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Abstract: This research utilized the sooty tern optimization algorithm–variational mode decompo-
sition (STOA-VMD) optimization algorithm to extract the acoustic emission (AE) signal associated
with damage in fiber-reinforced composite materials. The effectiveness of this optimization algorithm
was validated through a tensile experiment on glass fiber/epoxy NOL-ring specimens. To solve the
problems of a high degree of aliasing, high randomness, and a poor robustness of AE data of NOL-
ring tensile damage, the signal reconstruction method of optimized variational mode decomposition
(VMD) was first used to reconstruct the damage signal and the parameters of VMD were optimized
by the sooty tern optimization algorithm. The optimal decomposition mode number K and penalty
coefficient α were introduced to improve the accuracy of adaptive decomposition. Second, a typical
single damage signal feature was selected to construct the damage signal feature sample set and
a recognition algorithm was used to extract the feature of the AE signal of the glass fiber/epoxy
NOL-ring breaking experiment to evaluate the effectiveness of the damage mechanism recognition.
The results showed that the recognition rates of the algorithm in matrix cracking, fiber fracture, and
delamination damage were 94.59%, 94.26%, and 96.45%, respectively. The damage process of the
NOL-ring was characterized and the findings indicated that it was highly efficient in the feature
extraction and recognition of polymer composite damage signals.

Keywords: acoustic emission; glass fiber/epoxy NOL-rings; composite materials; matrix cracking;
variational mode decomposition; pattern recognition

1. Introduction

To meet the growing demand for material properties in structural applications, fiber-
reinforced composites are widely used in automotive, aerospace, wind power, biomedical,
and other fields because of their excellent properties such as a light texture, high strength,
and good fatigue resistance [1,2]. However, different forms of damage occur whilst manu-
facturing and using composite materials, affecting the normal use of the structure. There-
fore, the characterization, monitoring, and accurate identification of damage types are
extremely important to understand how damage occurs [3–7].

Acoustic emission (AE) is related to the transient elastic wave generated by the re-
distribution of the stress field. When a structure changes, the energy is transmitted to its
surface as waves. AE is a real-time, continuous, online monitoring, and nondestructive
testing method. It is widely used in determining the damage to composite materials [8].
Composite materials demonstrate distinct characteristics at various stages of damage. AE
signals can be used to characterize different failure mechanisms such as matrix cracking,
interface failures, and fiber fractures [9–13] and each damage mechanism is associated with
specific AE characteristic parameters (amplitude, count, and energy) [14–16]. The research
on signal analysis and processing methods is one of the key issues in the identification
and evaluation of acoustic emission sources. For instance, Jiang et al. [17] employed the
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extracted modal characteristics of damage. They established modal acoustic emission
parameters to determine the damage mode of carbon fiber/epoxy resin composite pressure
vessels. They also conducted a modal characterization of the acoustic emission signal
associated with damage, facilitating the identification and characterization of the material
damage mechanism. Additionally, Ghaib et al. [18] utilized acoustic emission technology
to investigate the damage evolution of glass-fiber-reinforced polymer (GFRP) composite
plates in bending tests. They calculated time and frequency domain parameters during
the experiments and proposed an original method implemented in MATLAB software
to determine the parameters characterizing each signal. Djabali et al. [19] utilized the
acoustic emission technique and digital image correlation (DIC) to examine the mechanical
and damage behavior of a thick laminated carbon/epoxy composite. They conducted
static tests and three-point fatigue bending experiments while analyzing acoustic emission
signal parameters such as amplitude, number of counts, duration, and cumulative AE
energy. Joselin et al. [20] demonstrated in their study on glass fiber/epoxy resin composite
material damage experiments that the NOL-ring experiment subjected the specimen to
circumferential stress, which is similar to the stress induced by internal pressure between
confined regions. Compared with a standard tensile experiment, the NOL-ring experiment
was closer to the stress distribution characteristics of the pressure vessel and found serious
and accidental pressure vessel damage more effectively. For instance, Plöckl et al. [21]
employed unsupervised pattern recognition technology to establish the correlation between
AE signals and mechanisms such as matrix cracking, interface failures, and fiber fractures.
They monitored AE signals during the loading of NOL-ring specimens composed of carbon
fiber and the thermoplastic polymer polyphenylene sulfide (PPS). Therefore, selecting
NOL-ring specimens as the research object was effective in establishing the relationship
between acoustic emission signals and the methods/mechanisms of damage identification.

