160 rpm;
time = 24 h; batch system

Maximum adsorption capacity was 339 mg/g for
C0 = 10 mg/L in the presence of 20 mg/L humic

acid
[110]

Hormones

Chitosan nanoparticles Estrogen

pH = 7.3; estrogen initial concentration =
3.5 ÷ 11.5 mg/L; adsorbent dosage = 1.45 g/L; time

= 300 min. and magnetic stirrer at 600 rpm;
batch system

Removal efficiency was 92.50% for C0 = 5.7 mg/L
and contact time of 220 min [111]

OTHER NATURAL POLYMERS
Anti-epileptics

Ball-Milled Silk
Fibroin Films Carbamazepine

pH = 2–12; temperature = 15–45 ◦C; initial
concentration of the pharmaceutical compound =

250 µg/L; time = 180 min; agitation speed of
100 rpm; batch system

Removal efficiency was 53% and adsorption
capacity = 281 µg/g at pH = 12 [112]
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Table 4. Cont.

Biosorbent Therapeutic Group/
Pharmaceutical Compound Process Parameters Obtained Results Ref.

Antibiotics

Heterogeneous natural
polymer-based on dialdehyde inulin
and laccase

Ofloxacin

pH = 4.5; temperature = 40 ◦C; initial concentration
of the pharmaceutical compound = 25 mM;

adsorbent dose = 8.5 mg/mL of the immobilized
laccase; time = 60 h; stirring; batch system

Removal efficiency by biodegradation was 63%
after 60 h of incubation [113]

Biomarkers

Gelatin/activated carbon composite Rhodamine B

pH = 2–11; temperature = 30–60 ◦C; initial
concentration of the pharmaceutical compound =
50–50 mg/L; adsorbent dose = 3 g/L; time = 42 h;

agitation speed of 100 rpm; batch system

Maximum adsorption capacity was 256.41 mg/g
for C0 = 5.7 mg/L; pH = 4; temperature = 30 ◦C;

time = 27 h
[114,115]

Poly(lactic acid)/activated carbon Rhodamine B

pH = 2–12; temperature = 30–60 ◦C; initial
concentration of the pharmaceutical compound =

100 mg/L; adsorbent dose = 2 ÷ 10 g/L; time = 54 h;
agitation speed of 100 rpm; batch system

Removal efficiency was 88.99%; a highest
adsorption capacity was 149.57 mg/g at pH = 4

and temperature = 60 ◦C
[116]
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Alginate is a linear and anionic polysaccharide obtained from brown seaweeds such
as Laminaria hyperborea, Macrocystis pyrifera, and Ascophyllum nodosum. This biopolymer
is composed of alternating blocks of 1,4-L-guluronic acid (G) and 1,4-D-mannuronic acid
(M) units and comes in a variety of grades depending on the purity necessary for a certain
application [117]. Although it can also be obtained from bacterial sources, the commercial
product is acquired in the form of a salt, such as sodium alginate, from algae. Alginate is
well known for its biodegradability, low toxicity, and chemical versatility, but its unique
property of forming a stable gel in aqueous media by the addition of multivalent cations
makes this biopolymer useful in cell immobilization [48,117]. Aside from these, the remark-
able cross-linking ability should be emphasized as a vital attribute for creating composite
materials.

Chitosan is an amino-polysaccharide formed by N-deacetylation of chitin,
which results in the formation of amine groups (-NH2) from acetamide groups
(-NHCOCH3) [118,119]. Due to its unique properties, such as polyelectrolyte properties,
biocompatibility, hydrophilicity, adhesion properties, biodegradability, and recyclability,
chitosan has gained a great deal of interest in a variety of biomedical, water treatment,
cosmetics, and food sectors, as demonstrated in numerous papers [42,120,121]. Chitosan
has been identified as a promising cationic adsorbent for the removal of anions, heavy
metals, toxic organic dyes, aromatic compounds, and pharmaceutical residues in recent
studies, as can be seen from Table 4 and more [122–127].

