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Abstract: This work demonstrated the potential of CNC as a substitute for PEG as an additive
in ultrafiltration membrane fabrication. Two sets of modified membranes were fabricated using
the phase inversion technique, with polyethersulfone (PES) as the base polymer and 1-N-methyl-2
pyrrolidone (NMP) as the solvent. The first set was fabricated with 0.075 wt% CNC, while the second
set was fabricated with 2 wt% PEG. All membranes were characterized using SEM, EDX, FTIR,
and contact angle measurements. The SEM images were analyzed for surface characteristics using
WSxM 5.0 Develop 9.1 software. The membranes were tested, characterized, and compared for their
performance in treating both synthetic and real restaurant wastewater. Both membranes exhibited
improved hydrophilicity, morphology, pore structure, and roughness. Both membranes also exhibited
similar water flux for real and synthetic polluted water. However, the membrane prepared with
CNC gave higher turbidity removal and COD removal when raw restaurant water was treated. The
membrane compared well with the UF membrane containing 2 wt% PEG in terms of morphology
and performance when synthetic turbid water and raw restaurant water were treated.

Keywords: ultrafiltration; PEG; CNC; COD; turbidity; morphology

1. Introduction

The global water crisis, which includes water scarcity, water pollution, water contami-
nation, and ecosystem degradation, has become a big and general challenge in society [1].
The ability of the ecosystem to provide fresh water supplies is becoming increasingly com-
promised. Freshwater becomes polluted because of industrial, agricultural, and domestic
activities [2]. Domestic wastewater includes yellow water, black water, brown water, and
grey water [3]. The environmental and health impacts of these wastewaters have become a
big problem and worry in society. In a world with an increase in water use, water treatment,
reuse, and recycling are becoming increasingly important [4]. Techniques that apply to a
wide range of water matrices are membrane processes [5].

Membrane filtration processes are fast becoming the preferred technique for water
and wastewater treatment [6]. This is due to the low cost of wastewater treatment and the
easy installation. The membrane process is eco-friendly, energy consumption is lower than
other technologies, and it has a 90–95% recovery rate of water [7]. Membrane filtration
processes have wide industrial and commercial applications. Many industries, such as
food and beverage production and oil and gas, use membrane processes for separating
solids from solutions. For example, the membrane filtration process provides a highly
desirable method, mostly for treating wastewater, due to its operation efficiency [8–10].
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The efficiency of the membrane in separation is generally based on the size of the pores
and the wetting properties of the membrane [11]. Membrane pore sizes act as a physical
barrier to large particles in the water solution, allowing water to pass through under
pressure while obstructing pollutants in the water that are larger than the membrane pore.
Generally, considering the pore size and separation mechanism, pressure-driven membrane
filtration is divided into microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), and
reverse osmosis (RO). These can further be classified into low pressure and high pressure,
depending on the driving force employed in water treatment. Reverse osmosis and the
nanofiltration method are high-pressure processes, while microfiltration and ultrafiltration
are known as low-pressure membrane processes. All these membranes are liable to fouling.
This fouling mostly occurs as a result of different interactions between a component in
the feed water solution and the membrane surface. The major significant advantages of
the membrane separation process include operation at room temperature without phase
change, compact, easy installation, simplicity in operation, and excellent water quality [12].

Ultrafiltration (UF) is a low-pressure membrane filtration process that can remove
suspended solids and bacteria from water. The operating pressure of the UF membrane is
normally less than 100 kPa (14.5 psi). The pore size is approximately 0.002 to 0.1 microns,
and the molecular weight cut-off (MWCO) is approximately 10,000 to 100,000 Daltons [13].
It is used to remove contaminants, such as bacteria, protozoa, and some viruses, from the
water. In UF, the only variables that can affect contaminant removal are pore size and
contaminant size; however, both the pore size and hydrophobicity of the membrane have
an impact on water recovery. PEG is normally added to influence the membrane pore
size and improve its water affinity. Therefore, the use of naturally synthesized additives
that could improve the pore size and water affinity of the membrane has the potential to
improve the performance of the membrane [14].