Signal processing and the extraction of relevant signal features are crucial for the
processing of materials and condition monitoring. Dragomiretskiy et al. [22] introduced the
variational mode decomposition (VMD) algorithm, which effectively decomposes signal
frequency components and exhibits excellent noise reduction capabilities. Unlike other clas-
sical adaptive mode decomposition methods such as empirical mode decomposition (EMD)
and a high-voltage differential (HVD), VMD has minimal practical and theoretical limita-
tions. For instance, Civera et al. [23] conducted a comprehensive comparison of complete
ensemble empirical mode decomposition with adaptive noise (CEEMDAN), HVD, and
VMD for the adaptive mode decomposition of vibration-based structural health-monitoring
signals. Based on their evaluation, VMD was recommended as the most viable choice.
VMD is highly effective in analyzing signal frequency distributions and extracting signal
characteristics. For example, Yuan et al. [24] proposed a tool-wear monitoring method that
combined VMD with ensemble learning. Bazi et al. [25] monitored tool wear using VMD in
conjunction with the hybrid convolutional neural networks–bidirectional long short-term
memory (CNN-BiLSTM) approach. Wan et al. [26] proposed a signal reconstruction method
based on parameter adaptive VMD to accurately differentiate and identify various wear
states of ceramic grinding wheels. To enhance the recognition performance of bearing
fault signals, Li et al. [27] applied the genetic algorithm (GA) to optimize a combination of
VMD parameters, resulting in the GA-VMD algorithm that improved the decomposition
accuracy of VMD. This approach enabled the accurate recognition of different bearing
fault signals under multifeature conditions. However, their study primarily focused on
data-driven feature extraction methods and algorithms utilizing VMD and applied them
to the fault damage identification of mechanical equipment such as tools or bearings. The
relationship between signal characteristics and the damage process of composite materials
established through VMD remains scarcely studied. Building upon an improved adaptive
time–frequency analysis algorithm, Cao et al. [28] combined EMD, a correlation coefficient
analysis, a fuzzy entropy algorithm, and a Hilbert transformation to enhance the depth
evaluation of the phased-array ultrasonic nondestructive testing of composite structures.
Consequently, further research is necessary to determine the relationship between sig-
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nal characteristics and the corresponding damage categories in the process of polymer
composite material damage through VMD.

It is usually necessary to combine VMD with other methods for the diagnosis of the
state of damage. Compared with empirical mode decomposition [29], VMD transforms
signal decomposition into a nonrecursive VMD mode, which has a solid theoretical foun-
dation, and its variational decomposition effect is greatly affected by the number of modes
K and the penalty coefficient α. Based on VMD, K modes are obtained. The correlation
coefficient method, energy method, entropy method, distance method, and parameter
optimization method can be utilized to reconstruct and denoise modes [30–32], leading
to more precise and efficient feature analyses. Ram et al. [33] conducted a study where
kurtosis of the envelope signal served as an indicator to optimize the number of modes and
select the most suitable intrinsic mode function (IMF). In another investigation, Li et al. [34]
used kurtosis as the index to optimize the mode number K and penalty factor α of VMD,
and the optimal IMF was selected according to the resonance frequency. The kurtosis value
of the envelope signal was used to determine the optimal mode number and penalty factor.
In another study, Li et al. [35] used signal envelope entropy as the objective function. They
obtained optimal parameters by using the optimization algorithm to optimize the number
of decomposition modes and penalty coefficients to perform feature extraction and analyze
bearing faults. Yao et al. [36] combined the sooty tern optimization algorithm (STOA),
VMD, a support vector machine (SVM), and a backpropagation neural network (BPNN) to
construct a financial data prediction fusion model based on decomposition–recombination,
which effectively improved the prediction accuracy of financial time series.

