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Abstract: In this study, we developed a series of Au/electroactive polyimide (Au/EPI-5) composite
for the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) using NaBH4 as a reducing agent
at room temperature. The electroactive polyimide (EPI-5) synthesis was performed by chemical
imidization of its 4,4′-(4.4′-isopropylidene-diphenoxy) bis (phthalic anhydride) (BSAA) and amino-
capped aniline pentamer (ACAP). In addition, prepare different concentrations of Au ions through
the in-situ redox reaction of EPI-5 to obtain Au nanoparticles (AuNPs) and anchored on the surface
of EPI-5 to form series of Au/EPI-5 composite. Using SEM and HR-TEM confirm the particle size
(23–113 nm) of the reduced AuNPs increases with the increase of the concentration. Based on CV
studies, the redox capability of as-prepared electroactive materials was found to show an increase
trend: 1Au/EPI-5 < 3Au/EPI-5 < 5Au/EPI-5. The series of Au/EPI-5 composites showed good
stability and catalytic activity for the reaction of 4-NP to 4-AP. Especially, the 5Au/EPI-5 composite
shows the highest catalytic activity when applied for the reduction of 4-NP to 4-AP within 17 min.
The rate constant and kinetic activity energy were calculated to be 1.1 × 10−3 s−1 and 38.9 kJ/mol,
respectively. Following a reusability test repeated 10 times, the 5Au/EPI-5 composite maintained
a conversion rate higher than 95%. Finally, this study elaborates the mechanism of the catalytic
reduction of 4-NP to 4-AP.

Keywords: organic-inorganic hybrid; electroactive polyimide; 4-nitrophenol; in-situ reduction

1. Introduction

The rise of industrial civilization has led to the improvement of people’s living stan-
dards, but also has led to environmental and human health problems. Among the many
water pollutants, 4-nitrophenol (4-NP) is a simple organic aromatic compound that is widely
used in dyes, pesticides, and pharmaceuticals [1]. Because of the improper discharge of
industries in modern society, 4-NP has become a common pollutant in soil and groundwa-
ter. It is worrying that 4-NP is easily dissolved in water and has carcinogenic properties,
and many reports have shown that inadvertent ingestion or entry into the human body
through the respiratory tract can cause nausea, headache, and eye irritation [2]. In fact, this
is one of the reasons why the U.S. Environmental Protection Agency (USEPA) has identified
4-NP and its derivatives as the top priority pollutants for removal [3]. 4-NP is used in
various forms in agriculture and other industrial environments, and effective removal and
detection of 4-NP is essential due to its adverse effects on humans and the environment.

Several methods of 4-NP removal have been reported in the literature. These meth-
ods contain adsorption [4], photocatalytic degradation [5], microbial decomposition [6,7],
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Fenton [8], peroxymonosulfate [9], and solid phase extraction [10]. Unfortunately, these
methods require stringent operating conditions and time-consuming processing, thus in-
creasing the economic demand and possibly causing secondary pollution problems to
the environment. So far, catalytic reduction has been considered by many researchers
as a relatively green and economical technique for the decomposition and removal of
pollutants under mild conditions. The conversion of 4-NP to the less toxic 4-aminophenol
(4-AP) by sodium borohydride (NaBH4) as a hydrogen source was evaluated as a basic
reaction model in aqueous media [11] and easily monitored with high accuracy by UV-Vis
spectroscopy. 4-AP is an environmentally friendly and important intermediate for the
preparation of many economic products, such as dyes manufacturing [12], photographic
developers [13], antipyretic drugs [14], and corrosion inhibitors [15]. However, the catalytic
reduction of 4-NP is very difficult and time-consuming in the absence of catalysts due to
the need to overcome kinetic barriers [16]. Therefore, the development of highly efficient,
environmentally friendly, and reusable catalysts has received close attention from many
research groups in recent years.

