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Abstract: Pineapple materials sourced from agricultural waste have been employed to process novel
bio-degradable rigid composite foams. The matrix for the foam consisted of starch extracted from
pineapple stem, known for its high amylose content, while the filler comprised non-fibrous cellulosic
materials sourced from pineapple leaf. In contrast to traditional methods that involve preparing
a batter, this study adopted a unique approach where the starch gel containing glycerol were first
formed using a household microwave oven, followed by blending the filler into the gel using a two-
roll mill. The resulting mixture was then foamed at 160 ◦C using a compression molding machine.
The foams displayed densities ranging from 0.43–0.51 g/cm3 and exhibited a highly amorphous
structure. Notably, the foams demonstrated an equilibrium moisture content of approximately 8–10%
and the ability to absorb 150–200% of their own weight without disintegration. Flexural strengths
ranged from 1.5–4.5 MPa, varying with the filler and glycerol contents. Biodegradability tests using a
soil burial method revealed complete disintegration of the foam into particles measuring 1 mm or
smaller within 15 days. Moreover, to showcase practical applications, an environmentally friendly
single-use foam tray was fabricated. This novel method, involving gel formation followed by filler
blending, sets it apart from previous works. The findings highlight the potential of pineapple waste
materials for producing sustainable bio-degradable foams with desirable properties and contribute to
the field of sustainable materials.

Keywords: biodegradable plastic; starch; circular economy; pineapple; tensile strength

1. Introduction

Foam is a material that is characterized by a porous structure that contains gas-filled
pockets. Such characteristics have brought numerous advantages to the material. They are
lightweight, strong, and offer excellent insulation properties, making them ideal for a wide
range of applications, from packaging and cushioning materials to building insulation and
protective gear. Foam materials, such as polystyrene foam, have become ubiquitous in
modern life due to the aforementioned advantages. However, their widespread use has
also led to a range of environmental problems, including the accumulation of microplas-
tics in the environment and the persistence of foam debris in marine ecosystems [1–3].
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These issues have prompted many countries [4] and local governments [5–7] to ban or
restrict the use of certain types of foam materials, highlighting the urgent need for more
sustainable alternatives.

Because of the many advantages of foam structures, there has been a number of
attempts to find alternative biodegradable materials for the production of foams. This
has gained much attention in recent years due to its potential to reduce the environmen-
tal impact of foam production and disposal. Biodegradable foams can be made from a
variety of materials, including plant-based sources such as starch [8–11], starch-based
mixture [12–16] and soy-protein-based materials [17], as well as synthetic biodegradable
polymers [18–22]. While these materials may seem to offer many advantages, including
reduced toxicity and biodegradability, they are certainly not easily biodegradable and
require an industrial composting facility [23–25]. They can also require significant amounts
of energy to produce and may compete with food crops for resources, raising concerns
about their overall sustainability.

To address these issues, researchers are exploring different routes such as mycelium
composites [26–28], foam [29,30] and leather [31,32]. We are exploring the use of agricultural
waste as a source of raw material for foam production. Pineapple is one of the most widely
produced tropical fruits in the world, and its leaves, stems, and fruit residues generate
significant amounts of waste. Pineapple field waste contains cellulosic material [33–36] and
starch [37–39] which can be used to produce more sustainable and biodegradable foam
materials. By converting this waste into biodegradable foam, we could not only reduce
waste and its environmental impact [40,41] but also promote circular bioeconomy, where
waste is used as a resource.

The specific objectives of this study are to develop a biodegradable foam using pineap-
ple field waste as raw materials and to assess its suitability as a sustainable alternative
to synthetic foam. Our aims include evaluating the mechanical properties, internal struc-
ture, water sensitivity, and the biodegradability of the composite foams produced using
pineapple stem starch as the matrix, pineapple leaf material as filler, glycerol as a plasticizer,
and water as a blowing agent. Additionally, we aim to showcase the material’s potential
applications through the fabrication of a packaging tray.

