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Abstract: In the treatment of bacterial contamination, the problem of multi-drug resistance is becom-
ing an increasingly pressing concern. Nanotechnology advancements enable the preparation of metal
nanoparticles that can be assembled into complex systems to control bacterial and tumor cell growth.
The current work investigates the green production of chitosan functionalized silver nanoparticles
(CS/Ag NPs) using Sida acuta and their inhibition efficacy against bacterial pathogens and lung cancer
cells (A549). Initially, a brown color formation confirmed the synthesis, and the chemical nature of
the synthesized NPs were examined by UV-vis spectroscopy, Fourier transform infrared spectroscopy
(FTIR), scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS),
and transmission electron microscopy (TEM). FTIR demonstrated the occurrence of CS and S. acuta
functional groups in the synthesized CS/Ag NPs. The electron microscopy study exhibited CS/Ag
NPs with a spherical morphology and size ranges of 6–45 nm, while XRD analysis demonstrated
the crystallinity of Ag NPs. Further, the bacterial inhibition property of CS/Ag NPs was examined
against K. pneumoniae and S. aureus, which showed clear inhibition zones at different concentrations.
In addition, the antibacterial properties were further confirmed by a fluorescent AO/EtBr staining
technique. Furthermore, prepared CS/Ag NPs exhibited a potential anti-cancer character against a
human lung cancer cell line (A549). In conclusion, our findings revealed that the produced CS/Ag
NPs could be used as an excellent inhibitory material in industrial and clinical sectors.

Keywords: Ag NPs; chitosan; TEM; antibacterial activity; anticancer agent

1. Introduction

Infectious diseases are the leading cause of premature death on a global scale [1,2].
At the same time, cancer is the second leading cause of early death globally [3]. Many
infectious illnesses have developed resistance to commercial antibiotics and alternative
remedies [4]. The growth of drug resistance has become a major concern for humans and
also for pharma industries [5]. Thus, the search for new and efficient inhibitory drugs
against microbial infections has intensified. Over the past few decades, nanoparticles (NPs)
have demonstrated an ability to eradicate several drug-resistant infections and diseases [6].
Among the many metal and metal oxide NPs, Ag NPs have attracted interest due to their
distinctive characteristics [7]. From ancient times, Ag and Ag-based compounds have
been recognized for their bactericidal characteristics [8]. Ag NPs have been utilized to
prevent microbiological contamination in the textile, cosmetic, and food sectors using
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current science and technology [9]. There are many physical, chemical, and biological
methods available for synthesizing Ag NPs [10–12]. During the preparation of Ag NPs
by physico-chemical processes, the utilization of harmful reagents, the need for high
temperatures, and the emission of toxic byproducts have all had a negative impact on
biological applications [13,14].

Hence, an appropriate and green alternative to the chemical and physical route of
synthesis is biological methods. Living organisms, such as bacteria, plants, fungi, algae,
and even animals, play a vital role in the synthesis of NPs because of some constituent
biomolecules, including amino acids, vitamins, phytocompounds, and other secondary
metabolites, that can be extracted from them and help in the in-situ reduction of Ag+ ions
to form Ag NPs. The primary advantage of biosynthesis is the process’s safety and the
purity of resulting NPs. We can be certain that the product synthesized would be free of
contamination because only benign substances are utilized to aid the production of Ag NPs
using this method. This has a low influence on human health, especially as these NPs are
employed for a variety of medicinal applications. Aside from that, biological approaches
provide a high production of NPs that are well-defined in shape and homogeneous in size:
sometimes even more so than physiochemical procedures. The utilization of plants and their
parts as possible factories for the production of Ag NPs is a relatively new and promising
field of research [15–17]. Potential applications have been identified for the preparation of
Ag NPs when utilizing plants such as Platycladus orientalis [18], Mangifera indica [19], Jatropha
integerrima [20], Lippia citriodora [21], and Manilkara zapot [22]. Recently, Takci et al. [23]
demonstrated the potential bactericidal character of Ag NPs when synthesized using Salvia
officinalis against P. aeruginosa, E. coli, S. typhimurium, and S. aureus. In a recent investigation,
Sharma et al. [24] revealed that phyto-synthesized Ag NPs utilizing a Callistemon lanceolatus
leaf extract exhibited a dosage-dependent bactericidal effect against S. aureus, B. subtilis, M.
luteus, E. coli, and K. pneumoniae. Pavan et al. [25] reported that Ag NPs developed using
Dictyota ciliolate exhibited a potential anticancer activity against A549 lung cancer cells.