Noble metal nanoparticles (such as Au, Pt, and Pd) have attracted great interest due to
their unique catalytic properties, optical and electronic structures, biocompatibility, and
high specific surface area, and they are widely used in biomedicine [17], sensors [18],
fuel cells [19], and heterogeneous catalysis [20]. It is worth noting that the remarkable
catalytic efficiency of noble metal nanoparticles can be attributed to the highly ordered
structure, rapid electron transfer capacity, and large surface area to volume ratio. volume.
Although metal/metal oxide nanoparticles exhibit excellent catalytic efficiency, there are
limitations in their application to catalysts, such as: (i) their high surface energy and
tendency to agglomerate and form larger size nanoparticles, resulting in reduced catalytic
performance; and (ii) difficulty in recycling from the reactants to achieve reusability due
to their nanometer scale [21]. Tsai et al. [22] prepared the amino-functionalized zirconium
phosphate nanosheet decorated with Au nanoparticles composite (Au/ZrP) for the catalytic
reduction of 4-NP, and the reaction was completed within 180 s with no significant activity
loss through ten consecutive cycles. Das et al. [23] prepared a simple and environmentally
friendly method for making a reduced graphene oxide (RGO) nanocomposite decorated
with silver nanoparticles (AgNPs) for the reduction of 4-NP to 4-AP within 8 min. These
studies showed that loading noble metal nanoparticles onto various carriers (e.g., metal
oxides, graphene, polymers, clay, metalorganic frameworks) is an effective way to inhibit
their agglomeration and improve the catalytic activity through synergistic effects [24,25].

Since the first introduction of polyacetylene in 1977, conductive polymers (CPs) such
as polyaniline, polypyrrole, and polythiophene have received much attention for their
environmental stability, low cost, ease of synthesis and special doping/de-doping prop-
erties [26]. In recent years, the synergistic effect between polyaniline and noble metal
nanoparticles has shown admirable catalytic performance and excellent stability in the field
of catalysis [27]. However, polyaniline has poor solubility in common organic solvents, in
addition, its electrical conductivity decreases with longer cycle times [28].

To solve these problems, oligoanilines can completely replace polyaniline, which
have a similar electronic structure and redox property as polyaniline, and can obtain
an ordered molecular structure and good solubility Zheng et al. reported the synthesis
and identification of aniline tetramer and aniline pentamer [29]. Qiu et al. developed
the synthesis and electrochemical properties of aniline nonamer (Nano-aniline) [30]. In
addition, many efforts have been made by researchers to incorporate electroactive aniline
oligomers into polymers to form electroactive polymers (EAPs). Wang and Chao et al.
reported the development of electroactive polymers containing aniline oligomers on the
main and side chains, which were used to study the electrochemical sensing and optical
properties of the polymers [31]. Zuo and coworkers synthesized electroactive polyurethane
gel containing aniline trimers, which exhibited tunable hydrophilicity, swelling capacity,
and biodegradability [32].
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On the other hand, electroactive polyimides (EPI) derived from aniline oligomers have
excellent mechanical strength, thermal stability, and reversible redox behavior of poly-
imide. Yeh et al. have published many related studies, such as anticorrosive materials [33],
chemical sensors [34], gas separation films [35], and electrochromic [36]. In recent years,
electroactive polymers or conductive polymers have been developed and used as promising
catalyst carriers. The high specific surface area and microporosity not only confine the
growth of metallic nanoparticles, but also highly dispersion compared to conventional
catalyst carriers (e.g., graphene, metal oxide) [37]. More interestingly, metal compounds
(e.g., HAuCl4−) have been reported to reduce nanoparticles in situ via electroactive poly-
mers, which provides a convenient way for metal particle catalysts [38]. However, in our
previous reports, in situ reduction of metallic nanoparticles by electroactive polymers as
catalysts for the reduction of 4-NP has not existed.

In our previous publication, AuNPs were successfully immobilized on polymers
with amine functional groups on the electroactive polyamide [39]. Here, we prepared
electroactive polyimide based on aniline pentamer (EPI-5) derivatives and configured them
with different concentrations of Au ions to obtain Au nanoparticles on the surface of EPI-5
using in-situ redox reactions to form a series of catalysts to evaluate the efficiency and
performance for the reduction of 4-NP.

2. Materials and Methods
2.1. Chemicals and Instrumentation

Aniline (99%, Alfa aesar, Lancashire, UK) distilled before use, ammonium perox-
odisulfate (APS) (Thermo Fisher Scientific Inc., Waltham, MA, USA), Pyridine (98.9%
Randor, J. T. Baker, PA, USA), N, N-dimethylformamide (DMF, J. T. Baker, PA, USA),
N,N-dimethylacetamide (DMAc, Duksan, New Taipei, Taiwan), 4,4′-(4,4′-Isopropylidenedi-
phenoxy)bis(phthalic anhydride) (BSAA, 97%, Sigma-Aldrich, St. Louis, MO, USA), 4,4′-
diaminodiphenylamine sulfate hydrate (97%, TCI, Tokyo, Japan), N-Phenyl-p-phenylene
diamine (98%, Alfa, Lancashire, UK), sodium chloride (NaCl, Sigma-Aldrich, St. Louis,
MO, USA), hydrogen tetrachloroaurate(III)trihydrate (99%, HAuCl4.3H2O, Thermo Fisher
Scientific Inc, Waltham, MA, USA), 4-nitrophenol (99%, Acros, Lancashire, UK), hydrochlo-
ric acid (37%, Fluka, NC, USA), acetic anhydride (99%, Fluka, NC, USA), ammonium
hydroxide (25%, Fluka, NC, USA), sulfuric acid (97%, SHOWA, Tokyo, Japan), sodium
borohydride (99%, Acros, Lancashire, UK), hydrazine (35%, Thermo Fisher Scientific Inc.,
Waltham, MA, USA).