Based on the above findings, in this study, we optimized the VMD parameters using
the STOA, determined the optimal decomposition mode number K and penalty coefficient
α, and performed an adaptive decomposition of acoustic emission signals. Based on
the characteristics of a single damage signal, the corresponding relationship between
the acoustic emission signals of different frequency components and damage categories
was established and a damage mechanism recognition algorithm was constructed and
verified. Finally, the identification algorithm was used to analyze a glass fiber/epoxy
NOL-ring tensile experiment to evaluate the effectiveness of the algorithm and determine
the mechanism of damage. This further improved the efficiency and accuracy of the signal
feature extraction and recognition of polymer composites, realizing the state judgment and
characterization of polymer composites.

2. Methods
2.1. Overview of VMD

Based on the Wiener filtering theory, VMD was formulated as a new time–frequency
signal decomposition method in 2014 [22]. It has a stronger anti-noise ability than classical
algorithms such as local mean decomposition and empirical mode decomposition, and can
construct and solve variational problems. The principle and derivation process of VMD
can be summarized as follows:

1. The original signal is decomposed into K-independent modes uK(t); the Hilbert trans-
form is then performed to obtain the unilateral spectrum.

2. The decomposition sequence is a finite bandwidth modal component with a central
frequency.

3. The corresponding constrained variational model can be expressed as shown in
Equation (1). 

min
{

∑
K
‖∂t

[(
δ(t) + j

πt

)
∗ uK(t)

]
e−jωK t‖

2

2

}
s.t.∑

K
uK = f

(1)

In the equation, {uK} indicate the Kth modal component, {ωK} indicate the center
frequency, respectively, and ∗ represents the convolution operator.
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4. The constrained variational problems are transformed into unconstrained variational
problems. The augmented function can be introduced, as depicted in Equation (2).

L
({

u
K

}
, {ωK}, λ

)
= α∑

K
‖∂t

[(
δ(t) +

j
πt

)
∗ uK(t)

]
e−jωK t‖

2

2
+ ‖ f (t)−∑

K
uK(t)‖

2

2

+ 〈λ(t), f (t)−∑
K

uK(t)〉 (2)

In the equations, α presents the quadratic penalty factor and λ(t) is the Lagrange
multiplication operator.

5. The alternating direction multiplier method (ADMM) is used to find the ‘saddle
point’ of the augmented function. The models of uK and ωK after alternating the
optimization iterations are as follows:

ûn+1
K (ω) =

f̂ (ω)−∑K
i=1,i 6=K û(ω) +

λ̂(ω)
2

1 + 2α(ω−ωK)
2 (3)

ωn+1
K =

∫ ∞
0 ω|ûK(ω)|2dω∫ ∞

0 |ûK(ω)|2dω
(4)

In the equations, ωn+1
K represents the center of the power spectrum of the current

modal function, ûn+1
K (ω) is equivalent to the Wiener filtering of the current residual f̂ (ω)−

∑i 6=K ûi(ω), and Fourier transform is performed on {ûK(ω)}.

2.2. The VMD Parameters K and α Can Be Optimized Based on the STOA

In 2019, Dhiman et al. [37] and other research groups proposed an optimization
algorithm, STOA, for solving industrial engineering problems. This algorithm can be
used to conduct a global search and it has high data-processing accuracy. Based on the
envelope spectrum, we established the minimum envelope entropy as a moderate function
to improve the STOA and optimize the VMD parameters K and α. The entropy value can
be used to measure the uncertainty and complexity of a damage signal. As the entropy
value becomes larger, the damage signal becomes more complex.

The envelope entropy of component IMFi(K) after VMD can be expressed as:
Ei = −

n
∑

K=1
Pi,K lgPi,K

Pi,K = ai(K)/
N
∑

K=1
ai(K)

(5)

In the equation, i is the serial number of IMF after the decomposition of the original
signal y(K)(i = 1, 2, 3···· ); ai(K) is normalized to Pi,K and ai(K) is the envelope signal of
the signal IMFi(K) after the Hilbert transform.