In this study, an aqueous S. acuta Burm.f. leaf extract was used in the production of
CS/Ag NPs. S. acuta is a member of the Malvaceae family and is frequently known as
wireweed. S. acuta has a long history of use as a medicinal plant, and it has been effective
against a variety of illnesses. S. acuta possesses antibacterial, antioxidant, anti-inflammatory,
antimalarial, insecticidal, and anti-plasmodial activities, according to pharmacological
studies [26,27]. In recent years, the green synthesis of organic-inorganic NPs has been a
developing subject in nanoscience and nanotechnology due to its sustainable uses in the
biopharmaceutical, food, and clinical sectors [28,29]. Organic-inorganic nano-complexes,
such as polymer-coated metal nanoparticles have attracted considerable attention due to
their low toxicity, eco-friendliness, simple production procedures, and good surface binding
characteristics [30]. Among the different combinations of organic-metal NPs, CS function-
alized Ag NPs represent a novel class of nano-complexes with enhanced characteristics,
properties, and uses [31]. Chitosan (CS) is a natural polymer that is generated from the
deacetylation of chitin and possesses unique features, including biodegradability, biocom-
patibility, and antibacterial capabilities [32,33]. A study by Wongpreecha et al. [34] reported
that one-pot synthesized Ag NPs-CS exhibited effective bactericidal properties against E.
coli and S. aureus. Another study by Gobinath et al. [35] documented that biocompatible
CS-decorated Ag NPs showed potential anticancer activity against A549 cells.

The green production of Ag NPs has been broadly investigated; however, those for the
synthesis of CS-loaded Ag NPs with increased properties and potential applications are still
challenging. Thus, the current study was designed to synthesize CS/Ag NPs using S. acuta
by an eco-friendly route (Figure 1). Our investigation followed a facile protocol to generate
CS/Ag NPs using the leaf extract of S. acuta without extra reagents, solvents, precipitating
agents, and templates. Further, CS/Ag NPs were characterized by various physical and
chemical techniques, and assessed for their antibacterial activity against K. pneumonia and
S. aureus by well diffusion and dual staining fluorescence method. Moreover, the anticancer
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activity of CS/Ag NPs was investigated against a human lung cancer cell line (A549) by
the MTT assay, and its apoptosis induction ability was also analyzed.
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Figure 1. (a) Schematic depiction of the synthesis approach to develop CS/Ag NPs using S. acuta,
(b) S. acuta image, (c) Colorization images of S. acuta, CS and CS/Ag NPs and (d) Chain network
formation of CS/Ag NPs from CS and S. acuta leaf extract.

2. Experimental Sections
2.1. Chemicals and Cultures

Chitosan (deacetylation degree ≥ 75%, molecular weight; 190–375 kDa), silver nitrate,
3-[4,5-96 dimethylthiazole-2-yl]-2, 5-diphenyltetrazolium bromide (MTT), and Muller-
Hinton agar were procured from HiMedia, Mumbai, India. The fresh leaves of S. acuta
were obtained from Bharathiar University and authenticated by the Botanical Survey of
India (Reference number: BSI/SRC/5/23/2020/651). The bacterial strains (K. pneumoniae
and S. aureus) were acquired from a clinical lab in Coimbatore.

