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Abstract: The shear strength prediction of concrete beams reinforced with FRP rebars and stirrups is
one of the most complicated issues in structural engineering applications. Numerous experimental
and theoretical studies have been conducted to establish a relationship between the shear capacity and
the design variables. However, existing semi-empirical models fail to deliver precise predictions due
to the intricate nature of shear mechanisms. To provide a more accurate and reliable model, machine
learning (ML) techniques are adopted to study the shear behavior of concrete beams reinforced
with FRP rebars and stirrups. A database consisting of 120 tested specimens is compiled from the
reported literature. An artificial neural network (ANN) and a combination of ANN with a genetic
optimization algorithm (GA-ANN) are implemented for the development of an ML model. Through
neural interpretation diagrams (NID), the critical design factors, i.e., beam width and effective depth,
shear span-to-depth ratio, compressive strength of concrete, FRP longitudinal reinforcement ratio,
FRP shear reinforcement ratio, and elastic modulus of FRP longitudinal reinforcement rebars and
FRP stirrups, are identified and determined as input parameters of the models. The accuracy of
the proposed models has been verified by comparing the model predictions with the available
test results. The application of the GA-ANN model provides better statistical results (mean value
Vexp/Vpre equal to 0.99, R2 of 0.91, and RMSE of 22.6 kN) and outperforms CSA S806-12 predictions
by improving the R2 value by 18.2% and the RMSE value by 52.5%. Furthermore, special attention is
paid to the coupling effects of design parameters on shear capacity, which has not been reasonably
considered in the models in the literature and available design guidelines. Finally, an ML-regression
equation considering the coupling effects is developed based on the data-driven regression analysis
method. The analytical results revealed that the prediction agrees with the test results with reasonable
accuracy, and the model can be effectively applied in the prediction of shear capacity of concrete
beams reinforced with FRP bars and stirrups.

Keywords: FRP; shear capacity; coupling effect; neural network; genetic algorithm

1. Introduction

Fiber-reinforced polymer (FRP) composites have been widely applied in the construc-
tion industry to repair/strengthen concrete structures, due to their high strength-to-weight
ratio, good fatigue properties, environmental insensitivity, etc. [1–3]. Recently, FRP has
been considered as an alternative material to steel reinforcements in the form of FRP rebars
and stirrups in new construction projects in aggressive environments, such as off-shore
structures [4], bridge decks [5], and roadbeds [6], to address the corrosion issues of steel re-
inforcements. However, due to the low elastic modulus, anisotropy, and fracture brittleness
of FRP materials, one that should be considered is the shear behavior of FRP-reinforced
concrete (FRP-RC) members, which shows significant variation from conventional steel
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reinforced concrete (RC) members [7–9]. In the case of FRP-RC beams, the deformation
and crack width are larger than that of the steel RC beams at the same applying loads.
Consequently, the shear resistance provided by both uncracked concrete in the compression
zone and aggregated interlock is smaller, which results in a lower shear resistance contri-
bution provided by concrete [10,11]. Additionally, bending FRP rebars to form stirrups
significantly reduces the strength at the bend zones due to their anisotropic properties, thus
resulting in a lower stirrup shear resistance contribution [12,13]. Hence, the overall shear
resistance of concrete beams reinforced with FRP rebars and stirrups varies significantly
from that of concrete beams reinforced with steel reinforcement. Therefore, it is crucial to
accurately predict the shear capacity of FRP-RC beams to avoid catastrophic shear failure
that occurs without any prior signs of damage.

Over the last two decades, a considerable number of experimental investigations have
been conducted to study the shear behavior of concrete beams reinforced with FRP bars
and stirrups [14–17]. A variety of design parameters that may affect the shear behavior
and ultimate strength of FRP-RC beams were considered, such as beam length (L), beam
width (bw), effective depth (d), shear span-to-depth ratio (a/d), compressive strength of
concrete ( f ′c), FRP longitudinal reinforcement ratio (ρ f l), FRP shear reinforcement ratio
(ρ f v), elastic modulus of FRP longitudinal reinforcement rebars (E f l) and FRP stirrups
(E f v), ultimate tensile strength of FRP longitudinal reinforcement rebars ( f f ul) and the
straight portion of FRP stirrups ( f f uv), and FRP reinforcing materials (AFRP, BFRP, CFRP,
and GFRP). This encouraged the development of semi-empirical models for predicting
the shear capacity of FRP-RC beams. The shear strength prediction of concrete beams
reinforced with FRP rebars and stirrups is known as one of the most complicated issues
in structural engineering applications, and most existing analytical models take account
of the ultimate shear capacity of the FRP-RC beam as the linear combination of shear
contributions provided by concrete and FRP stirrups, which follows the same design
principle as conventional steel reinforced concrete structures. Anisotropy and fracture
brittleness of FRP materials and coupling effects among the design parameters in FRPRC
structures have not been addressed, resulting in less prediction accuracy using analytical
methods [18–21]. Generally, these prediction models were derived through regression
analysis based on limited available test data; therefore, their applicability for a large range
of tests is questionable. Razaqpur and Spadea [22] compared the actual shear capacity of 86
FRP-RC beams with their predicted values based on the current design equations provided
by different design standards and guidelines. It was found that the mean of the ratio of the
test to predicted shear capacity ranges from 0.78 to 2.67, indicating that some of the existing
design equations are over-conservative, whereas others sometimes yield un-conservative
results. It is necessary to improve understanding of the interaction among various design
parameters in relation to the shear behavior and ultimate strength of FRP-RC beams.