1H-NMR (proton nucleus magnetic resonance spectroscopy, Agilent Technologies
DD2, Santa Clara, CA, USA), FTIR spectra (Jasco FT/IR-4600, Tokyo, Japan) were used for
the chemical structure of the electroactive material. GPC (gel permeation chromatography,
Waters-150 CV, Milford, MA, USA) was used to determine the molecular weight of the
sample. Cycle voltammetry (AutoLab, NLD, Utrecht, The Netherlands) was used for elec-
troactive study. UV-Vis spectra (Jasco V-750, Tokyo, Japan) was measure the concentration
of 4-Nitrophenol in the reaction during catalytic process and redox performance of the
electroactive materials. The morphological were performed using high resolution transmis-
sion electron microscope (JEOL JEM-2010, Tokyo, Japan) and scanning electron microscopy
(JEOL JSM-7100F, Tokyo, Japan). The formation of reduced AuNPs on the surface of EPI-5
was confirmed by X-ray diffraction analysis (PANalytical X’Pert3 powder diffractometer,
Malvern Panalytical, Malvern, UK). The binding energy of the surface phase composition of
the electroactive materials was recorded by x-ray photoelectron spectroscope (ULVAC-PHI,
PHI 5000 VersaProbe, Chigasaki, Japan). Thermogravimetric analysis (TA Q500, USA) was
used to calculate the AuNPs content in series Au/EPI-5.

2.2. Synthesis of Amino-Capped Aniline Trimer (ACAT)

Amino-capped Aniline Trimer (ACAT) was prepared by following the procedure re-
ported by Yeh et al. [40]. First, aniline (1.5 g, 16.0 mmol) and 4, -4′-diaminondiphenylamibe
sulfate (4.73 g, 16.0 mmol) were dissolved in HCl aqueous solution (1 M, 150 mL) contain-
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ing 15 g of NaCl. A solution of ammonium persulfate (3.6 g, 16.0 mmol) in HCl aqueous
solution (1 M, 25 mL) was added to the previously described solution maintained at 5 ◦C
using a dropping funnel. The mixture was stirred for 1 h at 5 ◦C. The precipitate was
collected through filtration, followed by washing with HCl aqueous solution (1 M, 150 mL).
Then, the filtrate was washed with NH4OH solution (1 M, 300 mL) for 12 h and followed
by washed with large amounts of distilled water. A black powder was further dried in
dynamic vacuum oven at an operational temperature of 60 ◦C for 3 h to obtain ACAT,
which was used in the next experiment to synthesize Amino-capped Aniline Pentamer.

2.3. Synthesis of Amino-Capped Aniline Pentamer (ACAP)

ACAT(1.5 g, 5.5 mmol) and N-phenyl-p-phenylene diamine(0.96 g, 5.5 mmol) were
dissolved in the 50 mL of DMF at 5 ◦C. A solution of ammonium persulfate (0.91 g,
4.0 mmol) in HCl aqueous solution (1 M, 40 mL) were gradually doped into the above-
mentioned solution at 5 ◦C while maintaining stirring for 3 h, followed by washing with
mixture (12 mL DMF/12 mL 1 M HCl/12 mL DI water), precipitated, and collected by
filtration, washed by NH4OH solution (1 M, 500 mL) for 12 h and followed by washed with
large amounts of distilled water. A black powder was further dried in a vacuum oven at
60 ◦C for 5 h to obtain Amino-capped Aniline Pentamer (ACAP).