First, the parameters of the STOA were initialized. The number of the initial population
was 30 and the number of iterations was 50.

The position of the tern was reinitialized as follows: set K ∈ [2, 10], α ∈ [1000, 4000].
Both were random values.

The main steps were as follows [37]:

1. The individual fitness value and population average fitness were calculated.
2. Migration behavior was observed or a global search was performed.

a. Crash avoidance:

cst = SA × Pst(Z) (6)
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In the equation, Pst denotes the current position of the tern, cst denotes the new
position of the individual, SA denotes a variable parameter for collision avoidance, and SA
could be updated as follows:

SA = C f −
(

Z×
( C f

Maxiterations

))
, Z = 0, 1, ···, Maxiterations

Here, C f = 2; Z was the current number of iterations.
b. Determination of the relative spacing:

mst = CB × (Pbst(Z)− Pst(Z)) (7)

In the equation, mst denotes the relative distance between the current individual and
the optimal individual, Pbst denotes the position of the current optimal individual, and
CB is a more comprehensive exploration of the random position CB = 0.5× Rand, where
Rand ∈ [0, 1].

c. If close to the optimal individual:

dst = cst + mst (8)

3. Attack behavior was observed or a local search performed. The mathematical models
for the attack behavior were:

{
x′ == Radius × sin(i)y′ = Radius × cos(i)z′ = Radius × i (9)

Radius = u× eKv (10)

Here, i ∈ [0, 2π]; Radius represents the radius of each spiral and u = v = 1 defines the
spiral shape.

4. The final position update of the tern was acquired, as follows:

Pst(Z) =
(
dst ×

(
x′ + y′ + z′

)
× Pbst(Z) (11)

5. The fitness value was calculated and the global optimal value was retained.

The flowchart of the algorithm optimization parameters is shown in Figure 1.
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3. Experiments and Results
3.1. Experimental Materials and Methods
3.1.1. Composite Laminates

The matrix specimens in this study were dumbbell-shaped epoxy resin castings
(250 mm × 25 mm × 25 mm; length × width × height, respectively). The performance
parameter test of a glass-fiber bundle (SC-1200) in the performance test of the glass fiber
multifilament dipping method was described in GB/T 7690.3–2013 [38] “Reinforcements-
Test method for yarns-Part 3: Determination of breaking force and breaking elongation
of glass fiber”. The GB/T 3362–2017 [39] “Test method for tensile properties of carbon
fiber multifilament” standard was followed to establish the performance parameters of
the material, as presented in Table 1. The prepreg consisted of a glass-fiber fabric and
epoxy resin, with an approximate volume fraction of 80% TDE-85# epoxy resin. The curing
process involved autoclaving the prepreg at 120 ◦C for 3 h, followed by heating it to
160 ◦C for 3 h and subsequently raising the temperature to 180 ◦C for 4 h. A pressure of
0.2 MPa was applied to the prepreg to ensure the removal of air and volatiles without
excessive resin squeezing. After cooling to room temperature, the glass/epoxy composite
laminates were cut into the desired dimensions. A 1200 Tex high-strength S-glass-fiber
prefabricated laminated composite plate (175 mm × 25 mm × 4 mm; length × width ×
height, respectively) was used to simulate the delamination damage experiment according
to the ASTM D5528 standard [40].

Table 1. Performance parameters of materials.