With the development of comprehensive experimental data, machine learning (ML)-
based techniques are being applied in the field of civil engineering, particularly for FRP-RC
structures [23–25]. Numerous ML algorithms have been utilized to investigate the mechani-
cal and structural behavior of FRP-RC structures, especially for issues with complexity and
fluctuation nature, such as FRP–concrete interfacial bond strength evaluation [26,27], shear
strength estimation of FRP in strengthened RC beams [28,29], and shear capacity predic-
tion of FRP-RC beams [30,31]. For example, Jahangir and Eidgahee [26] proposed a bond
strength model between FRP composites and the concrete substrates by developing an opti-
mized artificial neural network (ANN) using an artificial bee colony algorithm. Naderpour
and Alavi [28] provided a fuzzy-based model for predicting the shear contribution of FRP
in RC beams strengthened by externally bonded FRP sheets. Furthermore, several studies
have been performed to investigate the shear behavior of FRP-RC beams using ML-based
techniques [32–37]. In 2011, Kara [32] utilized gene expression programming (GEP) to
obtain a shear capacity prediction model for FRP-RC beams without stirrups, where it was
shown that the GEP model performed better as compared to the available shear design
guidelines. Furthermore, Lee and Lee [33], Jumaa and Yousif [34], and Naderpour et al. [35]
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developed ANN models to evaluate the shear capacity of FRP-RC beams without stirrups.
Moreover, Golafshani and Ashour [36] proposed a new model using biogeography-based
programming (BBP) to predict the shear capacity of FRP-RC beams without stirrups based
on an experimental database of 138 test specimens. In 2022, Wakjira et al. [37] explored
the application of ML in predicting the shear capacity of FRP-RC beams. They focused on
the comparison of the performance of different ML techniques including support vector
machine (SVM), decision tree (DT), random forest (RF), and extreme gradient boosting
(xgBoost). However, few results have been reported in the shear behavior of concrete
beams reinforced with FRP stirrups. As the key transverse reinforcement in FRPRC beams,
the strength of FRP stirrups would vary at different load levels, due to the curling and
stretching of the fibers at the bend zone of FRP stirrups, so the interactions between the
strength of FRP stirrups and other design parameters become more significant, which
has not been addressed in the literature. Owing to the great reliability and promising
results of ML techniques in analyzing FRP-RC structures, it has great potential to be further
applied in predicting the shear capacity of FRP-RC beams with stirrups by addressing the
complex interaction among various design parameters and potential different shear failure
mechanism due to the brittleness of FRP stirrups.

In this paper, both ML-based and regression-based models were proposed for pre-
dicting the shear capacity of concrete beams reinforced with FRP rebars and stirrups. For
this purpose, an updated experimental database of 120 test specimens with 13 variables
was firstly compiled from the literature. The critical parameters governing shear capacity
of FRP-RC beams were identified using neural interpretation diagrams (NID), which are
further determined as input parameters of the ML-based models. Both ANN and the
combination of ANN with the genetic optimization algorithm (GA-ANN) were utilized for
the model development. The accuracy, feasibility, and validity of the proposed model were
demonstrated through a comparison with the predictions from established models found
in existing design codes and studies. Additionally, a comprehensive parametric study was
conducted using the proposed GA-ANN model, and the coupling effect between param-
eters on shear capacity of FRP-RC beams was further revealed. Finally, a practical shear
capacity calculation formula was developed for the design purpose based on data-driven
regression analysis (DDRA). Compared with existing design codes, the prediction accuracy
on shear capacity of FRP-RC beams is highly improved using the proposed GA-ANN
model, through considering the anisotropy and fracture brittleness of FRP materials and
coupling effects among the design parameters in FRP-RC beams.

2. Overview of Current Shear Design Provisions

With the development and application of FRP reinforcements in concrete structures,
several prediction models of the structural performance of FRP-RC structures have been
included in various design guidelines. In this study, we considered the design formula for
shear capacity of FRP-RC members recommended by the American Concrete Institute ACI
440.1R-15 [18], Canadian Standards Association CSA-S806-12 [19], British Institution of
Structural Engineers guidelines BISE-99 [20], and the Japan Society of Civil Engineers JSCE-
97 [21] summarized in Table 1, together with several other prediction models proposed by
El-Sayed et al. [38], Tottori and Wakui [39], Wegian and Abdalla [40], Nehdi et al. [41], and
Deitz et al. [42].

All the available design formulas follow the traditional Vc + Vs philosophy, while the
manner in which the concrete shear contribution Vc and the stirrup shear contribution
Vs are calculated differs significantly. Moreover, most of the design formulas are derived
essentially from that of conventional steel RC beams with the consideration of different
material properties between FRP and steel reinforcements. These modifications mainly
account for the relatively low elastic modulus of FRP bars and the reduction in tensile
strength at the bending zones of FRP stirrups. To address the low elastic modulus of FRP
bars, the BISE-99 [20], JSCE-97 [21], Tottori and Wakui [39], Wegian and Abdalla [40], and
Deitz et al. [42] incorporate an elastic modulus ratio (E f l/Es) into their models, where E f l
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and Es are the elastic modulus of FRP bars and steel reinforcement, respectively. However,
the elastic modulus ratio (E f l/Es) is raised to different magnitudes in these equations.
Furthermore, the modification proposed by the ACI 440.1R-15 [18] and CSA S806-12 [19]
only includes the FRP reinforcement axial stiffness (E f l A f l), where A f l is the area of
longitudinal FRP bars. In order to address the reduced tensile strength at the bending zones
of FRP stirrups, both the maximum stress and strain at failure are limited to a lower value,
while a significant difference exists among the maximum values recommended by different
design models.