2.2. Extraction of S. acuta Leaf Samples

The harvested leaves were initially cleaned, dried for four days, and ground into a
fine powder. A Soxhlet extractor was utilized to obtain an aqueous extract by combining
10 g of fine powder with 100 mL of distilled water. Then, the extracted substance was kept
at 4 ◦C until further usage.

2.3. Synthesis of CS/Ag NPs

The synthesis of CS/Ag NPs was carried out by a green chemistry method, as pre-
viously reported by Nandana et al. [30], with some modifications. About 10 mL of the
S. acuta extract and 10 mL of CS solution (0.1 g of CS in 10 mL of 1% acetic acid) were mixed
with 80 mL of a 1 mM AgNO3 solution, and then the solution was agitated for 2 h at room
temperature under a dark state. After this, the resulting colloidal solution was configured
at 15,000 rpm for 10 min before being separated by washing with distilled water to remove
unbound S. acuta compounds and CS in the synthesized CS/Ag NPs and dried at 80 ◦C.
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2.4. Physico-Chemical Characterization
2.4.1. Optical Studies

UV-vis spectroscopy (JASCO-V-670) was subjected to observe the reaction mixture as
it underwent the formation of CS/Ag NPs. The visible spectra of NPs were observed from
300 to 800 nm.

2.4.2. FTIR

The IR analysis was used to identify the molecules of chitosan and S. acuta that were
accountable for the formation of NPs. Readings from the FTIR (FTIR-00585, PerkinElmer)
spectrum were taken with a resolution of 4 cm−1 across the range of 400–4000 cm−1.

2.4.3. SEM-EDS

The SEM was used to characterize the NPs’ morphology (JEOL-Model JSM 6390
coupled with EDS). In order to prepare a SEM sample on a grid, a pinch of NPs was
positioned on the grid then the surfaces of the sample were sputter-coated with carbon
tape and then imaged. This experiment was carried out with a voltage of 10 kV applied to
the accelerator.

2.4.4. TEM

The structure of synthesized NPs was observed using TEM. A very small pinch of NPs
was placed on a grid, and NPs images were observed at 120 kV (JEOL-Japan).

2.5. Disc Diffusion Antibacterial Activity Assay

The bactericidal activity of CS/Ag NPs was assessed against K. pneumoniae and S. au-
reus using a disc diffusion assay [36]. Briefly, the chosen bacterial strains (105 CFU/mL)
were spreaded on the MHA plates. Then, the empty discs were filled with various concen-
trations of CS/Ag NPs (10, 20 and 30 µg/mL) and allowed to dry for a few minutes. Then,
coated discs were positioned on the dish and kept at 37 ◦C for 24 h to observe the activity.

2.6. AO/EtBr Dual Staining and Growth Curve Assay

The changes in the K. pneumonia and S. aureus cell membrane upon action with NPs
were examined using an AO/EtBr staining technique, as described by Kumar et al. [37].
Briefly, 1 mL of overnight-grown pathogens were incubated with 20 µg/mL of NPs for 24 h
at 37 ◦C. The cells without NPs were kept as a control. Then, the cells were cleaned with a
buffer solution and further stained with 1 µL of AO/EtBr, and images of fluorochemical
staining were attained using a Nikon Eclipse Ni-E Microscope with a Nikon DS-Ri2 digital
camera. The digitized images were processed using Nikon’s proprietary software NIS-
Elements BR.

2.7. Growth Curve Analysis

The growth curve analysis of synthesized CS/Ag NPs was tested against the chosen
pathogens (K. pneumoniae and S. aureus) [38]. Briefly, overnight cultures of K. pneumoniae
and S. aureus were incubated with 20 µg/mL of CS/Ag NPs, and the O.D. was monitored
at every 4 h interval up to 24 h.