Type Parameter Tensile Strength/GPa Tensile Modulus/GPa Elongation (%) Density (kg/m3) Poisson Ratio

Matrix 0.12 3 0.2 980 0.38
Glass-fiber bundles 0.28 90 3.5 1800 0.3

3.1.2. NOL-Ring

In the tensile acoustic emission monitoring experiment of the NOL-ring, an SC-1200
high-strength glass-fiber-reinforced material was used to prepare the glass fiber 1200Tex
NOL-ring specimen, as described in GB/T 1458–2008 “Test method for mechanical prop-
erties of the ring of filament-winding reinforced plastics”. The prepreg consisted of a
glass-fiber fabric and epoxy resin, with an epoxy resin TDE-85# volume fraction of ap-
proximately 80% and a fiber volume content of at least 58%. The NOL-ring specimen
was 150 mm × 6 mm × 1.5 mm (diameter × width × thickness) and the winding tension
was 20 N. While conducting the static tensile test of the NOL-ring, there was mutual
friction and vibration interference between the NOL-ring and the fixture. Therefore, a
NOL-ring grading loading experiment was conducted to simulate the cyclic process of
loading–holding–loading, in which the holding stage was maintained for 4 min. The graded
loading experimental scheme is shown in Figure 2.
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3.1.3. Experimental Equipment Settings

Based on the assumption that different damage modes produce acoustic emission
signals with specific characteristics, the experiment was divided into single damage acous-
tic emission monitoring and NOL-ring tensile acoustic emission monitoring to identify
different damage modes. The experimental equipment included a PCI-E acoustic emis-
sion detector (MICRO-II EXPRESS, Physical Acoustics Corporation, 195 Clarksvikke Road
Princeton Junction, NJ 08550), an SEMTester (MTI Instruments, 325 Washington Ave Ext
Albany, NY 12205) in situ tensile testing machine, and a Shimadzu AG-X electronic univer-
sal testing machine (AG-XD 20KN, SHIMADZU(CHINA) Co., Ltd., Shanghai, China). The
AE monitoring system utilized in all experiments consisted of the AE software AE-Win
for Express-8 (V5.92) and the acquisition module for recording AE signals, which was
provided by the Physical Acoustics Corporation (PAC), Princeton Jct, New Jersey, USA.
The equipment used in the experiment is shown in Figure 3. The sampling rate of the PCI-E
acoustic emission detector was 1 Million samples per second (MSPS). The peak definition
time (PDT), hit definition time (HDT), and hit lockout time (HLT) were 100, 200, and 400,
respectively. The parameters are shown in Table 2.
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Table 2. The list of parameters for the acoustic emission system.

Item Sensor Type Number Field of
Channel (s) Threshold/dB Pre-Trigger

Time/µs Signal Length

Matrix tensile WD 2 35 256 1024

Glass-fiber bundle
tensile Nona30 2 35 256 1024

Interface layering WD 2 35 256 1024

NOL-ring tensile
WD 2

35 256 1024
Nona30 2
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3.2. Results
3.2.1. Analysis of the Acoustic Emission Parameter History

The acoustic emission process diagram of single damage was analyzed and the acoustic
emission parameters of each damage form are shown in Figures 4–6. The amplitude of
the epoxy resin matrix tensile test was mainly distributed around 40–60 dB and the step
phenomenon occurred in the energy accumulation curve, with the largest impact at a later
stage of the tensile test. The tensile amplitude of the fiber bundle was mainly distributed
around 75–95 dB. At the stage around 18–22 s, a large number of high-amplitude and
high-energy AE signals appeared. The layered signal was mainly concentrated around
45–70 dB and the ringing count was concentrated around 40–75 dB. The cumulative energy
curve linearly increased, indicating that the damage mechanism was single.

Polymers 2023, 15, x FOR PEER REVIEW 8 of 16 
 

 

 

Figure 3. The equipment used in the experiment. 

Table 2. The list of parameters for the acoustic emission system. 