Table 1. Shear design equations for FRP-RC beam with stirrups.

Reference Concrete Shear Contribution Vc Stirrup Shear Contribution Vs

ACI 440.1R-15 [18]

Vc =
2
5

√
f ′cbw(kd)

k =

√
2ρ f ln f +

(
ρ f ln f

)2
− ρ f ln f

n f =
E f l
Ec

Vs =
A f v f f vd

s

f f v = min
{

0.004E f v, f f b, f f uv

}
f f b =

[
0.05

(
rb
db

)
+ 0.3

]
f f uv ≤ f f uv

CSA S806-12 [19]

Vc = kaks·0.05λkmkr( f ′c)
1/3bwdv

km =
(
Vµd/Mµ

) 1
2

kr = 1 +
(

E f lρ f l

) 1
3

ka = 2.5/
(

Mµ/Vµd
)
≥1

ks = 750/(450 + d) ≤ 1
dv = max{0.9d, 0.72h}

Vs =
A f v f f vdv

s cotθ
f f v ≤ 0.005E f v

θ = 30◦ + 7000ε l

ε l =
Mµ/dv+Vµ+0.5N f

2E f v A f v

BISE-99 [20] Vc = 0.79 4
√

400
d · 3
√

100ρ f l E f l/Es· 3
√

f ′c
25 bwd Vs = 0.0025 A f v E f vd

s

JSCE-97 [21]

Vc = βdβpβn fvcdbwd

βd =
(

1000
d

) 1
4 ≤ 1.5

βp =
(

1000ρ f l E f l
Es

) 1
3 ≤ 1.5

fvcd = 0.2 3
√

f ′c ≤ 0.72 MPa

Vs =
A f v E f vε f v

s ·z

ε f v = 0.0001
(

f ′mcd
ρ f l E f l
ρ f v E f v

) 1
2

f ′mcd =
(

h
0.3

)− 1
10 f ′c

z = d/1.15

Ashour and Kara [38] Vc = 2.76
(

f ′c ·
ρ f l E f l

Es
· da
)1/3

bwd Vs =
A f v f f vd

s

Tottori and Wakui [39]

Vc = 0.2k1kd

(
100 f ′c

ρ f l E f l
Es

) 1
3 bwd

k1 =
(

0.75 + 1.4d
a

)
kd =

(
d

1000

)(− 1
4 )

Vs =
A f v f f vd

s

Wegian and Abdalla [40] Vc = 2
(

f ′c ·
ρ f l E f l

Es
· da
) 1

3 bwd Vs =
A f v f f vd

s

Nehdi and Chabib [41] Vc = 2.1
(

f ′c ·
ρ f l E f l

Es
· da
)0.3

bwd Vs = 0.5
(

ρ f v· f f v

)0.5
·bd

Deitz et al. [42] Vc = 3 E f l
Es

(√
f ′c
6 bwd

)
Vs =

A f v f f vd
s

Note: f ′c = compressive strength of concrete; bw, h, and d = beam’s width, overall depth, and effective depth,
respectively; a/d = shear span-to-depth ratio; ρ f l and ρ f v = FRP longitudinal reinforcement ratio and shear
reinforcement ratio, respectively; Ec, Es, E f l , and E f v = elastic modulus of concrete, steel, FRP longitudinal
reinforcement rebars, and FRP stirrups, respectively; f f ul and f f uv = ultimate tensile strength of FRP longitudinal
rebars and the straight portion of FRP stirrups, respectively; f f v = ultimate strength of FRP stirrups; A f v
and s = the area and spacing of FRP stirrups, respectively; rb = the radius at the bent region of FRP stirrups;
db = the bar diameter of FRP stirrups; Vµ and Mµ = the ultimate shear and ultimate moment at a critical section,
respectively; N f = the axial load (N f = 0 in this study).

3. Methodology
3.1. Experimental Database

A database that contains comprehensive and accurate experimental test results is
required for developing an efficient and reliable ML-based model. In this regard, an
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updated experimental database including over 150 data was collected from the literature for
the first time [14–17,22,39,43–59]. The specimens with shear span-to-depth ratios between
1.0 and 4.5 were selected, while deep and slender beams were omitted from the database
due to the different design scenarios and failure modes. Eventually, a refined database
consisting of 120 groups of samples was utilized for the development of an ML-based model.
All selected specimens are simply supported in either three-point or four-point loading
arrangement, reinforced with both FRP longitudinal and transverse shear reinforcement, as
depicted schematically in Figure 1.
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Figure 1. Schematic diagram of concrete beam reinforced with FRP rebars and stirrups.