UF membranes are porous and are commonly fabricated using the nonsolvent-induced
phase separation method [15]. In this method, cast polymer dispersion is immersed in
a nonsolvent bath, leading to the formation and growth of polymer-rich and polymer-
lean phases within the cast film. Polymers, such as polyethersulfone (PES), polysulfone,
polyacrylonitrile, and polypropylene, are commonly used for the preparation of UF mem-
branes [16]. These polymers are added to a solvent that is usually N-methyl-2-pyrrolidone
(NMP) or dimethylformamide (DMF). Hydrophilic polymers, such as cellulose acetate,
chitosan, PVP, and PEG, are common additives in casting solutions to obtain improved
hydrophilic properties [17]. Polyethylene glycol (PEG) acts as a pore former and is known
to influence the pore density on the membrane surface [18]. Cellulose nanocrystals (CNCs)
are natural nanomaterials primarily derived from naturally occurring cellulose fiber [19].
CNCs have received significant interest in wide application due to their chemical and
mechanical properties [19]. CNCs have been reported as one of the emerging materials for
wastewater treatment because they are non-toxic, renewable, biodegradable, and possess
high specific strength [16,20]. The CNC is hydrophilic, sustainable, and environmentally
friendly in most applications.

In one of our previous works, we reported the performance of a UF membrane
fabricated with CNCs [21]. CNC concentration was varied as an additive at 0.05%, 0.075%,
0.1%, and 0.15%. While 0.05% of CNC was too low for a significant effect on the PES-UF
membrane, a concentration higher than 0.075% was not homogenous, resulting in the
formation of agglomerates (Figure 1). There was no significant change when 0.05% CNC
was added; however, the addition of 0.075% CNC brought a change to the morphology of
the membrane. The surface roughness increased with the increase in CNC concentration.
The degree of formation of agglomerates was higher for CNC0.1, and this was clearly
reflected in the roughness of the membrane, leading to a membrane with the highest
roughness. The EDS results indicated the presence of CNCs in the membrane material.
The results showed a gradual increase in the mass concentration of the oxygen as the
percentage of CNCs increased: PES (20.13% oxygen), CNC0.05 (20.42% oxygen), CNC0.075
(20.92% oxygen), CNC0.1 (23.36% oxygen), and CNC0.15 (26.95% oxygen). CNC0.075 had



Polymers 2023, 15, 2636 3 of 13

the lowest contact angle (69◦) and was the only CNC membrane with a lower contact angle
than the PES membrane (71.4◦). This was due to the homogeneity of the membrane with
the CNC content. It was found that average water flux, turbidity, and COD removal from
restaurant wastewater were highest with PES membranes containing 0.075 wt% CNC. This
was because of the lower contact angle and lower pore size distribution, but this work
seeks to compare the use of CNCs with PEG as additives to PES membranes to show that
CNCs are a suitable substitute for PEG and other additives.
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Figure 1. SEM images at 600 nm of PES (A), CNC0.05 (B), CNC0.075 (C), CNC0.1 (D), and
CNC0.15 (E).

2. Materials and Methods
2.1. Materials

Polyethersulfone (PES) was obtained from Solvay, while the non-woven support was
obtained from Kavon Filters. 1-N-methyl-2 pyrrolidone (NMP) (>99%) and PEG4000 were
obtained from Sigma Aldrich. Commercial cellulose nanocrystal (CNC) powder was ob-
tained from CelluForce, Canada. The CNCs were produced by hydrolyzing bleached
softwood kraft wood pulp in sulfuric acid, followed by neutralization with sodium hydrox-
ide. The supplier stated that the CNCs had an overall particle size range of 1 to 50 nm, a
length range of 44 to 108 nm, a gram molecular weight range of 14,700 to 27,850, and a
diameter range of 2.3 to 4.5 nm. Restaurant wastewater was obtained from a city restaurant
in South Africa. Synthetic turbid water was prepared with deionized water and zeolite.

2.2. Membrane Fabrication

The membrane was fabricated using the phase inversion technique. The separation of
an initially homogeneous mixture into two separate phases, each containing a polymer, a
solvent, and additional additives, is known as phase inversion [22]. The solid phase, which
is the polymer-rich phase, will give rise to the membrane matrix, whereas the solvent-rich
liquid phase, also known as the polymer-lean phase, will lead to the formation of the
membrane pores. A polymer solution was prepared with polyethersulfone (PES) (18 wt%)
in 1-N-methyl-2 pyrrolidone (NMP) as solvent. The PES was dried in an oven for 24 h
before use to eliminate any water that may be present. The solution was stirred using a
magnetic stirrer for 24 h before use. The stirring was conducted at 40 ◦C until the solution
was clear and homogeneous. The polymer solution was then used to cast the membrane
on a non-woven support using an automatic casting machine. The non-woven support
was fixed to a glass plate using cello tape. The thickness was set at 250 µm using the
micrometer gauge on the casting knife in a knife film applicator Elcometer, 3580 (Elcometer,
Manchester, UK)). The polymer was then immersed in a bowl of water at room temperature.
The procedure was carried out for two separate polymer solutions containing cellulose
nanocrystals (CNCs) at 0.075 wt% and PEG at 2 wt%. Thus, 0.075 wt% was chosen for CNCs
based on our previous work [21], while 2 wt% of PEG is common in the literature [23,24].