Item 
Sensor 

Type 

Number Field of Chan-

nel (s) 

Thresh-

old/dB 

Pre-Trigger 

Time/𝛍𝐬 

Signal 

Length 

Matrix tensile WD 2 35 256 1024 

Glass-fiber bundle 

tensile 
Nona30 2 35 256 1024 

Interface layering WD 2 35 256 1024 

NOL-ring tensile 
WD 2 

35 256 1024 
Nona30 2 

3.2. Results 

3.2.1. Analysis of the Acoustic Emission Parameter History 

The acoustic emission process diagram of single damage was analyzed and the 

acoustic emission parameters of each damage form are shown in Figures 4–6. The ampli-

tude of the epoxy resin matrix tensile test was mainly distributed around 40–60 dB and 

the step phenomenon occurred in the energy accumulation curve, with the largest impact 

at a later stage of the tensile test. The tensile amplitude of the fiber bundle was mainly 

distributed around 75–95 dB. At the stage around 18–22 s, a large number of high-ampli-

tude and high-energy AE signals appeared. The layered signal was mainly concentrated 

around 45–70 dB and the ringing count was concentrated around 40–75 dB. The cumula-

tive energy curve linearly increased, indicating that the damage mechanism was single. 

  
 

Figure 4. The matrix tensile acoustic emission parameter history.

Polymers 2023, 15, x FOR PEER REVIEW 9 of 16 
 

 

Figure 4. The matrix tensile acoustic emission parameter history. 

  
 

Figure 5. The tensile acoustic emission parameter history of glass-fiber bundles. 

   

Figure 6. The interface layer acoustic emission parameter history. 

In this study, the amplitude, duration, cumulative count, and energy were selected 

as acoustic emission parameters to analyze the distribution of the glass fiber/epoxy NOL-

ring cyclic loading process. Different degrees of visible damage occurred at the initial load 

mutation position in the third, sixth, and eighth holding stages (Figure 7). In the initial 

stage of stretching, the energy and duration were low and the amplitude was mainly be-

low 65 dB. The cumulative energy curve showed that the curve increased stepwise in the 

later stage of the experiment and the amplitude was considerably higher than 85 dB. From 

the perspective of amplitude, the high count and high energy met the signal characteristics 

of fiber breakage. 

   

Figure 7. The analysis of the acoustic emission parameters of the NOL-ring step loading tensile test. 

3.2.2. Optimization Analysis of the Signal Parameters of the NOL-Ring Step Loading 

Tensile Test 

1. Optimizing the VMD parameters K and α 

The two matrix cracking signals that we examined were randomly selected as sam-

ples. The STOA-VMD parameters were then optimized and the average values of multiple 

Figure 5. The tensile acoustic emission parameter history of glass-fiber bundles.

Polymers 2023, 15, x FOR PEER REVIEW 9 of 17 
 

 

Figure 4. The matrix tensile acoustic emission parameter history. 

  
 

Figure 5. The tensile acoustic emission parameter history of glass-fiber bundles. 

   

Figure 6. The interface layer acoustic emission parameter history. 

In this study, the amplitude, duration, cumulative count, and energy were selected 

as acoustic emission parameters to analyze the distribution of the glass fiber/epoxy NOL-

ring cyclic loading process. Different degrees of visible damage occurred at the initial load 

mutation position in the third, sixth, and eighth holding stages (Figure 7). In the initial 

stage of stretching, the energy and duration were low and the amplitude was mainly be-

low 65 dB. The cumulative energy curve showed that the curve increased stepwise in the 

later stage of the experiment and the amplitude was considerably higher than 85 dB. From 

the perspective of amplitude, the high count and high energy met the signal characteristics 

of fiber breakage. 

   

Figure 7. The analysis of the acoustic emission parameters of the NOL-ring step loading tensile test. 

3.2.2. Optimization Analysis of the Signal Parameters of the NOL-Ring Step Loading  

Tensile Test 

1. Optimizing the VMD parameters K and  𝛼 

The two matrix cracking signals that we examined were randomly selected as sam-

ples. The STOA-VMD parameters were then optimized and the average values of multiple 

Figure 6. The interface layer acoustic emission parameter history.