2. Materials and Methods
2.1. Raw Material and Chemicals

Pineapple stem waste was from Hong Mao Biochemicals Co., Ltd. (Rayong, Thailand).
It was a byproduct of a proprietary bromelain extraction process in which, according to
general principle, peeled pineapple stems were crushed to disrupt the cell structure and
liquid extracted by centrifugation [42]. The remaining solid material was dried under the
sun for a few days and further ground into powder using a laboratory grinder. The stem
powder was collected by sieving (80 mesh) to separate the coarse fibers, cell wall, and other
solid contaminants, which constitute about 56% of the whole mass. The powder obtained
has similar characteristics to that obtained by the wet milling reported previously [35]. The
non-fibrous component of pineapple leaf waste was obtained by grinding fresh pineapple
leaves according to the method previously described in [29,30]. The ground material was
dried and then sieved with plastic wire mesh of approximately 2 mm2 to separate out the
puffy fibrous component. Only the particulate non-fibrous material (NFM) that passed
through the sieve was used as filler. Glycerol was commercial grade and obtained from
local stores.

2.2. Preparation of Starch Paste and Composite Foams

Starch paste was prepared by mixing a predetermined amount of PSS, water, and
glycerol in a glass beaker. The amount of glycerol was varied at 10, 15, and 20% and NFM
at 15, 20, 25, and 30% based on the weight of PSS (Table 1). For all formulations, the amount
of water was fixed at the same weight as PSS. The formulations and codes are shown in
Table 1. PSS, water, and glycerol were mixed in a beaker and the mixture was left for at
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least 60 min at ambient conditions before being gelatinized in a household microwave
(Toshiba, model ER-G33SC(S), Toshiba Thailand Co., Ltd., Nonthaburi, Thailand) set at
50% of maximum power (1100 W) for a total time of 80 s. The mixture was taken out
to mix with a glass stirring rod every 10 s. The gelatinized PSS was covered to prevent
moisture loss and left to cool down to room temperature before being further processed. A
predetermined amount of NFM (15, 20, 25, and 30% weight of PSS) was then added into
the paste on a laboratory 2-roll mill and mixing continued until a homogeneous mixture
was obtained. The mixing time was approximately 15 min. After mixing, the mixture
was sheeted out to a thickness of approximately 2.0 mm. The sheet was then brought to
foam in a compression molding machine. The mixture was cut into a square shape of size
150 mm × 150 mm and placed between two flat steel sheets with a 3.5 mm thick spacer.
The whole mold was put in a compression molding machine set at 160 ◦C for 5 min and
then cooling under pressure for another 5 min. The foam samples were then left in ambient
environment to gain equilibrium moisture content at least 7 days before any measurement
was made.

Table 1. Codes and composition of PSS/NFM composite foams.

Sample PSS (wt.%) Glycerol (wt.%) NFM (wt.%)

G10NFM15 100 10 15
G10NFM20 100 10 20
G10NFM25 100 10 25
G10NFM30 100 10 30
G15NFM15 100 15 15
G15NFM20 100 15 20
G15NFM25 100 15 25
G15NFM30 100 15 30
G20NFM15 100 20 15
G20NFM20 100 20 20
G20NFM25 100 20 25
G20NFM30 100 20 30

2.3. Characterization of PSS Composite Foams
2.3.1. Foam Density

Apparent density of the foam was determined by dividing the mass of a square speci-
men by its apparent dimension. A square piece of sample with dimension approximately
20 × 20 mm2 was cut from a compression molded sheet of thickness 3.5 mm. The piece
was then weighed to 4 decimal places with a laboratory balance (XS105, Mettler Toledo,
Greifensee, Switzerland). The density was then calculated from mass divided by volume
(20 × 20 × thickness mm3). An average value from five specimens was reported.

2.3.2. X-ray Diffraction (XRD)

X-ray diffraction patterns of the materials were obtained from a benchtop X-ray
powder diffractometer (D2 Phaser, Bruker AXS GmbH., Karlsruhe, Germany) using X-ray
wavelength of 1.54 Å with a step scan of 15 s/point over the 2θ of 5–40 degrees.