2.3. Membrane Characterization

The membranes were characterized using a contact angle analyzer, scanning electron
microscopy (SEM), Fourier-transform infrared (FTIR), and energy-dispersive X-ray (EDX).
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The procedure is well-documented in the literature [25]. The SEM images were analyzed
for roughness, pore size distribution, and morphology using WSxM 5.0 Develop 9.1 Soft-
ware [26]. The procedure is as follows: open the software, select the image, go to display,
and choose 3D. Click roughness analysis to display roughness analysis results. The 2D
image was profiled to obtain the pore size distribution. The procedure is as follows: Go
back to the 2D image, select the image, go to process, select profile, left-click the edge of the
image to create the profile, and right-click the edge of the image to end the process. Then,
select the profile and change it to a histogram.

2.4. Analysis

Separation performance was conducted in a dead-end filtration cell, Steritech HP 4750
pressure membrane test cell (Sligo, Rathquarter, Ireland). The active membrane area in the
cell was 14.6 cm2. The membranes were tested for pure water flux and turbidity removal
with synthetic turbid water. The pressure was varied from 0.2 bar to 1.0 bar, while the initial
turbidity was varied from 80 NTU to 140 NTU. The membranes were also used for the
treatment of raw restaurant wastewater. Chemical oxygen demand (COD) was analyzed
using a spectrophotometer, Hach DR6000 UV-VIS (Loveland, CO, USA), while turbidity
was analyzed with a turbidity meter (Hach 2100Q Portable Turbidimeter).

The water flux was calculated using Equation (1), while turbidity and COD were
calculated using Equation (2).

Jw =
V
At

(1)

where Jw (L/m2/h) and V (L) are the water flux and the permeate volume, respectively.
The active membrane area A is measured in m2, while the filtration time t is in h.

R =

(
C f − Cp

)
C f

× 100 (2)

where R is the rejection in %, Cf is the initial turbidity or COD in the feed, and Cp is the
final turbidity or COD in the permeate.

3. Results and Discussion

In this section, the PES-UF membrane with 0.075 wt% CNC (CNC0.075) is compared
with the PES-UF membrane with 2 wt% PEG (PEG). PEG is an established additive in UF
membranes to improve pore structure and hydrophilicity [27].

3.1. Comparing the Membrane Characteristics

Figure 2 shows the spectra of the CNC0.075 and PEG membranes. Both membranes
show similar peaks that are usually observed for UF membranes fabricated with PES.
Among the notable peaks are the peaks 1487 cm−1 and 1581 cm−1, which indicate C-C
bond stretching and the benzene ring stretching, respectively. The PEG shows a strong
absorption peak at 1700 cm−1 that was not observed in CNC0.075. This indicates a strong
presence of O-H bending in the membrane [28]. However, both membranes show a strong
hydrogen-bonded OH stretching at around 3100 cm−1 that may have an impact on the
hydrophilicity [29].

The EDX spectra for both PEG and CNC0.075 are shown in Table 1. The mass compo-
sition and the atomic composition of oxygen for PEG were found to be higher, even when
the values for carbon were almost the same for PEG and CNC0.075.