2.8. Anticancer MTT Assay against A549 Cells

Human lung cancer cells were obtained from the National Centre for Cell Science
(NCCS), Pune, India. Initially, the monolayer cell culture was trypsinized, and the cell
amount was attuned to 1 × 104 cells/mL with 10% FBS medium. About 0.2 mL of the
diluted cell suspension was added to each well of the 96-micro titer plate. When a partial
monolayer formed after 24 h, the supernatant was flicked off, and the monolayer was
washed once with a buffer. Different concentrations of CS/Ag NPs (20, 40, 60, 80, and
100 µg/mL) being diluted in media were added and incubated for 24 h to determine the
effect of CS/Ag NPs on cell viability. After that 10 µL of MTT (5 mg/mL) was added and
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further incubated for 4 h, then removed, and a further 200 µL of DMSO was added and
thoroughly mixed to dissolve the dark blue crystals. Then, the absorbance was measured
at 570 nm, and the percentage of viability was calculated using Formula (1).

Cell viability (%) = O.D. of test/O.D. of control × 100 (1)

2.9. Apoptosis Induction Studies

Apoptosis causing ability of synthesized CS/Ag NPs was studied using a fluorescence
microscopic dual staining method as previously described by Bharathi et al. [39]. About
300 µL of lung cancer cells were treated with the IC50 concentration of CS/Ag NPs in
a 16-well plate and incubated for 24 h. After that, the treated and untreated cells were
washed with PBS and stained with 10 µL of an AO/EtBr mixture before the morphology
changes were imaged using a fluorescence microscope (Nikon Eclipse Ni-E Microscope
with a Nikon DS-Ri2 digital camera).

2.10. Statistical Analysis

The experimental investigation, including testing for antibacterial and anticancer activ-
ities, was performed in triplicates, and the findings were reported as the mean ± standard
deviation. The statistical significance of the differences were determined using a p-value
of 0.05.

3. Results and Discussion
3.1. Formation of CS/Ag NPs

The green production of CS/Ag NPs was carried out using S. acuta leaves extract
(Figure 1b). Previously, Uysal et al. [27] reported that S. acuta contained various phy-
tochemical properties such as hydroxybenzoic, hydroxycinnamic and acylquinic acids,
hydroxycinnamoyl tartarates, flavonoids, cinnamic acid amides, alkaloids, and amino acids.
The presence of these phytocompounds in S. acuta and CS might have acted as reducing
and capping agents for the synthesis of CS/Ag NPs [39]. The development of NPs was
established by the color change from yellow to brown (Figure 1c). The development of
this brown color was well known to be emerged from SPR vibrations of nano-CS/Ag [40].
Similarly, various phytocompounds of Myristica fragrans [41], Muntingia calabura [42], and
Rumex nervosus [43] mediated and synthesized Ag NPs and exhibited brown color for-
mation. The mechanism of this chain network formation by CS and phyto-compounds
with Ag is shown in Figure 1d. The active phyto-compounds presented in S. acuta and
CS acted as ligation agents. The existence of long pair of e−, free -NH2, and O-H groups
in CS and phytocompounds of S. acuta might have ligated with Ag2+ and developed an
Ag–CS–ellagate complex. Then, this network system naturally led to a nucleation process
that went into reverse micellization, which further rooted the reduction of Ag ions (Ag+) to
nano Ag [30,44,45].

3.2. Characterization Studies
3.2.1. Optical Studies

The UV-vis spectroscopy investigation of CS/Ag NPs exhibited an absorbance peak at
464 nm and thus supported the synthesis of CS/Ag NPs (Figure 2a). According to reports,
the UV absorbance peak around 400–480 nm was a distinct property of nano-Ag [46].
Similarly, CS-Aegle marmelos entrapped Ag NPs exhibited UV-vis absorbance at 420 nm [47].
The UV-visible spectrum of CS-decorated Ag NPs was prepared using Piper betle exhibited
an absorption peak at 430 nm [35]. Recently, Ag NPs were synthesized using CS, and
seaweed showed the UV-vis absorbance peak to be around 425 nm [48].
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the IR study was set at 4 cm−1, and the analysis was performed across the range of 4000–400 cm−1.