In total, 13 design factors of FRP-RC beam were investigated in the literature, namely,
beam length (L), beam width (bw), effective depth (d), shear span-to-depth ratio (a/d),
concrete compressive strength ( f ′c), FRP longitudinal reinforcement ratio (ρ f l), FRP shear
reinforcement ratio (ρ f v), elastic modulus of FRP longitudinal reinforcement bars (E f l) and
FRP stirrups (E f v), ultimate tensile strength of FRP longitudinal reinforcement bars ( f f ul)
and the straight portion of FRP stirrups ( f f uv), and type of FRP longitudinal reinforcement
bars (Typel) and FRP stirrups (Typev). It should be noted that the contributions of individual
parameters to the mechanical performance of FRP-RC beams could be considered variously
in different studies, which requires further investigation of the criticality of individual
design parameters and their interaction with each other. The details of the experimental
data, together with their statistical properties, are presented in Table 2. In addition, the
frequency distribution of selected variables in the experimental database is shown in
Figure 2, where frequency indicates the number of times that each specific value of the
variables appeared in the database. It can be seen that the collected experimental data cover
a wide range of design parameters, which can be regarded as proper inputs for the shear
capacity model development.
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Table 2. Details of experimental database.

Source No.

Geometrical Characteristics Concrete Longitudinal Reinforcement Shear Reinforcement
Vexp
(kN)L

(mm)
b

(mm)
d

(mm) a/d fc
′

(MPa) Typel
ρfl
(%)

Efl
(GPa)

fful
(MPa)

Typev
ρfv
(%)

Efv
(GPa)

ffuv
(MPa)

Nagasaka et al. [14] 22 600–1200 250 253 1.19–2.37 22.6–39.2 A 1.9 56 1295 A, C 0.5–1.48 44–112 481–903 158.9–359
Shehata et al. [15] 2 7000 135 470 3.19 50 C 1.25 137 2200 C, G 0.36, 1.07 41–137 640–1730 304.5–305

Tomlinson and Fam [16] 3 2900 150 245–270 4.07–4.5 51 B 0.39–0.51 70 1100 B 0.17 70 1100 36.4–53.5
Jumaa and Yousif [43] 1 1800 200 234 2.60 73.4 B 2.97 58 1200 B 0.63 56 1100 190.1

Razaqpur and Spadea [22] 6 2000 150 170 4.12 20–25.4 G 0.62–1.54 46–115 970–2000 G 0.29 46–115 970–2000 20.5–39.8
Tottori and Wakui [39] 3 1800 150–300 250–325 2.50–3.20 31.9–44.9 A, C 0.55–3.08 58–140 900–2100 A, C 0.04–0.13 53–144 500–1000 58–160

Maruyama and Zhao [44] 9 3000 150 250 3.00 30.5–38.3 C 0.5–2.11 94 1308 C 0.12–0.24 94 1308 59–119.5
Maruyama and Zhao [45] 4 1800–3750 150–450 250–750 2.50 29.5–34 C 1.04 100 1100 G 0.43–0.86 30 600 109.2–599.3

Zhao et al. [46] 5 1800–2000 150 250 2.00–4.00 34.3 C 1.51–3.03 105 1124 C, G 0.42 39 1100 73.8–126.6
Nakamura and Higai [47] 3 1500 200 250 3.00 34 G 1.61 29 751 G 0.18–0.35 31 828 61.9–100.8

Vijay et al. [48] 3 2500 150 265 1.89 31–44.8 G 0.67–1.43 54 655 G 0.56–0.83 142 655 116–127.8
Niewels [49] 7 2660–4500 300 404–441 3.02–3.71 29.1–48.3 G 3.25–3.98 44–63 480–1000 G 0.11–0.54 31–52 322–524 220–362

Ascione et al. [50] 6 2000 150 170 4.12 20–25.4 C, G 0.62–1.54 46–115 970–2000 C, G 0.28 46–115 970–2000 20.5–39.8
Chen et al. [51] 3 2100 200 310 1–1.94 30 C 0.97 175 2102.4 C 0.17–0.22 175 2102.4 197.7–215.4

Alsayed et al. [52] 5 1800 200 310 2.40–3.20 35 G 1.28–1.37 36–43 565 G 0.21–0.4 42 565 57.8–109
Said et al. [53] 9 1800 120 260 2.00 19.6–59.2 G 1.09–2.2 32 580 G 0.43–0.92 32 640 77–175.5

Li [54] 5 1000 150 215 1.16 28.3–49.3 B 0.96 55 1100 B 0.45–1.34 55 1100 135–184.4
Imjai et al. [55] 5 2300 150 220 3.50 50 G 1.22–1.3 45–60 700–1000 G 0.18–0.48 27 720 36.9–66.9

Hou [56] 1 2100 200 302 1.94 29.61 C 1 179 2196 C 0.17 159 914.5 150
Okamoto et al. [57] 11 600–1200 250 253 1.19–2.37 28.9–37.7 A 1.71 61 1167 A, C 0.51–1.5 61–113 822–903 158.9–359

Bentz et al. [58] 3 3050–7100 450 405–937 3.26 37.7 G 0.51–2.36 37 397 G 0.09 41 760 154–500
Duranovic et al. [59] 2 2300 150 210 2.44–3.65 40 G 1.36 45 1000 G 0.17 45 1000 49.8–67.4

Issa et al. [60] 2 3050 200 265 1.50–2.50 35.9 B 1.17–1.92 50 1060 B 0.65 53 1070 134.7–192.1
Mean / 2056 202 279 2.59 35.26 / 1.59 66 1112.51 / 0.57 69 923 158.9

Standard deviation / 1270.29 70.45 112.67 0.91 9.90 / 0.72 31.62 411.04 / 0.42 38.41 374.02 102.28
Minimum / 600 120 170 1 19.6 / 0.39 29 397 / 0.04 27 322 20.5
Maximum / 7100 450 937 4.5 73.4 / 3.98 179 2200 / 1.5 175 2102 599.3