2.3.3. Mechanical Properties

Flexural test: Flexural properties of the composite foams were determined on a uni-
versal testing machine (Instron 5569, Instron, High Wycombe, UK) at a crosshead speed
of 1 mm/min, 5 kN of load cell with the support span length of 56 mm. The specimens
were cut into strips that were 11.4 mm wide. Flexural strength (σ) and modulus (E) were
determined from Equations (2) and (3), respectively. The values reported were average
values from five specimens.

σ =
3FL
2bh2 (1)
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E =
L3F

4bh3d
(2)

where

F is force (N) at peak position (for σ) and 1% deflection (for E);
L = width of the beam (mm);
b is the width of specimen;
h is the height of the samples; and
d = deflection (mm).

The averaged values of flexural strength and flexural modulus from five specimens
were reported.

2.3.4. Morphology

Fractured surfaces of the foams were observed with a scanning electron microscope
(SEM) (JSM-IT500, JEOL, Tokyo, Japan). The samples were coated with platinum before
the observation.

2.3.5. Water Solubility, Water Absorption and Moisture Content

Water solubility: A piece of foam was cut from the compression molded sheet into
the size of 20 × 20 mm2 and dried in an air ventilated oven set at 80 ◦C for 24 h. Its dried
weight was determined (wi) before being immersed in distilled water with gentle stirring
for 24 h. The sample was then dried at 80 ◦C for 24 h and its weight determined again (wfd).
Water solubility was calculated from the following equation.

Water solubility (%) = ((wi − wfd)/wi) × 100 (3)

Water absorption: The test was conducted in a similar manner to water solubility
except that the sample was taken out at 5, 10, 20, 30, 60 and 120 min after immersing in
distilled water. Excess water on the sample surface was removed with blotting paper and
its weight determined (wf). Water absorption was calculated from the following equation.

Water absorption (%) = ((wf − wi)/wi) × 100 (4)

Moisture content: A 20 × 20 mm2 piece of foam was left in laboratory ambient for at
least 7 days to reach equilibrium and its weight determined (wi). After that, it was dried
in an air-ventilated oven at 80 ◦C for 24 h. Its weight was determined (wd) again and the
moisture content of the sample was calculated from the following equation.

Moisture content (%) = (wi − wd)/wd × 100 (5)

2.3.6. Soil Burial Test

The biodegradability of starch-based materials by microorganisms [43] was evaluated
using soil burial test. The test was slightly modified from a protocol reported previously [43].
Specimens of size 4.0 × 4.0 cm2 were cut and put in envelopes made from a high-density
polyethylene net for easy recovery. The envelopes were buried in the edge of a garden of
the department building about 10 cm beneath the surface. The pH of the soil was measured
to be 7.5. The area was under the shade of trees and was watered every week. No attempt
was made to regulate the moisture content and temperature of the area to obtain a natural
environment. Envelopes were taken out for the observation of samples after different
periods of time. The state of biodegradability was evaluated visually.

2.4. Statistical Analysis

Statistical analysis was performed using analysis of variance (ANOVA) with the Data
Analysis tool in the Microsoft Excel (Office16) program. The t-test method, with two-sample
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assuming unequal variances, was performed to analyze differences among the means at a
confidence level of 95%.

3. Results
3.1. Foam Appearance and Structure

Figure 1 displays the visual image of rigid foam sheet prepared from PSS/NFM
composite. The foam sheet has a light gold color with a smooth and dense surface with
porous internal structure. Table 2 displays the densities of foams containing different
amounts of glycerol and NFM. There appears to be an increase in densities with increas-
ing NFM contents while no apparent change with glycerol content. The densities of
PSS/NFM foams fall in the range observed in tapioca starch/PBS foam [22] but much
greater than that of synthetic polymer foams such as expandable polystyrene (EPS) which
ranges from 0.0031–3.5 g/cm3, with an average value of about 0.201 g/cm3 [44]. The
densities of our PSS/NFM foams also fall in the range of other starch-based foams such
as 0.20–0.60 g/cm3 [45–48]. It is worth noting that starch foam density has been found to
depend on amylose content [11,48]. The higher the amylose content, the greater the density,
from 0.082 for non-amylose-(0%) starch to 0.40 for high (70%)-amylose starch foam. In
addition, foam density depends on foam technique, and baking usually provides foams
with greater density than extrusion [11], presumably due to the much higher pressure
differences in the extrusion process.
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Figure 1. Photographs of PSS/NFM foams, depicting the top view (left) and the structure across the
thickness and along the edge (right).