2.4. Synthesis of Electroactive Polyimide (EPI-5)

The electroactive polyimide (EPI-5) was synthesized using ACAP and BSAA. First,
BSAA (0.52 g, 1.0 mmol) was added to 8.0 g of DMAc at room temperature with continuous
stirring for 30 min. A solution containing ACAP (0.47 g, 1.0 mmol) in another 8.0 g
of DMAc were prepared under magnetic stirring at room temperature. Dianhydride of
BSAA was reacted with ACAP, followed by stirring for 24 h to generate electroactive
poly (amic acid) (EPAA-5). The EPAA-5 was converted to electroactive polyimide by
chemical imidization reaction. The reaction was done by adding the mixture of acetic
anhydride/pyridine (0.102/0.079, v/v) to the previous solution containing EPAA-5 under
stirring for 1 h and refluxing for 3 h under nitrogen. The as-prepared EPI-5 solution
was slowly added dropwise to an excess amount of methanol to precipitate the product.
After drying at 60 ◦C in the vacuum for 3 h to obtain electroactive polyimide based on
ACAP (EPI-5).

2.5. Preparation of Series of Au/Electroactive Polyimide (Au/EPI-5) Composite

The series of Au/electroactive polyimide (Au/EPI-5) were prepared by the in-situ
redox reaction between the EPI-5 and HAuCl4. First, 0.1 g as-prepared EPI-5 powder was
dispersed into 10 mL of 1M NH4OH containing 3 mL of hydrazine solution. The mixture
was stirred for 24 h, filtered, and washed with water until pH became neutralized, followed
by freeze-drying treatment at −42 ◦C for 24 h. EPI-5(leucoemeraldine base) was collected
in form of black powder. Series of Au/electroactive polyimide (Au/EPI-5) was prepared by
immersing 0.1 g EPI-5(lucoemeraldine base) in 25 mL of different concentration (1, 3, 5 mM)
HAuCl4•3H2O for 6 h. The Au/EPI-5 powder was subsequently collected by centrifugal
filtration and followed by washing with excess amount of distilled water and freeze-drying
treatment at −42 ◦C for 24 h, the as-prepared series Au/EPI-5 composites was collected as
black powder. The synthetic route for EPI-5 decorated with Au nanoparticles is shown in
Scheme 1.
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2.6. Electrochemical Cyclic Voltammetry of EPI-5 and Series of Au/EPI-5 Composite

In this study, the redox property of as-prepared EPI-5 and series of Au/EPI-5 compos-
ites. EPI-5 and series of Au/EPI-5 composites were determined by coating the materials
onto glass carbon electrode (working electrode), followed by a series of electrochemical
cyclic voltammetry (CV) study. 0.01 g of EPI-5 and series of Au/EPI-5 composites were
dissolved in 3 mL DMAc. These solutions were coating on the glass carbon electrode and
dried at room temperature.

2.7. Catalytic Activity

To study the EPI-5 and series Au/EPI-5 composites were applied in the reduction
reaction of 4-NP. NaBH4 was used as a hydrogen source in water. 0.5 mg EPI-5 and series
Au/EPI-5 composites were dispersed in 3 mL of 4-NP. Then prepared 0.3 mL NaBH4
solution (100 mM) was introduced to the above 4-NP solution. And the time-dependent
absorbance was recorded by UV-Vis absorption spectra. Finally, the kinetic rate constant,
activation energy, and reusability of 4-NP were evaluated.

3. Results
3.1. Characterization of ACAT, ACAP, EPAA-5, and EPI-5

The representative 1H NMR spectra of ACAT and ACAP are shown in Figure 1
(includes subfigures of ACAT and ACAP chemical structures) to confirm the chemical
structure. From Figure 1a, the spectra of ACAT reveals the signal at 5.42 ppm and 7.03 to
6.48 ppm corresponded to the primary amine protons (-NH2) and aromatic protons [40].
The signals of ACAP shows the signal at 5.41 ppm shown in Figure 1b could be also
assigned to the primary amine protons(-NH2), and the signals around 7.03 to 6.60 ppm
represents the splitting of aromatic protons [41].

In order to further confirm that ACAT and ACAP have been successfully synthesize,
as-prepared ACAT and ACAP were characterized by FTIR, as shown in Figure 2. The
results show the ACAT and ACAP have the same characteristic peak at 3309 and 3205 cm−1

corresponding to the -NH2 group. Moreover, the characteristic peak at position of 1598,
1498 cm−1, and 1596, 1500 cm−1 may be due to the vibration bands of quinoid rings and
benzenoid rings of ACAT and ACAP, respectively. The characteristic peak of C-N on the
amine group was detected at 1274 cm−1. Finally, the characteristic peaks were found at 834,
736, 697 cm−1 [41], which attributed to the bending of C-H group of the hydrogen atom at
the benzene. These characteristic peaks of overall spectra indicated the ACAT and ACAP
were successfully achieved.