In this study, the amplitude, duration, cumulative count, and energy were selected as
acoustic emission parameters to analyze the distribution of the glass fiber/epoxy NOL-ring
cyclic loading process. Different degrees of visible damage occurred at the initial load
mutation position in the third, sixth, and eighth holding stages (Figure 7). In the initial
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stage of stretching, the energy and duration were low and the amplitude was mainly below
65 dB. The cumulative energy curve showed that the curve increased stepwise in the later
stage of the experiment and the amplitude was considerably higher than 85 dB. From the
perspective of amplitude, the high count and high energy met the signal characteristics of
fiber breakage.
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3.2.2. Optimization Analysis of the Signal Parameters of the NOL-Ring Step Loading
Tensile Test

1. Optimizing the VMD parameters K and α

The two matrix cracking signals that we examined were randomly selected as samples.
The STOA-VMD parameters were then optimized and the average values of multiple
optimization parameters were calculated. The VMD signal parameters were determined by
combining the center frequency of VMD and the data in Table 3. From the optimized results
of the two samples, we concluded that the final selection should be K = 9 and α = 2950.

Table 3. The STOA parameters and the EMD mode number.

Type
EMD

Decomposition
Mode Number

Times 1 2 3 4 Average
Value

Sample 1 11
K 9 10 8 9 9

α 2856.670 2574.752 3551.249 2786.009 2950.084

Sample 2 10
K 8 8 9 8 8.25

α 3446.525 1243.647 3110.164 4000 2942.170

2. Comparison diagram of time–frequency analysis of matrix cracking signal

The acoustic emission signal resulting from matrix cracking in the damage exhibited
medium-to-low intensity, while the delamination signal in the composite damage was
challenging to distinguish and fell within the medium intensity range. On the other hand,
the fiber fracture signal was classified as medium-to-high intensity. A tensile test conducted
on a single material showed that the matrix cracking signal was distinct and exhibited
minimal noise such as mechanical friction. Hence, the matrix cracking signal was chosen
for the analysis. Based on this selection, the signal of sample 1 underwent VMD. The
time domain and frequency domain plots of the decomposed signal are presented in
Figure 8. Observing Figure 8b,d, it became apparent that the original signal after VMD
produced nine signal components, and they were represented by different colors. Each
component was primarily confined to a different frequency range, indicating a highly
effective decomposition outcome.
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3. Comparative analysis of the single damage reconstruction signal

From the frequency domain diagram of single damage, including matrix cracking,
interface delamination, the original signal in the fiber fracture, and the reconstructed signal
after the Fourier transform, we found that the reconstructed signal effectively suppressed
the components, with a low correlation between the high-frequency and low-frequency
domains, and distinguished different damages in the frequency domain. The frequency
domain diagrams of the original and reconstructed signals of every single damage are
shown in Figure 9.
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Figure 9. Comparison of original and reconstructed frequency domain of single damage: (a) matrix
cracking signal; (b) interface delamination signal; (c) fiber fracture signal.

According to the above findings, we established high and low band-pass filters based
on reconstructed frequency domain features. The low-pass filter (LF) and high-pass filter
(HF) were set to distinguish delamination damage. According to the distribution of matrix
cracking and fiber fractures in different frequency bands, the high-pass filter was divided
into HF1 and HF2. The specific process of judging the damage category is shown in
Figure 10.
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3.2.3. Identification and Verification of the Damage Optimization Algorithm

1. Identification and verification of the single damage optimization algorithm

Using the recognition algorithm proposed in this study, a single damage was identified
to verify the accuracy and effectiveness of the algorithm. As shown in Figure 11, the
cumulative impact curve of the single damage identification was similar to the cumulative
energy curve of a single experiment, indicating that the algorithm could effectively identify
the single damage mechanism. The recognition results of the algorithm are shown in
Table 4. The accuracy rates of matrix cracking, fiber fractures, and delamination damage
were 94.59%, 94.26%, and 96.45%, respectively.
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Figure 11. The identification diagram of the single damage algorithm: (a) matrix cracking; (b) fiber
fracture; (c) interface delamination.

Table 4. The results of the single damage identification analysis.