Table 2. Density of PSS/NFM foams containing different amounts of NFM and glycerol.

Sample Density (g/cm3)

NFM (%) Glycerol 10 wt.% Glycerol 15 wt.% Glycerol 20 wt/%

15 0.441 ± 0.007 a 0.427 ± 0.033 bc 0.445 ± 0.022 bc

20 0.453 ± 0.004 b 0.458 ± 0.021 c 0.462 ± 0.019 d

25 0.488 ± 0.021 b 0.454 ± 0.015 c 0.441 ± 0.021 b

30 0.501 ± 0.006 b 0.483 ± 0.011 c 0.512 ± 0.026 d

Note: Different superscript letter for each value indicates statistically significant differences in the means.
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3.2. X-ray Diffraction (XRD)

Figure 2 displays XRD patterns of PSS composite foams containing different amounts
of glycerol and NFM. All PSS composite foams are largely non-crystalline. Some composites,
such as G15NFM15, G15NFM20, G15NFM25, G15NFM15 and G20NFM20, have limited
crystallinity. This is very different from pineapple stem starch films that were obtained
by solution casting [49,50] which exhibit much clearer and larger crystalline peaks. These
crystalline peaks are attributed to the spontaneous recrystallization of amylose molecules
during film drying [51,52] or retrogradation and the structure is always B-type regardless
of the starch type [53,54]. This absence of crystallinity is due to the fast drying during
compression molding; therefore, the amylose molecules did not have enough time to
crystallize despite their high ability to undergo rapid reordering to form double helices
and crystallites of amylose [55,56]. The XRD patterns in Figure 2 are similar to that of
high-amylose (70%) baked corn-starch foam [10], i.e., highly amorphous with very small
crystalline peaks at about 17◦ and 22◦.
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Figure 2. XRD of PSS/NFM foams.

3.3. Internal Morphology

Figure 3 displays scanning electron photomicrographs of PSS/NFM composite foams
with different formulations. All the foams exhibit an open-cell structure, evident not only
from visual examination but also from other observations. For instance, during water
absorption measurements, the foams displayed the characteristic behavior of sinking,
indicating the presence of interconnected cells. Furthermore, compared to baked foams
characterized by very large thin wall voids in the core region and a dense skin [11], these
composite foams demonstrate relatively thick walls. This can be attributed to the presence
of NFM particles, which thicken the starch paste and hinder significant expansion. When
comparing foams with different formulations, limited deductions can be made, except that
it appears the foam with the lowest glycerol content and lowest NFM content exhibits
larger voids in the core region. As the glycerol and NFM content increases, void sizes seem
to decrease and become more uniform.
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Figure 3. SEM of cross-section of PSS/NFM composite foams.

3.4. Mechanical Properties

Flexural strength and flexural modulus of PSS/NFM composite foams are shown in
Figure 4. In general, flexural strength increases with increasing NFM content and decreases
with increasing glycerol content. This is to be expected as NFM is the solid cellulosic
material while glycerol plasticizes the system. For the flexural modulus, although similar
behavior is to be expected, the results appear to be rather scattered. Only with a glycerol
content of 10% (G10) that the mentioned pattern is discernible. For that, with glycerol
content of 15% (G15), the lowest NFM content (G15NFM15) displays the highest modulus
and the modulus decreases as the NFM increases. No exact explanation can be offered at
present, but it could well be related to the internal structure of the foam which is known
to strongly influence the flexural modulus. However, it is worth noting that the values of
flexural strength and modulus are close to or even higher than most foam starches [11].
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3.5. Moisture Content, Water Solubility and Absorption

Figure 5a illustrates the equilibrium moisture content of PSS/NFM composite foams,
with an average moisture content ranging between 7.0% and 9.5%. Despite the relatively
large deviation, it can be concluded that the moisture content is not significantly influenced
by the formulation. However, there is a subtle indication that an increase in the amount of
NFM leads to a slight decrease in moisture content. This observation aligns with the fact
that starch is generally more hygroscopic compared to cellulosic materials [57].
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Figure 5. Moisture content (a), and water solubility (b) of PSS/NFM foams.