This polymer has numerous advantages, including biodegradability, biocompatibility,
high reactivity, hydrophilicity, and nontoxicity [122]. Furthermore, chitosan has a linear
polyamine structure with a number of free amine groups that can be crosslinked and
modified [42,52]. However, chitosan has several drawbacks, including low water resistance,
a small specific surface area, incomplete recovery after adsorption, poor mechanical and
thermal properties, a high agglomeration tendency, and high acid solubility [42,128]. As
a result, several physical and chemical modification/functionalization techniques, such
as sulfonation, carboxymethylation, and amination, were used to improve the adsorption
characteristics and selectivity to remove pharmaceutical compounds from water as well as
other emerging pollutants [129–132].

4.3. Biosorbents Based on Microbial Biomass Immobilized in Natural Polymers

The use of inactive microorganisms for the biosorption of pharmaceuticals offers a
promising approach for the removal of these compounds from wastewater or contaminated
solutions. While inactive microorganisms can effectively bind pharmaceutical compounds,
it is important to note that the specific biosorption capacity and efficiency depend on
several factors, such as the type of microorganism, surface properties, composition of phar-
maceutical pollutants, and operating conditions. In addition, it is important to consider
the possible release of pharmaceuticals from the biosorbent after use and the proper dis-
posal or treatment of the spent biosorbent to avoid environmental contamination. Inactive
microorganisms are commonly used for biosorption to reduce the need for maintenance,
growth, and potential contamination risks associated with living organisms. The biosorp-
tion process using microorganisms often requires optimization of various parameters, such
as pH, temperature, biomass dosage, contact time, and mixing, to maximize the biosorption
efficiency [60].

Although the use of microorganisms for biosorption offers several advantages, there
are also some disadvantages to consider: low specificity (different microorganisms have
different affinities and selectivities, requiring screening for each pharmaceutical compound
in order to obtain an effective biosorbent); slow kinetics (binding of pharmaceutical com-
pounds with complex structures to the surface of the microorganism or their diffusion into
the microorganism may be slower compared with other adsorbents); insufficient mechani-
cal stability; difficult biosorbent regeneration; difficult separation from the aqueous phase
due to the small size of the microbial cells [133].
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A significant improvement in the biosorption process’s performance is possible by
using biosorbents obtained by immobilization (covalent bonding, cross-linking, encapsula-
tion, entrapment in a polymeric matrix) of microorganisms or residual microbial biomass,
as illustrated in Figure 6.
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The entrapment consists of capturing cells inside gel-like materials forming capsules
(beads with mechanical strength, stability, and durability but with mass transfer limitations
(e.g., oxygen, substrate, or nutrients) with an internal structure similar to a network, protect-
ing them from external threats and also from washout of the biomass without affecting its
microbial capacity. The encapsulation of microorganisms (microencapsulation) is a kind of
cell immobilization that consists of covering, coating, or trapping microorganisms in a very
similar way to entrapment, with the difference of using a semi-permeable protective film,
which allows for better nutrients and substrate on, variou transfer. Several microorganisms
have shown high sorption capacities compared with conventional adsorbents (ion exchange
resins and celluloses, activated carbon, and various polymeric materials). However, their
use is limited due to physical problems that can be solved by immobilization to obtain
particles with good physicochemical stability (higher mechanical strength) [134]. Several
aspects need to be considered when choosing an appropriate immobilization technique, as
immobilization involves additional costs, diffusion of the pollutant through the carrier can
prolong the duration of the process and reduce its efficiency, and the biosorption capacity
decreases due to the interaction between the support and the active functional groups of
the biosorbent [15].

The term of immobilization refers to the process of binding or entrapping microor-
ganisms in a matrix or support material so that they retain their activity and functionality
and facilitate their use in various applications. The aim of immobilization is to produce
0.5 to 3.5 mm particles with good porosity, physical stability, and chemical resistance that
can be used in dynamic systems (fixed bed or fluidized bed columns). There are several
immobilization techniques that can be used for microorganisms and residual microbial
biomass [135,136]:

– In entrapment, microorganisms are physically entrapped in a porous matrix or gel
suitable for different types of cells. They are usually mixed with a gel-forming material
such as calcium alginate, agar, or polyacrylamide, which solidifies into beads or
capsules and immobilizes the microorganisms, allowing good mass transfer.
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– In adsorption, microorganisms are bound to a solid support material by non-covalent
interactions such as electrostatic forces, hydrogen bonds, or hydrophobic interactions.
The support material can be in the form of particles, fibers, or a thin layer. Immobi-
lization by adsorption is relatively easy, but the microorganisms may be desorbed
over time.