As shown in Figure 2c,d, FTIR spectra used to characterize the structure of EPAA-5
and EPI-5 to further confirm the successful preparation. The FTIR spectra of EPAA-5
shows the main characteristic peak at 3200–3400 cm−1, corresponding hydroxy group
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(O-H) and amine group (N-H), and the carboxylic acid group (C=O) appeared at 1707 cm−1.
In addition. The characteristic peak at 1598 and 1498 cm−1 were assigned to vibration
bands of quinoid rings and benzenoid rings of EPAA-5, respectively. After reacting with
anhydride/pyridine solution, the EPAA-5 was converted into EPI-5 by performing the
chemical imidization. the characteristic peak of EPAA-5 at the position of 3200–3400 cm−1

was found to completely disappear, as shown in Figure 3. On the other hand, EPI-5
was found the asymmetric and symmetric carbonyl stretching vibration peak at 1776 and
1714 cm−1 [42]. EPI-5 was also observed at 1595 and 1500 cm−1, which represented the
characteristic peak of quinoid rings and benzenoid rings. Based on the characteristic peaks
of FTIR spectra, it indicated the complete conversion of EPAA-5 to EPI-5 by the chemical
imidization reaction.
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3.2. Chemical Oxidation of EPI-5

In this experiment, UV-Vis spectra can determine the redox properties of the EPI-5.
The as-prepared leucoemeraldine base (fully reduction state) of the EPI-5 was dispersed
in a DMAc solution. Subsequently, trace amounts of oxidant agent, (NH4)2S2O8, were
gradually added to the EPI-5 solution reach the pernigraniline base (fully oxidation state),
which was continuously monitored every 180 s of the sequential oxidation process of
the EPI-5 in UV-Vis spectra, as shown in Figure 3. Firstly, two absorption peaks were
appeared at position at 315 and 575 nm, which were associated with the π–π* transition
of the conjugated ring system and the transition between the benzenoid ring and quinoid
ring [43], respectively. After the addition of trace amounts of the oxidation agent, slow
oxidation of ACAP segments in EPI-5 was observed. The absorption peaks found in UV-
Vis spectra started a blue shift from 315 nm to 310 nm, which results accompanied by a
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decrease in intensity. At the same time, a new absorption peak appeared at 575 nm to
570 nm [44], which was related to the excitation-type transition between the HOMO orbital
of the benzenoid ring and the LUMO orbital of the quinoid ring. Possible mechanism for
this behavior can be interpreted as follows: Initially, EPI-5 reaches the LEB state of the
ACAP segment through the reducing agent, hydrazine, and there is no quinone ring in
the state. After adding a small amounts of oxidation agent, it reached first EB state with
each ACAP segment containing only one quinone ring in this state. Finally, EPI-5 was
oxidized to a PNB state with each ACAP segment containing two quinone ring in this state,
it exhibited a blue shift, as shown in the inset in Figure 4. These results confirmed the
chemical oxidation process of EPI-5.
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3.3. Chemical Structural and Morphological Characterization of EPI-5 and Series Au/EPI-5
3.3.1. Characterization of EPI-5 and Series of Au/EPI-5 Composites by FT-IR

Figure 4 show the representative FT-IR of the EPI-5 and series Au/EPI-5 composites,
respectively. FT-IR spectra of EPI-5 and series Au/EPI-5 showed the characteristic peaks
around 1776 and 1714 cm−1 corresponding to asymmetric and symmetric carbonyl stretch-
ing vibration. The characteristic peaks around 1595 and 1500 cm−1 are attributed to the
stretching vibration of C=C in the quinoid (Q) and benzenoid ring (B), respectively. These
results indicate that the in-situ redox reaction between Au ions and EPI-5 is reduced on the
surface of EPI-5 without changing the structure.

It should be noted that, with the increase of reduced AuNPs in the composites, the
intensity of C=C stretching vibration for quinoid rings increases obviously. in addition, the
intensity of C=C stretching vibration for benzenoid ring decrease was observed. Ascribed
to the redox reaction between Au ions and EPI-5, leading to a decrease in the intensity ratio
of benzene rings (B) to quinone rings (Q) with increasing amounts of reduced AuNPs [44].
Indicating the ratio of benzene rings(B) to quinone rings (Q) according to Table 1.

Table 1. Loading of Au and absorption strength of benzenoid ring and quinoid ring of EPI-5 and
series of Au/EPI-5 composites.

Benzene Ring
(1500 cm−1)

Quinone Ring
(1595 cm−1) B/Q Loading of Au

(wt.%) a

EPI-5 0.1829 0.0806 2.27 0
1Au/EPI-5 0.1423 0.0818 1.74 4.73
3Au/EPI-5 0.1908 0.1112 1.71 10.86
5Au/EPI-5 0.1526 0.0932 1.63 17.46

a Determined by the TGA analysis.