The water solubility data is presented in Figure 5b. Despite the relatively large devia-
tion, a discernible trend can be observed. For each set of glycerol content, an increase in
NFM content correlates with a decrease in water solubility. This observation is understand-
able since only PSS is water-soluble, while NFM is not. Additionally, with an increase in
glycerol content, water solubility appears to rise. This outcome is expected as glycerol itself
is water-soluble. It is also noted that as the glycerol content increases, the water solubility
data becomes less scattered.
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Figure 6 illustrates the water-absorption behavior of the foams. All the foams display
similar patterns, characterized by a rapid increase in the first 30 min followed by a leveling
off. The water absorption values range between 150% and 250%. In the case of the
low glycerol content set (G10, Figure 6a), there is a significant variation among different
NFM content, and the trend is not readily discernible. However, as the glycerol content
increases (Figure 6b,c), the differences between the NFM content sets become smaller,
and all the curves converge towards a water absorption level of approximately 150%.
This phenomenon is likely related to the changes in the internal structure mentioned
earlier, particularly the development of a more uniform void size. The water absorption of
PSS/NFM composite foams is about half that of other starch foams [58–60].
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3.6. Soil Burial Test

Figure 7 displays photographs of some selected PSS and PSS/NFM composite foams
before and after the burial test. All foams clearly deteriorated in the burial test within a
relatively short period of time. After 7 days, the foams displayed dark stains on the surface
but still maintained their original shape. After 15 days, all foams were broken into small
pieces and after 30 days completely disintegrated into small particles. Presumably, these
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tiny particles are cellulosic NFM which is known to degrade at a much slower rate than
starch [61]. Further investigation of the dark stains and nearby areas on the surface of the
foam using a microscope, as shown in Figure 8, revealed that the area was covered with
filamentous materials known as the hyphae of fungi. These findings strongly suggest that
the material exhibits biodegradability, sharing a similar mechanism with molds and fungi,
which are renowned for their critical roles in the natural environment and their ability to
effectively biodegrade organic materials.

Polymers 2023, 15, x FOR PEER REVIEW 11 of 16 
 

 

foam using a microscope, as shown in Figure 8, revealed that the area was covered with 

filamentous materials known as the hyphae of fungi. These findings strongly suggest that 

the material exhibits biodegradability, sharing a similar mechanism with molds and fungi, 

which are renowned for their critical roles in the natural environment and their ability to 

effectively biodegrade organic materials. 

 

Figure 7. Photographs of some PSS composite specimens before and after being buried in the soil 

for different periods of time. 

 

Figure 8. Optical microscope image of G15NFM15 composite foam buried in soil for 7 days (scale 

bar = 100 µm). Inset is the optical image of the recovered specimen. 

Figure 7. Photographs of some PSS composite specimens before and after being buried in the soil for
different periods of time.

Polymers 2023, 15, x FOR PEER REVIEW 11 of 16 
 

 

foam using a microscope, as shown in Figure 8, revealed that the area was covered with 
filamentous materials known as the hyphae of fungi. These findings strongly suggest that 
the material exhibits biodegradability, sharing a similar mechanism with molds and fungi, 
which are renowned for their critical roles in the natural environment and their ability to 
effectively biodegrade organic materials. 

 
Figure 7. Photographs of some PSS composite specimens before and after being buried in the soil 
for different periods of time. 

 
Figure 8. Optical microscope image of G15NFM15 composite foam buried in soil for 7 days (scale 
bar = 100 µm). Inset is the optical image of the recovered specimen. 
Figure 8. Optical microscope image of G15NFM15 composite foam buried in soil for 7 days (scale
bar = 100 µm). Inset is the optical image of the recovered specimen.