– In covalent bonding, the microorganisms are chemically bound to the support material
using cross-linking agents or functional groups. This method offers stronger and more
stable bonding compared with adsorption but requires specific reactive groups on the
microorganisms and the support material for successful bonding.

– In encapsulation, the microorganisms are enclosed in a semi-permeable membrane, or
microcapsule. The membrane allows the diffusion of contaminants while protecting
the microorganisms from external factors. Common encapsulation materials include
polymers such as alginate, chitosan, or various gums. Encapsulation provides good
protection for the microorganisms but can restrict mass transfer.

These immobilization techniques offer advantages such as improved stability, better
reusability, and better control over the behavior of the microorganisms. The choice of
immobilization technique depends on the specific application, the type of microorganism,
the desired immobilization properties, and the conditions of use. Various biosorbents
based on microbial biomass immobilized on natural polymers or other materials were
analyzed for removing pharmaceutical residues from aqueous matrices (Table 5). The
maximum biosorption capacity is evaluated under various operating conditions, and there
is no standardized method for estimating the dry weight of the biomass and biosorbent
used. As a result, studies from different authors can be difficult to compare.

The removal of pharmaceuticals from model, natural, and wastewater samples is obvi-
ously a capability of microbial biomasses, but the biosorption capacity of any biosorbent
depends on its structure, pretreatment, chemical modification, immobilization technique,
and also on the contaminant structure and properties. Analyzing the results obtained
by Rusu et al., for the biosorption of cephalexin using the same microbial strain: Saccha-
romyces cerevisiae immobilized in calcium alginate [48] or chitosan [52], very different
biosorption capacities were obtained for the two support materials: 93.34 mg/g compared
with 22.78 mg/g, thus proving the importance of the polymer used for the immobilization.
For the same biosorbent, Phanerochaete chrysosporium immobilized in wood chips, the
removal efficiency varies significantly with the structure of the pharmaceutical compounds
(Table 5).

Temperature usually increases the biosorption efficiency; pH controls the dissociation
of both functional groups from the cell envelopes but also of the pharmaceuticals, providing
binding sites. However, the support must be stable at the biosorption optimum conditions;
chitosan, for example, is unstable (soluble) at a strong acidic pH. The microbial cells
pretreatment methods also influence their efficiency, as through autoclaving or alkaline
treatment, the cell wall is degraded and more functional groups are made available for
biosorption. Initial pharmaceutical concentration can also have an impact on biosorption;
at high concentrations, the amount of pollutant that is biosorbed per unit weight of the
biosorbent increases, but removal effectiveness drops.

On the other hand, while the results obtained for free cells are occasionally better than
those obtained for immobilized cells, the latter has the advantage of a high mechanical
resistance, allowing the biosorbent to be used in a dynamic operating regime.

It is worth noting that the choice of the specific microorganism and the appropriate
immobilization technique depends on factors such as the type and concentration of pharma-
ceuticals, the process conditions, and the objectives of the removal process. Further research
and optimization are needed to determine the type of microbial biomass and the most
suitable method of its immobilization to ensure efficient biosorption of pharmaceuticals
under different conditions.
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Table 5. Various biosorbent based on microbial biomass immobilized on natural polymers or other materials designed for removing of several pharmaceuticals
residues from aqueous matrices.

Biosorbent Therapeutic Group/
Pharmaceutical Compound Process Parameters Obtained Results Ref.