The TGA analysis curves of EPI-5 and series of Au/EPI-5 composites in an air atmo-
sphere and shown in Figure 5. The main purpose is to completely creak the electroactive
materials and determine the loading of Au on the EPI-5 surface. After the process, the
residue contents of EPI-5 and series of Au/EPI-5 were 1.44%, 6.17%, 12.30% and 18.90%,
respectively, which can be utilized to calculate the Au content in the Au/EPI-5 composite.
Indicating the loading of Au according to Table 1.
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The XRD patterns of the EPI-5 and series of Au/EPI-5 composites are shown in Figure 6.
It can be seen that as compared to EPI-5 and series of Au/EPI-5 composites showed four
additional characteristic peaks at 2θ of 38.1◦, 44.3◦, 64.5◦, and 77.4◦,which are ascribed to
the (111), (200), (220), and (311) crystallographic planes of Au [45], respectively. This result
shows that the AuNPs were reduced and anchored on the EPI-5 surface, the intensity of
the characteristic peaks also increases as the amounts of reduced AuNPs increase.
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The surface chemical composition of the EPI-5 and series of Au/EPI-5 composites
was also investigated by XPS analysis. Figure 7 displays the full survey scan spectra and
high solution XPS spectrum of various elements present in all materials. The survey scans
spectra of EPI-5 and series of Au/EPI-5 reveal clear signals of Au 4f, C 1s, N 1s, and O 1s at
83, 283, 398 and 530 eV, respectively. The spectra in Figure 7b display two diffused peaks
with binding energies of 82.2–85.5 and 85.9–86.1 eV, which correspond well with Au 4f7/2
and Au 4f5/2 spin-orbit splitting of metallic gold (Au0) [46], respectively. The appearance
of Au0 is attributed to the redox reaction between oligoaniline segments and Au ions.
Moreover, some reports that the interaction between mental nanoparticles and conductive
polymer composite, Yang and coworkers [47] studies the Fe-PANI composite catalyst and
explore the interaction between the Fe atom and N groups to reveal the catalytic site more
clearly on Fe-PANI. Getting or losing electrons would certainly influence the chemical
structure of electroactive polymers due to their redox properties. Therefore, with the
electron transfer between AuNPs and EPI-5, the oxidation or the reducing state of EPI-5
would be changed. As shown in Figure 7c,d, the N 1s core-level spectra of EPI-5 and
5Au/EPI-5 were determined to further reveal the different chemical states of the N groups.
The three different electronic states peak at 397.4–397.1, 398.9 and 402.0–401.4 eV were
assigned to the benzenoid amine (-NH-), quinoid amine (=NH-), and nitrogen cationic
radical (N+) groups [48,49], respectively. Quantification and identification of N species over
EPI-5 and 5Au/EPI-5 for N 1s core-level spectra data were summarized in Table 2. The
ratio of N+ species (sum of =NH- and N+) to N species (-NH-) was calculated to evaluate
the electron transfer between AuNPs and EPI-5. The N+/N ratio was 0.56 and 2.74 for the
EPI-5 and 5Au/EPI-5, respectively. It means that after reducing the AuNPs on the EPI-5
surface, EPI-5 loses a lot of electrons and was oxidized by in situ redox reaction between
Au ions and EPI-5. Similar to the FTIR results, the content of =N- was increased after the
loading of Au, which indicated that AuNPs coordinated with the -N= group are more
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energy favorable than that with the -NH- group. According to the XPS analysis results, the
possible series of Au/EPI-5 composite formation process is consistent with the XRD and
FTIR results.
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Table 2. Quantification and identification of N species over EPI-5 and 5Au/EPI-5 for N 1s XPS data.

Catalysts
Binding Energies (eV) N Species (%)

-NH- -N= N+ -NH- -N= N+

EPI-5 397.4 398.9 402.0 63.9 28.2 7.9
5Au/EPI-5 397.1 398.9 401.4 26.7 65.2 8.1

The morphologies of the EPI-5 and series of Au/EPI-5 composites were characterized
by SEM and HR-TEM, as shown in Figure 8. Compared with the morphology of the EPI-5,
the AuNPs were clearly observed in the series of Au/EPI-5 composites, which showed that
they were regularly dispersed. After loading the AuNPs, many black dots with average
particle size in the range of 23–113 nm (as shown in the inset image of Figure 8f–h) can be
observed on the EPI-5 surface, which indicates that AuNPs were anchored on the EPI-5,
the particle size of the reduced AuNPs increases with the increase of the concentration.
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3.3.2. Electroactive Properties of EPI-5 and Series of Au/EPI-5 Composites by
Electrochemical CV Studies