Polymers 2023, 15, 2895 11 of 15

4. Discussion and Potential Applications

The versatility of PSS/NFM composite foams has been demonstrated through the
ease of preparation using various formulations. While the overall density and properties
of the foams remain relatively consistent across the formulation range, notable variations
are observed in their internal structure. Specifically, a lower glycerol content leads to the
presence of larger voids in the core region, whereas a higher glycerol and NFM content
result in smaller and more uniform voids.

The increase in NFM content contributes to a slight increase in foam density, primarily
due to the increased viscosity of the system and the reduced fraction of the deformable
starch phase. These factors limit foam expansion during the foaming process, leading to a
denser foam structure.

Despite exhibiting low crystallinity based on XRD results, the PSS/NFM foams exhibit
a lower moisture content and water absorption compared to other starch-based materials.
This can be attributed to the presence of a small crystalline region, facilitated by the amylose
fraction, which acts as physical crosslinking points. These crosslinks effectively prevent
the dissolution of the starch network, allowing the foams to retain their structure without
disintegration even over extended periods of time in water.

The successful production of biodegradable foams using PSS and NFM derived from
pineapple field waste showcases the potential of this approach. By utilizing water as a
physical blowing agent and glycerol as a plasticizer to enhance foam durability, we have
achieved foam materials that are less fragile. Moreover, this concept demonstrates its circu-
lar and sustainable nature when compared to non-biodegradable petroleum-based foams.
Additionally, compared to starch foams made from edible starch that require dedicated
land and resources for cultivation, our proposed foams primarily utilize waste materials.
This results in a reduced energy footprint and significantly lower carbon dioxide emissions
of at least 40% (due to the cultivation process) [62] throughout the entire production process.
While we acknowledge the importance of providing specific quantitative data to support
our claims regarding decreased energy footprint and carbon dioxide emissions, we recog-
nize that further investigation and analysis are necessary. In future publications, we plan to
conduct a comprehensive assessment to quantify the exact percentage reduction in energy
consumption and carbon dioxide emissions achieved by utilizing waste materials instead
of edible starch. This will allow us to present a more detailed and accurate evaluation of
the environmental advantages offered by our proposed foams.

Furthermore, we have explored potential applications of the PSS/NFM composite,
and one notable example is a packaging tray made from our foam material (Figure 9). This
tray exhibits acceptable strength and stability while being environmentally friendly and
biodegradable. The utilization of our foam material in such applications demonstrates its
versatility and suitability for various packaging needs.
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In summary, the utilization of PSS and NFM from pineapple waste presents a promis-
ing pathway for the production of biodegradable foams. These foams exhibit controlled
internal structures, reduced moisture content, and enhanced sustainability. The adoption
of waste materials and environmentally friendly manufacturing processes highlights the
advantages of this concept over conventional foam materials. Further research and de-
velopment in this field can contribute to the advancement of sustainable and eco-friendly
foam materials.

5. Conclusions

This study successfully developed biodegradable foam utilizing pineapple field-waste
materials, specifically employing starch extracted from pineapple stem as the matrix and
non-fibrous cellulosic materials sourced from pineapple leaf as the filler. The composite
foams exhibited controlled internal structures with interconnected cells and relatively thick
walls, resulting in densities ranging from 0.43–0.51 g/cm3. Notably, the foams demon-
strated favorable properties including an equilibrium moisture content of approximately
8–10% and the ability to absorb 150–200% of their own weight without disintegration.
Flexural strengths varied between 1.5–4.5 MPa, depending on the filler and glycerol con-
tents. Importantly, biodegradability tests using a soil burial method showed complete
disintegration of the foams into particles measuring 1 mm or smaller within a span of
15 days. These findings highlight the promising potential of utilizing waste materials
and water as a blowing agent in the production of biodegradable foams. The success-
ful fabrication of an environmentally friendly single-use foam tray further underscores
the practicality and versatility of the material. By offering controlled internal structures,
improved moisture resistance, and biodegradability, the developed PSS/NFM compos-
ite foams present a sustainable alternative to non-biodegradable petroleum-based foams.
These outcomes contribute valuable insights to the field of biodegradable foams, paving
the way for their broader adoption in various industries and promoting a greener and more
sustainable future.
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