ALGINATE—BASE FOR IMMOBILIZATION/ENCAPSULATION
Antibiotics

Saccharomyces cerevisiae/calcium
alginate composite beads
(inactive cells)

Cephalexin

pH = 2 ÷ 12; temperature = 25 ◦C; initial
concentration of the pharmaceutical compound =

10–80 mg/L; biosorbent dose = 0.5 ÷ 3 g/L; time =
12 h; batch system

Removal efficiency was 86.23% for C0 =
30 mg/L; pH = 4; biosorbent dose = 1 g/L and

the biosorption capacity was 94.34 mg/g
[48]

Saccharomyces pastorianus residual
microbial biomass/calcium alginate
composite beads
Immobilization technique
(inactive cells)

Cephalexin

pH = 5; initial concentration of the pharmaceutical
compound = 10–80 mg/L; biosorbent

dose = 0.5 ÷ 3 g/L; time = 12 h; room temperature;
batch system

Biosorption capacity = 9.26 mg/g [52]

Antiseptics

Saccharomyces cerevisiae/calcium
alginate composite beads
(inactive cells)

Ethacridine lactate

pH = 5; initial concentration of the pharmaceutical
compound = 100 mg/L; biosorbent beads

dose = 1 g/25 mL drug solution; time = 12 h; room
temperature; batch system

Removal efficiency was 96.40% [52]

Saccharomyces pastorianus/
calcium alginate composite beads
(inactive cells)

Ethacridine lactate
pH = 2–10; initial concentration of the

pharmaceutical compound = 20–60 mg/L;
biosorbent beads dose = 1–3 g/L;

time = 24 h; room temperature; batch system

Biosorption capacity was 26.72 mg/g and the
removal efficiency was

91.05% for C0 = 60 mg/L; pH = 4; biosorbent
dose = 2 g/L

[49]

Saccharomyces pastorianus residual
microbial biomass/calcium alginate
composite beads
Immobilization technique
(inactive cells)

Ethacridine lactate

Biosorption capacity was 26.76 mg/g and the
removal efficiency was

89.93% for C0 = 60 mg/L; pH = 4; biosorbent
dose = 2 g/L

[49]

Saccharomyces pastorianus residual
biomass / calcium alginate
composite beads
Encapsulation technique
(inactive cells)

Ethacridine lactate

pH = 2–10; initial concentration of the
pharmaceutical compound = 20–60 mg/L;

biosorbent beads dose = 1–3 g/L;
time = 24 h; room temperature; batch system

Biosorption capacity was 21.39 mg/g and the
removal efficiency was 85% for C0 = 50 mg/L;

pH = 2; biosorbent dose = 2 g/L
[15]
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Table 5. Cont.

Biosorbent Therapeutic Group/
Pharmaceutical Compound Process Parameters Obtained Results Ref.

Pandoraea sp. strain BT102
(bacterium-encapsulated in calcium
alginate beads)
(active cells)

p-Chloro-meta-
xylenol

pH = 10 ± 0.2.; temperature = 37 ◦C; initial
concentration of the pharmaceutical compound =
1–100 mg/L; biosorbent beads dose = 100 g/L of

drug solution; time = 16 h; shaker at a rotating speed
of 120 rpm; batch system

Maximum adsorption capacity was 961.7 mg/g
for C0 = 100 mg/L after 4 h [137]

CHITOSAN—BASE FOR IMMOBILIZATION/ENCAPSULATION
Antibiotics

Saccharomyces cerevisiae/
chitosan composite beads
(inactive cells)

Cephalexin pH = 5–6; initial concentration of the pharmaceutical
compound = 30–50 mg/L; biosorbent beads dose = 1

g/25 mL of drug solution; time = 12 h; room
temperature; batch system

Maximum adsorption capacity was 22.78 mg/g
for C0= 30 mg/L and pH = 5

[52]
Rifampicin Maximum adsorption capacity was 24.70 mg/g

for C0= 50 mg/L and pH = 6

Saccharomyces pastorianus/
chitosan composite beads
(inactive cells)

Cephalexin pH = 5–6; initial concentration of the pharmaceutical
compound = 30–50 mg/L; biosorbent beads dose = 1

g/25 mL of drug solution; time = 12 h; room
temperature; batch system

Maximum adsorption capacity was 28.42 mg/g
for C0= 30 mg/L and pH = 5 [52]