In this study, all as-prepared EPI-5 and series of Au/EPI-5 composites were measured
by cyclic voltammograms (CV) using the three-electrode electrochemical cell in 40 mL
H2SO4 solution at a scan rate of 50 mV·s−1, as shown in Figure 9. The results show the
bare GCE did not exhibit a redox peak. The CV curve of EPI-5 was observed with a
relatively small peak of oxidation current at 0.78 µA. Moreover, the AuNPs were reduced
and anchored on the EPI-5 surface showed in an increasing in redox current. The series of
Au/EPI-5 showed an increase trend: 1Au/EPI-5 < 3Au/EPI-5 < 5Au/EPI-5, this current
enhancement phenomenon indicates the AuNPs transforming higher electron transfer [50].
As we expected that the reduction of the higher concentration of AuNPs on the surface of
EPI-5 do effectively enhance the redox capability, which is in line with FTIR, TGA, XRD,
XPS, and HR-TEM analysis.

3.4. Catalytic Characterization of EPI-5 and Series of Au/EPI-5 Composites

To evaluate the catalytic activity of the prepared EPI-5 and series of Au/EPI-5 com-
posites, the reduction of 4-NP to 4-AP has been chosen as a model reaction in the presence
of excess NaBH4, which can be monitored by time-dependent UV-Vis spectroscopy. The
absorption peak at 317 nm was attributed to the 4-NP solution. During the experiment,
after addition of freshly prepared NaBH4 in the 4-NP solution, the phenolic hydroxyl group
in 4-NP loses a proton, 4-NP ions are formed, and the absorption peak was shifted to
400 nm. 10 min after addition of the EPI-5 to the mixed solution of NaBH4 and 4-NP, the
absorption peak was hardly change at 400 nm [51]. Notably, EPI-5 had the lower catalytic
activity of catalytic reduction of 4-NP to 4-AP, which acted as catalyst carriers, as shown in
Figure 10.
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However, when adding a series of Au/EPI-5 composites (as shown in Figure 11), a new
absorption peak was observed at 300 indicating the formation of 4-AP. At the same time,
the absorption peak reduces of 4-NP with increasing peak strength of 4-AP. The completely
reduction of 4-NP to 4-AP take about 17 min when 5Au/EPI-5 is used as the catalyst, it
shows the best catalytic activity. And for 1Au/EPI-5 and 3Au/EPI-5, which are take about
43 min and 25 min. these results show the AuNPs is an essential substance for catalyst,
and their characteristics affect the catalytic activity [52,53]. We can get the order of catalytic
activity: 5Au/EPI-5 > 3Au/EPI-5 > 1Au/EPI-5, which may be attributed to the successful
loading of Au (reference TGA analysis) and the electronic metal-support interactions
between the EPI-5 and AuNPs. Specifically, the absorbed BH4

− donates electrons to the
AuNPs, and the electron transfer between EPI-5 and AuNPs would facilitate the electron
donation of BH4

−. Additionally, Au0 was confirmed in the EPI-5 by XPS analysis, and they
could act as electron acceptor facilitating the electron transfer and the reduction of 4-NP,
which endows the catalyst with excellent catalytic stability [54].
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As the concentration of 4-NP was much lower than the NaBH4, the reduction of 4-NP
to 4-AP can be regarded as the pseudo-first-order reaction kinetics. The rate constant was
obtained using the following Equation (1) [55]:

ln
Ct

C0
= ln

At

A0
= −k·t (1)

where Ct and C0 are the concentration of 4-NP at time t = 0 and t = t, respectively, which
are corresponding to absorptance (At and A0) at 400 nm, and k is the rate constant. As
shown in Figure 12a, the rate of the reaction were determined from the slopes of the linear
relation plot of ln (Ct/C0) versus t using the series Au/EPI-5 composites. The values
of k for 1Au/EPI-5, 3Au/EPI-5 and 5Au/EPI-5 are 7.0 × 10−4 s−1, 9.0 × 10−4 s−1, and
1.1 × 10−3 s−1, respectively. It was evident the 5Au/EPI-5 showed higher reactivity than
the other Au/EPI-5 composites, the rate constant values were found to increase with
increase loading of Au. In addition, based on the Arrhenius equation [56], the activation
energy (Ea) for the reaction was determined using the following Equation (2):

ln k = ln A− Ea

R

(
1
T

)
(2)

where k is the rate constant at different temperature T(K), A is the Arrhenius factor, and
Ea is the activation energy. As shown in Figure 12b, Ea can be obtained from the slope of
lnk versus 1/T. The Ea of the 5Au/EPI-5 was determined from the Arrhenius plot to be
38.9 kJ/mol.
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5 composite catalyst. (b) Plot of lnk versus 1/T for 4-NP reduction catalyzed by the 5Au/EPI-5
composite in the presence of NaBH4 at different temperatures.