Total 120 600–7100 120–450 170–937 1–4.5 19.6–73.4 / 0.39–3.98 29–179 397–2200 / 0.04–1.5 27–175 322–2102 20.5–599.3

Note: reinforcement type A, B, C, and G = aramid fiber-reinforced polymer (AFRP), basalt fiber-reinforced polymer (BFRP), carbon fiber-reinforced polymer (CFRP), and glass
fiber-reinforced polymer (GFRP), respectively.
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3.2. Neural Networks and Genetic Algorithm–Optimized Neural Network

Neural networks (NNs) are information-processing paradigms inspired by biological
neural systems, which offer synaptic activity through a matrix of weight updated by the
human-like learning process [61]. Artificial neurons are the basic units of NNs, and their
typical output can be written as

yi = f (neti) (1)

neti = ∑n
j=1 wijxi − θ (2)

where xi is the input signal from the neuron i, wij is the connection weight from neuron j to
neuron i, θ is the threshold, f is the activation function, yi is the output of neuron i.

A schematic diagram showing the interconnection between the neurons and the
typical structure of an NN is illustrated in Figure 3. The input layer, in which the number
of neurons is equal to the number of pondered variables, and an output layer are always
considered in typical ANN models with a defined number of hidden layers in between.
With the increase in hidden layers, the performance of ANN is commonly improved. In
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this paper, the back-propagation neural network (BPNN) was adopted, whose applicability
has been validated in previous studies for the prediction of structural performance of RC
structural members. In order to evaluate the accuracy and computational efficiency of an
ANN in shear capacity prediction of FRP-RC beams, both single-hidden layer NN and
double-hidden layer NN were constructed for the evaluation of their prediction accuracy.
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In order to further balance the prediction accuracy and efficiency, the initial weights
and biases of the ANN should be further optimized for better accuracy and convergency,
and genetic algorithms (GAs) are regarded as a potential solution for this purpose [62].
The GA optimizes the parameters and forms codes to interconnect the groups, which
distinguishes individuals through operations such as select, cross, and mutation. It uses
different adaptation conditions to re-differentiate and screen individuals. In order to
optimize the performance of ANN models, a stochastic search algorithm such as GA can
be employed to modify the biases and weights of the ANN, which helps to avoid the
insufficiency of traditional neural network random assignment and repeated training.
Moreover, such a hybrid GA-ANN model has been successfully applied in the prediction
and design of engineering structures [63–65]. The basic steps of the traditional ANN
algorithm and the GA-optimized ANN algorithm are shown in Figure 4.

3.3. Parameter Selection and Determination

The neural interpretation diagram (NID) is proposed to intuitively explain the connec-
tion weights between neurons, which helps to clarify the criticality of input parameters on
the output of the developed model. In a complete neural network structure, the thickness of
each layer of neuron connection lines represents the relative size of each connection weight.
As shown in Figure 5a,b, the blue and red lines represent the positive (high influence) and
negative (low influence) associations between input and output variables, respectively. By
judging the direction (positive and negative) of the two connecting weights from input
layer to hidden layer to determine the suppression (different signal) or enhancement (same
signal) of the single layer [66,67]. In this study, NID was adopted to confirm the input
variables among the 13 parameters from 120 sets of experimental results, namely, beam
length (L), beam width (b), effective depth (d), shear span-to-depth ratio (a/d), concrete
compressive strength ( f ′c), FRP longitudinal reinforcement ratio (ρ f l), FRP shear reinforce-
ment ratio (ρ f v), elastic modulus of FRP longitudinal reinforcement bars (E f l) and FRP
stirrups (E f v), ultimate tensile strength of FRP longitudinal reinforcement bars ( f f ul) and
the straight portion of FRP stirrups ( f f uv), and type of FRP longitudinal reinforcement bars
(Typel) and FRP stirrups (Typev), to determine the critical parameters that affect the shear
capacity of FRP-RC beams. According to the weight matrix between input layer to hidden
layer and hidden layer to output layer, the beam width (bw), effective depth (d), shear
span-to-depth ratio (a/d), concrete compressive strength ( f ′c), FRP longitudinal reinforce-
ment ratio (ρ f l), FRP shear reinforcement ratio (ρ f v), elastic modulus of FRP longitudinal
reinforcement bars (E f l) and FRP stirrups (E f v) are determined as the critical parameters for
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the proposed ANN model. Furthermore, it is worth noticing that the 8 selected parameters
by NID are in accordance with the design parameters suggested in various models, which
further demonstrate the correlation between the selected parameters and shear capacity
of FRP-RC beams. The relative importance of each variable is obtained based on the al-
gorithm, and its contribution to the output result is determined by judging the relative
importance of each parameter and the magnitude of the value. The old-style histogram
shown in Figure 5c,d is generated to represent the total weights as a function of relative
importance, in which Figure 5c is used to determine the variable with negative importance,
and Figure 5d presents the importance of each parameter in terms of percentage.
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3.4. ANN and GA-ANN Models