Rifampicin Maximum adsorption capacity was 24.89 mg/g
for C0= 50 mg/L and pH = 6

OTHER MATERIALS USED FOR IMMOBILIZATION/ENCAPSULATION
Anti-epileptics

Phanerochaete chrysosporium
immobilized in wood chips
(inactive cells)

Carbamazepine

pH =3.2 ÷ 4.5; temperature = 30 ◦C; the
pharmaceutical compound added into the influent at
1.0 mg/L; time = 28 days; aerating mode; fixed-bed

bioreactor

Removal efficiency on day 7, in coexistence
with naproxen, was 61.30 ± 3.84%

and biosorption capacity was 0.06 mg/g
[84]

Anti-inflammatories

Phanerochaete chrysosporium
immobilized in wood chips
(inactive cells)

Naproxen

pH =3.2 ÷ 4.5; temperature = 30 ◦C; the
pharmaceutical compound added into the influent at
1.0 mg/L; time = 28 days; aerating mode; fixed-bed

bioreactor

Removal efficiency on day 7 in coexistence with
carbamazepine was 90.35 ± 4.37% and

biosorption capacity was 0.17 mg/g
[84]
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5. Conclusions and Future Perspectives

Pharmaceutical water pollution is a global issue that has an impact on both the
environment and human health, especially when traditional approaches can’t provide an
effective and secure solution; a large number of recent papers published underline the
topic’s importance. According to this viewpoint, new environmentally friendly methods
for removing pharmaceuticals from aqueous matrices must be developed, with the obvious
goal of being applied at an industrial level.

The biosorption process can be efficient in removing pharmaceutical residues from
various types of wastewater if a suitable biosorbent can be developed. From an ecological
point of view, the use of biomaterials from renewable resources (microbial biomass, natural
polymers) in biosorption processes has seen a constant increase in popularity in the last
ten years.

This review evaluated the use of microbial biomass and natural polymers as biosor-
bents for the removal of pharmaceuticals from wastewater (simulated, real, or model
solutions) by examining recent literature and taking into account the lack of in-depth
analyses on this topic. The analyzed articles detailed several preparation and modification
processes for biosorbents, demonstrating that microorganisms or natural polymers can
provide extremely high biosorption capabilities and can be used to treat organically loaded
wastewater in a more economic, efficient, and effective way than conventional wastewater
treatment methods due to their high level of tolerance to contaminants. The production
of efficient biosorbents (with improved adsorptive capacity and higher porosity) requires
more analysis, as according to the literature data, natural polymers are less frequently
utilized as single adsorbents and are more frequently used as composites, either with
microbial biomass or with inorganic compounds. Therefore, research on microbial biomass
or biopolymers is required to enhance the effectiveness of drug removal.

Future research should concentrate on the features of microbial biomass, whether it is
active or inert, with the goal of achieving superior qualities and a good cost-benefit ratio
acceptable for pharmaceutical removal. The use of microbial biomass in immobilized form
could be helpful to future researchers and could serve as the basis for future advances,
as it provides the framework for continuous system operation. These systems allow
the treatment of large volumes of the liquid phase and should be applied for the study
of real systems, i.e., wastewater from various polluted sources loaded with residues of
pharmaceutical products. Additionally, it is crucial to optimize the water treatment process
in pilot plants, for easy scale up. Biosorption studies focus on laboratory-scale applications,
but they provide current knowledge of biosorption that is sufficient to provide a solid basis
for expanding its use. The application of biosorption on an industrial scale has not yet been
exploited, and this constitutes one of the major weaknesses that biosorption has to face.

Deeper studies covering biosorption on more emerging contaminants, including
occur-ring mechanisms, more details on reaction intermediates and related pathways,
related environmental aspects expressed in terms of water quality parameters, and more
details on the effect of water parameters, are required in order to make biosorption an
industrial process. Wherever feasible, biosorption should be incorporated into conventional
techniques to create new secondary treatment systems to remove emerging contaminants,
thus making these systems more profitable and environmentally friendly.
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