3.2.2. FTIR-Functional Groups Investigation

The attraction of active groups and the development of end product CS/Ag NPs were
studied using FTIR. The IR analysis of CS/Ag NPs is depicted in Figure 2b. The FTIR of
NPs showed a typical primary N-H band at 3328 cm−1, C=C vibration at 2118 cm−1, N-H
band at 1645 cm−1, C-H bending at 1393 cm−1, C-N band at 1280 cm−1, C-O stretching at
1011 cm−1 and a C-I band at 608 cm−1. The obtained N-H and C-O functional groups could
be derived from -NH2 groups and acetylated parts of CS [49]. Other groups, namely C=C,
C-H, C-N, and C-I, may be derived from the phyto-extract of S. acuta. Moreover, certain
band vibrations around 600–400 cm−1 could be accredited to the presence of metal (Ag) in
the synthesized CS/Ag NPs. The presence of these bio-active derivatives might have acted
as a reductant for the formation of final CS/Ag NPs [36].

3.2.3. Microscopic and EDS Analysis

Figure 3a shows the FE-SEM of CS/Ag NPs. FE-SEM images showed that the NPs
had a spherical morphology. Ag NPs were synthesized using various plant extracts, which
showed a spherical-shaped morphology [50,51]. Further, EDS was performed to analyze
the elemental composition of CS/Ag NPs (Figure 3b). The elemental spectra of CS/Ag NPs
exhibited a peak of silver (Ag), which supported the formation of Ag NPs. The other peaks
of C, N, and O were detected due to the emission of X-rays from the -NH2 and de-acetylated
groups of CS. The elemental percentage in the synthesized CS/Ag NPs is given in Table 1.
Similar to our study, Nandhana et al. reported on the presence of Ag, N, C, and O in
the green synthesized CS/Ag nanocomposite using rutin. Further, elemental mapping
analysis confirmed the random distribution of observed elements in the synthesized NPs
(Figure 3e,f).

Table 1. The percentage of elements present in the CS/Ag NPs.

Elements Weight(s)

Ag 53
C 02
N 14
O 31
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3.2.4. TEM Analysis

Further, the morphology and size of produced NPs were analyzed using TEM. The
TEM images of synthesized CS/Ag NPs are shown in Figure 4a–c. TEM showed the particle
sizes varied from 6 to 45 nm, and it also showed the synthesized NPs to have a spherical
morphology with Ag crystallinity. Similar to our study, gallic acid-chitosan-modified Ag
NPs exhibited a spherical-shaped morphology [52].

Polymers 2023, 15, x FOR PEER REVIEW 7 of 14 
 

 

 
Figure 3. Electron microscopic analysis of synthesized CS/Ag NPs using S. acuta leaf extract: (a) SEM 
image, (b) EDS analysis and (c–f) mapping of O, Ag, C and N, respectively. The X-ray emission 
peaks of Ag, O, C and N are labelled. 

Table 1. The percentage of elements present in the CS/Ag NPs. 

Elements Weight(s) 
Ag 53 
C 02 
N 14 
O 31 

3.2.4. TEM Analysis 
Further, the morphology and size of produced NPs were analyzed using TEM. The 

TEM images of synthesized CS/Ag NPs are shown in Figure 4a–c. TEM showed the parti-
cle sizes varied from 6 to 45 nm, and it also showed the synthesized NPs to have a spher-
ical morphology with Ag crystallinity. Similar to our study, gallic acid-chitosan-modified 
Ag NPs exhibited a spherical-shaped morphology [52]. 

 
Figure 4. (a−c) TEM images of synthesized CS/Ag NPs at different magnifications. An experiment 
using a TEM was carried out with an accelerator voltage of 100 kV. 

3.3. Disc Diffusion Bactericidal Assay 
The antibacterial properties of CS/Ag NPs were investigated against K. pneumoniae 

and S. aureus. The synthesized NPs inhibited potential and concentration-dependent in-
hibitory activities against the tested bacterial pathogens. Figure 5a,b depicts a well diffu-
sion plate experiment with various concentrations (10, 20, and 30 µg/mL) of CS/Ag NPs. 
Against all the pathogens examined, clear zones of bacterial suppression appeared around 
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using a TEM was carried out with an accelerator voltage of 100 kV.