The single-hidden layer, double-hidden layer, and genetic algorithm-optimized neural
network models were constructed to predict the shear capacity of concrete beams reinforced
with FRP bars and stirrups in this study. After normalizing whole datasets, 86 and 34 sets
of test results were randomly selected to train and test the proposed models. The range of
the number of hidden layer neurons is judged preliminarily based on Equation (3), and a
suitable number of neurons is determined based on the multi-time network training. After
several attempts, the number of hidden layer neurons is set as 6 with the learning rate
being determined, which is shown in Figure 6. To improve computational efficiency and
convergence, the data units were normalized before the network training using Equation
(4), and the activation function was selected as sigmoid (x), which is shown in Equation (5),
with trainlm being adopted as the learning function. The structure of the neural network
model with single-hidden layer, double-hidden layer, and optimization based on genetic
algorithm were determined as (8-6-1), (8-6-6-1), and (8-6-1), respectively. A schematic
diagram of the proposed neural network model is shown in Figure 7.

h =
√

m + n + a (3)
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where h is the number of hidden layer neurons, m is the number of input variables, n is the
number of output layer nodes, a is the adjustment number between 1 and 10.

y = 0.99
x− xmin

xmax − xmin
+ 0.01 (4)

where x is the input value, xmin is the minimum value of the input number, xmax is the
maximum value of the input number.

sigmoid(x) =
1

1 + e(−x)
(5)
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4. Results and Discussion
4.1. Prediction of Shear Capacity

The prediction results from the training models are presented in Figure 8. According
to the training results of the above models, the overall determination coefficients (R2) of the
three models for single-hidden layer, double-hidden layer, and genetic algorithm-optimized
neural network were determined as 0.93232, 0.95854, and 0.98015, respectively. The results
indicate that reasonable accuracy can be achieved by all three established models, while
the genetic algorithm-optimized neural network achieves the highest accuracy among the
three models.
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Moreover, in order to further evaluate the accuracy of the proposed models, the
remaining 34 sets of test results were used to evaluate their generalization performance.
The comparisons were made in terms of the shear capacity predicted by ACI 440.1R-
2015 [18], CSA S806-12 [19], BISE 1999 [20], JSCE 1997 [21], and other existing models
in the literature [38–42]. The scatter of the experimentally observed shear capacity, Vexp,
versus the predicted shear capacity, Vpre, for the proposed model and other existing models
are shown in Figure 9. Statistical parameters, namely, mean value (Mean), standard
deviation (SD), coefficient of variation (COV), root-mean square error (RMSE), mean
absolute error (MAE), and determination coefficients (R2), were used to evaluate the
accuracy and efficiency of prediction. Table 3 summarizes these statistical parameters
related to the ratio between the experimental and the predicted shear capacity, Vexp/Vpre.
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As shown in Figure 9 and Table 3, the predictions of shear capacity of FRP-RC beams
by existing design codes or guidelines tend to be conservative, with significant discreteness,
and the statistical results in terms of Mean, SD, COV, RMSE, MAE, and R2 suggest the
same observation. The predictive results of the proposed ML models are more consistent
with the experimental results. Additionally, the newly developed GA-ANN model shows
the highest prediction accuracy and lowest prediction errors in respect to all models for
predicting shear capacity of FRP-RC beams, with a Mean of 0.99, R2 of 0.91, and RMSE
of 22.60 kN. The most accurate code equation is that of CSA S806-12 [19], which has a
Mean of 2.11, R2 of 0.77, and RMSE of 47.61 kN. However, the proposed GA-ANN model
outperforms the CSA S806-12 [19] equation by improving the R2 value by 18.2% and the
RMSE value by 52.5%. Thus, the proposed GA-ANN model can predict the shear capacity
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of FRP-RC beams with high accuracy and less error than available semi-empirical models
over a wide range of design variables.

Table 3. Statistical parameters of Vexp/Vpre for the proposed model and other existing model.

Model Min Max Mean SD (kN) COV (%) RMSE (kN) MAE (kN) R2

ACI 440.1R-15 [18] 0.47 4.05 1.77 0.910 51.48 90.46 73.95 0.71
CSA S806-12 [19] 0.83 2.11 1.31 0.299 22.88 47.61 31.04 0.77

BISE-99 [20] 0.69 2.83 1.69 0.573 34.41 66.37 56.37 0.75
JSCE-97 [21] 0.79 2.50 1.38 0.438 31.71 76.05 56.00 0.40

Ashour and Kara [38] 0.46 3.15 1.51 0.718 47.62 88.53 68.69 0.75
Tottori and Wakui [39] 0.44 2.32 1.28 0.523 40.84 91.89 65.85 0.69

Wegian and Abdalla [40] 0.45 2.64 1.40 0.619 44.27 89.64 67.27 0.73
Nehdi and Chabib [41] 0.94 2.58 1.51 0.378 25.06 56.61 47.16 0.55

Deitz et al. [42] 0.45 2.63 1.28 0.572 44.64 89.36 67.15 0.73
Single-hidden layer NN 0.67 1.47 1.02 0.179 17.57 29.26 21.14 0.85

Double-hidden layer NN 0.74 1.26 1.00 0.155 15.49 26.22 19.58 0.88
Genetic algorithm-optimized NN 0.66 1.26 0.99 0.145 14.81 22.60 16.14 0.91

Note: Vexp = experimentally observed shear capacity; Vpre = predicted shear capacity.