Type Matrix Tensile Test Fiber Bundle Tensile Test Interface Layering Test

Cumulative hits 37 1568 8964

Matrix cracking/pc 35 79 8628

Fiber fracture/pc 0 1478 197

Interface delamination/pc 2 2 121
Accurate recognition rate/% 94.59 94.26 96.45

2. Identification and verification of the NOL-ring damage optimization algorithm

The cumulative curve of AE parameters in the glass fiber/epoxy NOL-ring tensile
test was similar to the cumulative curve of damage identification (Figures 7 and 12) and
a step phenomenon was found in the ninth holding stage, which corresponded with the
severe damage in the later stage of the NOL-ring tensile test. In the tensile part of the tenth
stage, the curve showed a step growth phenomenon that corresponded with the serious
increase in damage in the later stage of the experiment. The number of typical damage
events identified at different stages is shown in Table 5 and Figure 13. Throughout the
tensile test stage of the NOL-ring, the proportion of the matrix cracking impact number
was large. The proportion of the matrix cracking impact number was about 53% during
tensile stages 5–8; it first decreased and then increased. On the contrary, the number of
fiber breakages first increased and then decreased. As the load increased, after a certain
local failure, the load was redistributed and transmitted to the adjacent fibers through the
matrix, causing fiber breakage. The number of interface layers significantly decreased in
tensile stages 3–6; it first decreased and then increased.
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Table 5. The damage identification of the NOL-ring.

Type Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Stage 7 Stage 8 Stage 9 Stage 10

Damage hits 503 558 3627 3549 3013 4109 9901 7568 29,932 11,058

Interface delamination 96 64 34 32 26 113 890 758 4231 1499

Percentage/% 19.085 11.470 0.937 0.902 0.863 2.750 8.989 10.016 14.135 13.556

Matrix cracking 385 404 2871 2488 1660 2113 5342 3929 20,439 8005

Percentage/% 76.541 72.401 79.156 70.104 55.095 51.424 53.954 51.916 68.285 72.391

Fiber fracture 22 90 722 1029 1327 1883 3669 2881 5262 1554
Percentage/% 4.374 16.129 19.906 28.994 44.042 45.826 37.057 38.068 17.580 14.053
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4. Conclusions

In this study, a damage classification and recognition mechanism of the NOL-ring
was proposed and the optimization algorithm of STOA-VMD was used to extract damage
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acoustic emission signals of polymer composites and recognize its damage state. First, the
optimal decomposition mode number K and penalty coefficient α were determined based
on the STOA to realize the adaptive decomposition of acoustic emission signals; then, a
feature sample set was constructed according to the characteristics of the damage signal of a
single material tensile test. Next, the accuracy of the optimization algorithm was evaluated.
Finally, acoustic emission signal feature extraction was applied to the glass fiber/epoxy
NOL-ring breakage experiment for damage classification and recognition and the damage
state identification and characterization of the polymer composites were carried out. The
main conclusions were as follows:

1. The STOA was used to optimize the VMD parameters, determine the optimal de-
composition mode number K and penalty coefficient α, and perform the adaptive
decomposition of acoustic emission signals.

2. Based on the characteristics of a single damage signal, the damage mechanism recog-
nition algorithm was constructed and the recognition effect was verified. The recogni-
tion rates of matrix cracking, fiber fractures, and delamination damage were 94.59%,
94.26%, and 96.45%, respectively.

3. By analyzing the AE signal of the glass fiber/epoxy NOL-ring experiment, the algo-
rithm was used to determine the damage mechanism of the NOL-ring experiment,
which confirmed that the algorithm could effectively perform damage identification
of the glass fiber/epoxy NOL-ring damage complete structure.

In summary, the optimization algorithm based on STOA-VMD offered a more precise
and efficient method to identify and characterize damage in polymer composites, thus
serving as a valuable technical reference for researchers involved in the monitoring and
characterization of mechanical structures or advanced polymeric materials. In future
studies, the authors intend to explore improved algorithm optimization alternatives and
conduct further comparative analyses. Additionally, efforts will be made to establish
a scientific evaluation system that enables the condition monitoring, identification, and
evaluation of polymer materials. Ultimately, this will facilitate a comprehensive and
effective objective assessment of the state of polymer composite materials.
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