3.3. Disc Diffusion Bactericidal Assay

The antibacterial properties of CS/Ag NPs were investigated against K. pneumoniae
and S. aureus. The synthesized NPs inhibited potential and concentration-dependent
inhibitory activities against the tested bacterial pathogens. Figure 5a,b depicts a well
diffusion plate experiment with various concentrations (10, 20, and 30 µg/mL) of CS/Ag
NPs. Against all the pathogens examined, clear zones of bacterial suppression appeared
around the CS/Ag NPs embedded discs. At an increasing concentration of NPs, the
bactericidal ZOI increased. The ZOI for K. pneumoniae was found to be 9 ± 0.5 mm for
10 µg/mL, 11 ± 0.8 mm for 20 µg/mL and 13 ± 0.2 for 30 µg/mL of CS/Ag NPs, whereas
S. aureus exhibited 10 ± 0.2 mm for 10 µg/mL, 11 ± 0.6 mm for 20 µg/mL, and 13 ± 1 mm
for 30 µg/mL. Synthesized NPs exhibited equal activity for both tested pathogens. The
results of NPs’ action could change depending on the bacteria’s cell wall and membrane
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structure [36]. Moreover, nano-scale CS possessed a significant bactericidal and broad-
range antibacterial action against bacterial infections [53]. Similar to our study, CS-Ag
NPs coated linen fabrics showed their potential antibacterial activity against E. coli and
S. aureus [54].
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Figure 5. Antibacterial activity assays: disc diffusion antibacterial plates of (a) K. pneumonia, (b) S. au-
reus treated with CS/Ag NPs at different concentrations (10, 20 and 30 µg/mL), fluorescence micro-
scopic images of the control and CS/Ag NPs treated (c,d) K. pneumonia and (e,f) S. aureus, respectively,
and (g) proposed antibacterial mechanism of CS functionalized Ag NPs. In order to evaluate the
samples, sterile discs with a diameter of 5 mm were utilized, and the ZOI was determined in mil-
limeters of diameter. The AO/EtBr dual fluorescent dye was used for fluorescent staining, and the
results showed that the green, fluorescent color represented alive cells while the red fluorescent color
depicted dead cells.

3.4. Dual Fluorescent Staining

Furthermore, the antibacterial efficacy of produced CS/Ag NPs against K. pneumoniae
and S. aureus was validated by utilizing a fluorescent-based live/dead cell test. The fluo-
rescent microscopic pictures of the control and NPs treated cells are shown in Figure 5c–f.
The untreated cells fluoresced green due to the existence of live cells, whereas treated cells
fluoresced red, confirming their death. Fluorescent AO is a green dye that stains both live
and dead bacteria, whereas EtBr is a red dye that exclusively stains dead bacteria. The
EtBr penetrates dead cells via the cell membrane and reduces the green fluorescent color
of AO [55]. Accordingly, the green color denotes living bacterial cells, whereas the red
hue signifies dead bacterial cells. The obtained results revealed that produced NPs had
a bacteriostatic impact against the tested bacterial pathogens. Further, the growth curve
analysis revealed that CS/Ag NPs were able to prevent the growth of K. pneumoniae and S.
aureus and also showed delayed growth (Figure 6).