4.2. Coupling Effect of Parameters on Shear Capacity

According to the evaluation of the predictive results from three neural network models,
the GA-ANN model was used to investigate the interaction among the design parameters
and its effects on shear capacity of FRP-RC beams. In these parameters, the effective depth
(d), shear span-to-depth ratio (a/d), concrete compressive strength ( f ′c), FRP longitudinal
reinforcement ratio (ρ f l), elastic modulus of FRP longitudinal reinforcement bars (E f l),
and FRP shear reinforcement ratio (ρ f v) were determined to be the critical factors that
govern the shear capacity of concrete beams reinforced with bars and stirrups, which is
demonstrated in Figure 5. Therefore, the parameters were organized into three groups,
i.e., geomatical configuration of beam (d and a/d), compressive strength of concrete and
effective shear reinforcement ratio ( f ′c and ρ f v), and effective longitudinal reinforcement
ratio (ρ f l and E f l), which are presented in Table 4.

Table 4. Selected parameters and their ranges.

Group b
(mm)

d
(mm) a/d f ′c

(MPa)
ρfl
(%)

Efl
(GPa)

ρfv
(%)

Efv
(GPa)

1 250 250–550 1–4 30 2 56 0.5 112
2 250 250 2 30–60 2 56 0.4–1 46
3 250 250 2 40 0.5–1.5 50–120 0.5 46

The effects of effective depth (d) and shear span-to-depth ratio (a/d) on shear capacity
of concrete beams reinforced with FRP bars and stirrups are summarized in Figure 10a. With
the increase in shear span-to-depth ratio (a/d), a reduction in shear capacity is observed
for a concrete beam with various effective depths of beam. A linear correlation between
the shear capacity and span-to-depth ratio is observed when the effective depth of beam
is larger than 550 mm. At the same span-to-depth ratio, the reduction in shear capacity
becomes more significant with decreased effective depth. For example, when the effective
depth is taken as 550 mm, the shear capacity of the FRP-RC beam is decreased by 11.4%
when the shear span-to-depth ratio varies from 1.0 to 4.0. However, the shear capacity is
decreased by 40.7% when the effective depth is taken as 250 mm at the same shear span-to-
depth ratio, suggesting a coupling effect between the shear span-to-depth ratio (a/d) and
effective depth (d) on the shear capacity of the FRP-RC beam. Hence, the shear span-to-
depth ratio becomes a critical parameter of the shear capacity of the FRP-RC beam when a
low effective depth is adopted. This should be attributed to the arching effect in the concrete
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structure, in which the cracks develop significantly during the deformation of beam with
mechanical interlock between the aggregates being reduced when the span-to-depth ratio
increases. Such reduction is observed to be negligible when the shear span-to-depth ratio
(a/d) reaches 3.5.
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Figure 10b shows the effects of concrete compressive strength ( f ′c) and FRP shear
reinforcement ratio (ρ f v) on shear capacity of FRP-RC beams. It is noticed that at lower
concrete grades, e.g., C30 and C35, the shear capacity of FRP-RC beams is increased
linearly when higher ρ f v is adopted. With higher concrete grades, e.g., C45 and C60, the
improvement of shear strength becomes nonlinear with increased shear reinforcement
ratio. For example, when C30 concrete is adopted, the shear capacity of the FRP-RC beam
is improved by 41.3% when the shear reinforcement ratio increases from 0.4% to 1.0%,
while for C60 concrete, the shear capacity is only improved by 5.4% at the same range of
shear reinforcement ratio. The finding suggests a reduced contribution of FRP stirrups
with the increase in concrete compressive strength. Such observation is critical towards
the shear design of an FRP-RC beam with the development of high-strength concrete
(HPC), which could lead to the over-estimation of the contribution from FRP stirrups, while
such a coupling effect between concrete grade and shear reinforcement ratio has not been
considered in existing design guidelines.

The coupling effects between longitudinal reinforcement ratio (ρ f l) and elastic modu-
lus (E f l) of FRP bars on shear capacity of FRP-RC beam are shown in Figure 10c. With the
higher elastic modulus of longitudinal reinforcement, the shear capacity of the concrete
beam is increased nonlinearly at various longitudinal reinforcement ratios. It is observed
that at longitudinal reinforcement ratio, the enhancement of the elastic modulus of FRP
bars becomes less effective in the improvement of shear capacity. For example, at the
longitudinal reinforcement ratio of 0.5%, the shear capacity is increased by 39.3% when the
E f l varies from 50 GPa to 120 GPa. However, the shear capacity is only increased by 17.8%
at the longitudinal reinforcement ratio of 1.5% when the same range of E f l is adopted. This
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implies a reduced contribution of FRP longitudinal reinforcements with higher longitudinal
reinforcement ratio.

Based on the above parametric study, it is observed that apart from the individual
contribution of the determined parameters, there are coupling effects between the parame-
ters on the shear capacity of FRP-RC beams, which should be considered in shear design
of the corresponding structures. It should be noted that such coupling effects are usually
neglected in the existing semi-empirical design formulas, as they are inherently determined
based on the simplified mechanical model, while the coupling effects usually involve the
interaction of the parameters with various rates of change and fluctuation for the entire
scope of input parameters. The ANN models trained numerous preliminary linear and
nonlinear models without any prior assumption regarding the shape and structure of the
mathematical model, and it provides a powerful tool to address complexity and fluctua-
tion nature of such issues as the prediction of shear capacity of FRP-RC beams for higher
accuracy.