The FTIR and EDX results indicate that both CNC0.075 and PEG have similar effects
on the membrane in terms of functional groups, elemental mass, and atomic compositions.
However, it should be noted that 2 wt% of PEG was added to the same composition of
polymer solution to which 0.075 wt% of CNCs was added. Both are strong carriers of the
−OH group, as shown in Figure 3. −OH group is supposed to serve as efficient hydrophilic
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sites, facilitating the improved roughness and better water affinity of composite membranes
when they are blended with ultrafiltration membrane polymer [30].
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Figure 4 shows the contact angles for both membranes containing PEG and CNC0.075.
The contact angle for the membrane with PEG is slightly lower than that of CNC0.075. This
means that both 2.0 wt% PEG and 0.075 wt% CNCs have similar effects on the hydrophilicity
of the UF membrane. This could be attributed to the presence of strong O-H bending in
both membranes. CNCs are hydrophilic biopolymers with high surface concentrations of
hydroxyl (−OH). PEG is highly hydrophilic as well. It is reported in the literature that the
contact angle of the UF membrane reduces with an increase in PEG [31] and an increase in
CNCs [32]. However, the fact that only a small percentage of CNCs was used is remarkable.
This indicates that with a relatively small amount of CNCs, the hydrophilicity of a UF
membrane can be significantly improved.
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SEM images for the surface at 600 nm for both membranes are shown in Figure 5. The
figure shows that there is a significant difference in the structure and morphologies of the
two membranes. The CNC0.075 membrane surface was relatively smooth with visible
pores; this may be due to the rheological properties and phase separation behavior of the
cast solution [15].
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The SEM images were further analyzed using WSxM 5.0 Develop 9.1 software. A 3D
image was generated, and data were obtained for pore size distribution and roughness.
The 3D images for CNC0.075 reveal a smooth structure, while PEG was rough as shown
in Figure 6. Figure 7 shows the surface roughness analysis for the two membranes. The
root mean square roughness (RMS) for CNC0.075 was 0.82 nm, while the value for PEG
was 1.323. All roughness parameters were higher for PEG than for CNC0.075. Rough
membranes are known to have higher water permeability because they have a large number
of water absorption sites. The pore size distribution (Figure 8) shows higher pore diameter
and more pores in the PEG membrane. This may be due to the pore-forming influence of
PEG itself, although both PEG and CNCs displayed good pore-forming abilities.
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3.2. Comparing the Membrane Performance

The effect of 2 wt% PEG and 0.075 wt% CNCs on the PES/UF membrane performance
was studied and compared in terms of membrane performance. The PEG additive has been
known to improve membrane characteristics in terms of pore size, water flux, rejection
of protein, and turbidity removal [33]. In this work, synthetic turbid water and raw
restaurant wastewater were treated using CNC0.075 and PEG-blended polyethersulfone
UF membranes. The initial turbidity of restaurant wastewater used was 120 NTU. The
membrane performance was evaluated in terms of water flux, turbidity removal, and
COD removal.

3.2.1. Performance with Synthetic Water

Figure 9 shows the percentage turbidity reduction when CNCs and PEG with a
concentration of 0.075 wt% and 2.0 wt%, respectively, were used in treating synthetic
water with initial turbidity varying from 80 NTU to 120 NTU. The turbidity removal
was higher for PEG than CNC0.075. This observation contrasts the observed turbidity
removal when raw restaurant water was treated, where CNC0.075 gave higher turbidity
removal. PEG is known to have a binding affinity for zeolite [34,35]. It is likely that the
separation mechanism was aided by this affinity, which causes adsorptive filtration apart
from restriction through the membrane pores [36]. The turbidity removal in the synthetic
water was observed to increase for the two membranes from 80 NTU to 120 NTU. However,
a drop in the removal was observed for turbidity of 140 NTU. Similarly, water flux reduced
from turbidity of 80 NTU to 120 NTU and suddenly increased from turbidity of 120 NTU
to 140 NTU (Figure 10). Generally, an increase in water flux can lead to a reduction in
contaminant removal and vice versa. Water flux and contaminant removal are determined
by the membrane pore size and the hydrophilicity of the UF membrane. The hydrophilicity
of the membrane is an intrinsic property and cannot suddenly change. Although fouling
was not studied in this work, it may be the reason for the observation. Further work is
needed to determine if the pore of the membranes was affected when synthetic water
of 140 NTU was treated, leading to a reduction in the turbidity removal and increase in
the water flux. Nevertheless, the aim of this work to show that CNCs can be a suitable
replacement of PEG in UF membrane fabrication is obvious from the results.
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3.2.2. Performance with Raw Restaurant Water

Similar experiments as in the previous section were conducted to evaluate the perfor-
mance of the membranes when real restaurant wastewater was treated. The experiment
was conducted by filtrating the waste restaurant water to find the permeability of the
CNC0.075 and PEG membranes by varied pressure of 0.4, 0.6, 0.8, and 1 bar. Figure 11
shows the restaurant water flux of CNC0.075 and PEG.