A potential mechanism for the bacterial suppression of CS/Ag NPs is shown in
Figure 5g. One of the two fundamental processes that may be responsible for the inhibition
action of Ag-based NPs is the breakdown of cell walls and membrane destruction (1).
The attraction and interaction between NPs and bacteria begin with Ag adhesion to the
plasma membrane, which causes membrane structural alterations, resulting in membrane
depolarization, disruption of permeability, and disruption of cell wall integrity. As a
consequence of depolarization, the internal material of bacterial cells escapes into the
surrounding environment, leading to the death of the cells. The second approach involves
the creation of reactive oxygen species (ROS), which can include superoxide, hydroxyl
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radicals, and hydrogen peroxides, among other things. These limit the development of
bacteria by binding to the genetic elements and proteins that are found on their cells [56–58].
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3.5. Anticancer Studies
3.5.1. MTT Assay

The anticancer property of CS/Ag NPs was assessed against human lung cancer
cells using a MTT assay. The obtained findings exhibited a significant decrease in the
growth of A549 cells (97.2%) when the concentration of CS/Ag NPs increased. CS/Ag NPs
induced a 50% growth defeat property at a concentration of 34.5 ± 0.5 µg/mL. Similarly,
Murugesan et al. [47] reported that the synthesized Ag NPs using Gloriosa superba exhibited
potential anticancer activity against A549 cells. Similar findings were reported by Priya
et al. [59], who observed the dose-dependent anticancer activity of biogenic CS-Ag NPs
against hepatocellular carcinoma cells. The biogenic synthesized Ag NPs entrapped with
CS showed anticancer activity against HeLa cells [47]. It was reported that the anticancer
properties of Ag NPs were dependent on the morphology, size, and reducing agents of
the NPs.

3.5.2. AO/EtBr Fluorescent Assay

Nearly all unicellular creatures undergo apoptosis, which is a type of planned cell
death. A helpful strategy for the therapy of cancer is the induction of apoptosis [60]. Using
a fluorescence microscope, the apoptosis cells were separated from one another by their
orange or red-colored bodies. Fluorescence microscope images revealed that the prepared
CS/Ag NPs could induce apoptosis in treated A549 cells. The control cells displayed a green
color, and the treated cells showed a red color, thus supporting the induction property of
CS/Ag NPs (Figure 7a,b). The appearance of a red hue indicated the presence of apoptotic
bodies and displayed cell shrinkage as well as membrane blebbing. In most cases, the
morphological and biochemical alterations in such cell shrinkage, membrane blebbing,
membrane unity, nuclear fragmentation, and cytoplasmic condensation contributed to cell
death by initiating the apoptotic pathway. This process was responsible for the death of
cells. [61,62]. The apoptosis induction property of NPs depended on the permeability of
Ag ions into the cancer cells, which stimulated cell damage, and DNA fragmentation and,
thus spontaneously led to apoptosis [63].
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4. Conclusions

Silver is one of the most often utilized metals that is accessible and has a diverse variety
of applications. In biomedical applications, the nanoform of Ag, also known as Ag NPs, has
provided a novel structure for particles. The synthesis of Ag NPs using chemical methods is
both expensive and harmful; thus, efforts have been made to utilize biological sources such
as plants, bacteria, and algae in order to cut down on both costs and toxicity. In the present
investigation, S. acuta performed outstandingly both as a reducing and capping agent. The
production of CS/Ag NPs using the S. acuta aqueous leaf extract has been presented as
an eco-friendly and simple green technique. To our knowledge, this is the first report on
the synthesis of CS/Ag NPs using S. acuta without any additional chemicals and reagents.
The size of the prepared CS/Ag NPs ranged from 6 to 45 nm and had a spherical form.
The occurrence of CS in prepared CS/Ag NPs was validated by EDS and FTIR analyses.
Significant antibacterial activity was exhibited by the synthesized CS-Ag NPs against K.
pneumonia and S. aureus pathogens. In addition, the MTT and fluorescent-based assay
confirmed its anti-cancer capabilities with the apoptosis induction property of synthesized
CS/Ag NPs against the human lung cancer cell line (A549). The potential antibacterial and
anticancer properties of CS/Ag NPs could be due to the synergetic properties of both CS
and Ag NPs. Thus, we believe that the CS/Ag NPs synthesized using S. acuta have the
potential to be employed as NPs in clinical sectors to reduce the growth of bacterial and
also cancer cells.
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