4.3. Data-Driven Regression Analysis

Based on the GA-ANN model, a data-driven analysis was conducted for a precise
predictive model of shear capacity of FRP-RC beams according to the critical design
parameters. The validated GA-ANN model was utilized to generate a dataset of 400 results,
considering the shear strength affected by the key parameters of the FRP-RC beam, i.e.,
beam width (b), effective depth (d), shear span-to-depth ratio (a/d), concrete compressive
strength ( f ′c), FRP longitudinal reinforcement ratio (ρ f l), FRP shear reinforcement ratio (ρ f v),
and elastic modulus of FRP longitudinal reinforcement bars (E f l) and FRP stirrups (E f v),
whose value was selected according to the practical engineering design, as shown in Table 5.
A predictive model was proposed according to Tottori and Wakui’s model [39] with further
modification considering the coupling effects detected by GA-ANN model development,
which is shown in Figure 11. The coupling effects from geomatical configuration of beam (d
and a/d), compressive strength of concrete and effective shear reinforcement ratio ( f ′c and
ρ f v), and effective longitudinal reinforcement ratio (ρ f l and E f l) detected by the GA-ANN
model have been addressed in the proposed predictive model, which is shown in the
following equation.

V = 3 · bwd0.7 ·
(

f ′c
ρ f lE f l

Es

)0.25

·
( a

d

)−0.2
+

(A f v f f v

bws

)0.5

bwd ·
[
ln
(

f ′c
)−1

+ 5
]

(6)

Table 5. Value range of selected parameters in GA-ANN model.

b
(mm)

d
(mm) a/d f ′c

(MPa)
ρflEfl/Es

(%)
ρfv
(%)

Efv
(GPa)

200–400 250–1050 1–4 30–60 0.14–0.98 0.2–1 40–120

In order to validate the proposed model and evaluate the accuracy of prediction,
100 experimental results were randomly selected from the dataset in Table 1, and the pre-
diction accuracy was compared between the proposed model and the existing formula
in the design guidelines, as shown in Figure 12. Similarly, the error analysis between the
prediction of each model and experimental results is provided in Figure 12, including
standard deviation (SD), covariance (COV), root-mean square error (RMSE), and deter-
mination coefficients (R2). According to the comparison, the most accurate prediction is
achieved through the proposed model with the R2 and RMSE being determined as 0.82
and 42.37, respectively. The best code equation is that of CSA S806-12 [19], which has an R2

of 0.76 and RMSE of 48.25 kN. Thus, the proposed model outperforms CSA S806-12 [19]
equation by improving the R2 value by 7.9% and the RMSE value by 12.1%. Moreover,
neither over-estimation nor under-estimation is observed from prediction by the proposed
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model, implying that a reliable and practical estimation is achieved for the shear capacity
of FRP-RC beams.
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5. Conclusions

A machine learning method utilizing GA-ANN was developed from a database con-
sisting of 120 test specimens to predict the shear capacity of concrete beams reinforced
with FRP longitudinal reinforcements and stirrups. Through NID analysis, the critical
factors affecting the shear capacity of concrete beams reinforced with FRP bars and stirrups
were determined. The proposed GA-ANN model was validated by the existing experi-
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mental results as well as the design codes, and the coupling effects among the parameters
were revealed. Furthermore, a simplified model extracted from GA-ANN was proposed
and validated for the prediction of the shear capacity of FRP reinforced concrete beams.
The developed model and corresponding analysis reported herein support the following
conclusions:

(1) Existing design codes for the shear capacity of FRP-RC beams exhibit limited ac-
curacy resulting from inconsistent expressions of different design parameters and
overlooking the coupling effects between the geometrical configuration and mechani-
cal properties of the reinforcements.

(2) Based on neural interpretation diagrams, the most critical design parameters that
affect the shear strength of the FRP-RC beams are determined as beam width and
depth, shear span-to-depth ratio, concrete compressive strength, longitudinal and
shear reinforcement ratio, and elastic modulus of FRP reinforcements, which are in
accordance with most of the existing design codes.

(3) The prediction accuracy of ANN and GA-ANN models in relation to the shear ca-
pacity of FRP-RC beams has been demonstrated through the comparison with the
experimental results in the literature. The results of statistical measurements show
that the proposed GA-ANN model outperforms the other equations in existing design
codes and studies. The proposed GA-ANN model yields a Mean = 0.99, R2 = 0.91,
and RMSE = 22.60 kN, which represents a 52.5% improvement in RMSE and 18.2% im-
provement in terms of R2 in respect to the CSA S806-12 equation as the best equation
among the other design equations.

(4) According to the analysis of test and predictive results, the coupling effects between
the geomatical configuration and mechanical properties of constitutive materials in
FRP-RC have been observed. The shear strength of FRP-RC is increased linearly with
the increase in the FRP stirrup reinforcement ratio when the compressive strength
is lower than 45 MPa. With the higher concrete strength, the contribution of FRP
stirrups to the shear resistance of FRP-RC beams becomes limited, leading to the
overestimation of shear capacity of FRP-RC beams in existing design codes.

(5) Based on the GA-ANN model, a simplified design formula has been proposed, incor-
porating the coupling effects between the design parameters. The proposed model
provides more reasonable predictive accuracy in terms of shear capacity of FRP-RC
than that of existing design codes, according to the comparison with the experimental
results.

(6) The proposed ANN and GA-ANN models are trained to predict the shear behavior of
FRP-RC beams within the range of input variables considered. However, they may
not demonstrate accuracy when extrapolating beyond this range. In this respect, more
experiments need to be conducted to investigate the influences of design factors that
affect shear behavior. Only when a sufficient number of data is considered will the
proposed models be able to predict the shear capacity of FRP-RC beams in practical
applications.
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