Figure 11 shows the water flux of CNC0.075 and PEG UF membranes’ performance
against varied pressure. The results indicate that an increase in applied pressure signifi-
cantly increases the water flux of CN0.075 and PEG membranes. Based on the literature
review, transmembrane pressure increases water flux because of the driving force ap-
plied [37]. The results also show that the two membranes have a similar performance in
water flux, even at varied pressure. This result shows clear evidence that the CNCs and
PEG are the pore-forming agents, and their presence in the polymer solution enhances
the formation of more pores on the membrane surface [33,38]. The COD removal of the
CNC0.075 and PEG membranes was examined as one of the basic metrics to determine
the percentage removal of the two membranes in treating restaurant wastewater. The
COD feed concentration used was 545.25 mg/L. Figure 12 shows the COD removal of
the CNC0.075 and PEG membrane, indicating the effect of CNC0.075 and PEG on COD
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removal. Although the results obtained from CNC0.075 were similar to PEG to some extent,
CNC0.075 had more COD removal. For instance, the highest removal percentage of the two
membranes was achieved at a pressure of 0.4 bar. CNC0.075 shows the highest percentage
of COD removal of 80% at 0.4 bar and lowest at 1 bar, while the PEG membrane had the
highest percentage of COD removal of 60% at 0.4 bar and lowest at 1 bar. Based on the
test results, CNC0.075 gave the best COD removal result. The result demonstrates that
the COD removal efficiency of the membranes depends on the pore size of the fabricated
membrane. This is because CNC0.075 has a lower pore size and pore size distribution.
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The CNC0.075 and PEG-modified membranes were evaluated in terms of turbidity
removal. Figure 13 shows the evaluation results of the two membranes as a function
of percentage turbidity removal against pressure when real restaurant wastewater was
treated. The figure result shows that when CNC0.075 was used at a pressure of 0.4 bar,
the percentage of turbidity removal was 99.0%. As the pressure increased to 0.6 bar, the
percentage of turbidity removal decreased to 98.0%. For further increases in the applied
pressure to 0.8 and 1 bar, the percentage turbidity removal increased again to 99.0% and
then decreased dramatically to 9.4% at 1 bar. A similar result was observed when the
PEG membrane was used for treating restaurant water at varied pressure of 0.4, 0.6, 0.8,
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and 1 bar. Figure 13 shows that the PEG membrane produces 97.0% turbidity removal
at a pressure of 4 bar. When the pressure was increased to 0.6 bar, the turbidity removal
decreased to 95.0%. For further increases in pressure to 0.8 and 1 bar, the turbidity removal
increased to 95.5%. These results demonstrate that increased transmembrane pressure
during filtration affects turbidity removal. As a result of the pressure increase, the smaller
particles can more easily pass through the membrane pore, which could lead to an increase
in the turbidity level of the filtered water. Another explanation is that the presence of oil
deposits in restaurant wastewater that is smaller than the membrane pore was forced into
the pore by the pressure increase. The result shows that CNC0.075 has a higher percentage
of turbidity removal over the PEG membrane. This observation may support the fact that
higher turbidity removal was observed in the synthetic turbid water with PEG due to the
interaction of PEG with zeolite. The observed better performance of CNC0.075 may be
because the CNC0.075 blended well in the polymer solution, leading to a better morphology,
pore structure, and hydrophilicity.
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4. Conclusions

The PES UF membrane containing 0.075% CNCs was compared with the PES UF
membrane containing 2 wt% PEG4000. The two membranes were compared based on
their characteristics and performances when synthetic and raw restaurant water were
treated. CNC0.075 was observed to blend well in the polymer solution, leading to better
morphology, pore structure, and hydrophilicity. The water flux pattern was similar for
both membranes when synthetic turbid water and real restaurant wastewater were treated.
Turbidity removal was higher with PEG for the synthetic turbid water, but the reverse was
the case for the real restaurant wastewater. The mechanism of separation might have been
enhanced through adsorptive filtration due to the interaction of PEG with the zeolite in
the synthetic turbid water. The FTIR and EDX results indicated that both CNC and PEG
have similar effects on the membrane in terms of functional groups, elemental mass, and
atomic compositions. However, a higher weight percent was used for PEG than CNC0.075.
The contact angle for PEG was found to be almost the same as that of CNC0.075. The SEM
images showed that there was a significant difference in the structures and morphologies
of the two membranes. The CNC0.075 membrane surface was relatively smooth with
visible pores. WSxM 5.0 Develop 9.1 software was used to perform additional analysis on
the SEM images. The analysis showed that the PEG also had visible pores. A 3D picture
was produced that allowed for the analysis of the pore size distribution and roughness
of the membranes. While PEG’s structure was rough, CNC0.075 displayed a relatively
smooth structure. The membranes revealed that both PEG and CNCs have good pore-
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forming influences. CNCs proved to be a suitable substitute for PEG as an additive in PES
ultrafiltration membrane filtration.
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