In addition to the careful catalytic studies, reusability of heterogeneous catalysts is
important properties and vital factor of treating pollutants. In a recycle experiment, the
5Au/EPI-5 composite was carefully collected and used for multiple catalytic reactions after
waiting for the catalyst to settle slowly for one day after the reduction reaction. As shown
in Figure 13, after ten cycles, the conversion of 4-NP still above 95% which indicates the
5Au/EPI-5 developed in the current study shows excellent catalytic stability and robust
even a after multiple uses.
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Figure 13. The reusability of 5Au/EPI-5 composites for catalytic reduction of 4-NP.

The rate constant and the recyclable of the 5Au/EPI-5 composite comparable to those
of most catalyst using conjugate polymer as a carrier in the literature and previously
published reports (Table 3). The catalytic activity and reusability observed in this work
were better than those observed in several reports.
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Table 3. Catalytic efficiency of different catalysts for 4-NP catalytic reduction to 4-AP.

Catalyst Weight
(mg)

Rate Constant
(s−1)

Rate Constant
(min−1)

Recyclability
(Cycles) Ref.

AuNPs-gel-G 20 - 0.081 5 [46]
ME-BTCA-Ag-2 5 3.3 × 10−4 - - [57]

Ag3PO4/PPy/PANI 1 - 0.005 - [58]
AgNPs/D-PVA 60 - 0.072 4 [59]

Fe3O4@PPy-MAA-Ag 2.5 - 0.005 8 [21]
Au/ZrP 1 1.8 × 10−2 - 10 [22]
Au/EPA 0.5 1.6 × 10−2 - 30 [39]

5Au/EPI-5 0.5 1.1 × 10−3 0.064 10 This work

3.5. Possible Reduction Reaction Mechanism for 4-NP

To explain the process of the catalytic reduction of 4-NP to 4-AP using the series
Au/EPI-5 composites, a possible mechanism for the reduction of 4-NP was proposed based
on the Langmuir-Hinshelwood mechanism (as shown in Scheme 2). The ionization of
NaBH4 in the liquid results in the production of BH4

− and their adsorption AuNPs on
the EPI-5 to form hydride complex (Au-H species). At the same time, 4-NP ions adsorb
on the hydride complex surface. Then Au-H species are transferred to the adsorbed 4-NP
and lead to the reduction of -NO2. After three step catalytic hydro-dehydration reaction to
generate the corresponding 4-AP. Finally, 4-AP desorbs form the catalyst [60,61].
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Scheme 2. Catalytic mechanism of Au/EPI-5 in the reduction of 4-NP to 4-AP.

4. Conclusions

In this work, an electroactive polyimide decorated with AuNPs (Au/EPI-5) without
the addition of any reducing agent was successfully synthesized and reduced 4-NP to 4-AP.
The AuNPs were loaded on the Au/EPI-5 by the in-situ redox reaction between the EPI-5
and HAuCl4. Through the comparison of catalytic performance of series Au/EPI-5, we
find the 5Au/EPI-5 exhibited the best catalytic activity, which could be attributed to the
high loading of AuNPs and the synergistic effect between the EPI-5 and AuNPs. Results
showed the rate constant, activation energy of the 5Au/EPI-5 catalyzed reduction of 4-NP
were 1.1 × 10−3 s−1 and 38.9 kJ/mol, respectively, and after 10 cycles, the 5Au/EPI-5
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composite maintained at 95% above. In summary, this Au/EPI-5 composite demonstrates
many advantages, such as reduction using very low catalyst amount (0.5 mg), remarkable
catalytic performance, and excellent recyclability. Making electroactive polymers as a
carrier for AuNPs attractive for the catalytic field.

Author Contributions: Y.-S.C. was involved in data curation, investigation, writing—original draft,
methodology, validation, software. W.-Z.S. assisted with data preparation & validation. K.-H.L. was
provided of study materials, reagents, and data validation. J.-M.Y. and M.-H.T. provided supervision
for the research and provided the methodology. All authors have read and agreed to the published
version of the manuscript.
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