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Abstract: In this work, a blend of PEO, polysulfone (PSF), and lithium bis(trifluoromethanesulfonyl)imide
(LiTFSi) was prepared at different PEO–PSf weight ratios (70-30, 80-20, and 90-10) and ethylene
oxide to lithium (EO/Li) ratios (16/1, 20/1, 30/1, and 50/1). The samples were characterised using
FT-IR, DSC, and XRD. Young’s modulus and tensile strength were evaluated at room temperature
with micro-tensile testing. The ionic conductivity was measured between 5 ◦C and 45 ◦C through
electrochemical impedance spectroscopy (EIS). The samples with a ratio of PEO and PSf equal to 70-30
and EO/Li ratio equal to 16/1 have the highest conductivity (1.91 × 10−4 S/cm) at 25 ◦C, while the
PEO–PSf 80-20 EO/Li = 50/1 have the highest averaged Young’s modulus of about 1.5 GPa at 25 ◦C.
The configuration with a good balance between electrical and mechanical properties is the PEO–PSf
70-30 EO/Li = 30/1, which has a conductivity of 1.17 × 10−4 S/cm and a Young’s modulus of 800 MPa,
both measured at 25 ◦C. It was also found that increasing the EO/Li ratio to 16/1 dramatically affects
the mechanical properties of the samples with them showing extreme embrittlement.

Keywords: polymer blend; mechanical properties; multifunctional material; composite structural
battery; polyethylene oxide

1. Introduction

Minimising catastrophic consequences of climate change is a significant driver for
enabling energy transition and reducing dependency on fossil fuels. Electric vehicles and
green energy produced by renewables provide focal points to address these global issues.
Battery electric vehicles (BEVs) have, on average, 25% of the total weight taken up by
batteries. This results in a higher total weight than the traditional combustion-engine car.
There is an increasing demand for innovative solutions that can reduce the dead weight
represented by conventional battery technologies, considered ‘structurally inefficient’,
and exploit the potential of more readily available materials with a reduced impact on
the environment.

To increase the capabilities to store and deliver energy, several strategies have been
followed for improving the current lithium technology by allowing the use of Li-metal [1],
Si-anodes [2], solid-state electrolytes [3,4], or high-voltage cathodes [5]. Additional research
has also investigated materials to exploit alternative chemicals, such as sodium [6] or
potassium [7]. All these fields are aimed at addressing a different issue related to the battery.
For example, new electrodes aim to increase capacity and/or life, whilst solid electrolyte
allows safer batteries since they are not flammable, such as the liquid ones, and can allow
larger voltage windows. The development of multifunctional energy storage systems,
i.e., where the battery may be structurally designed to support/contain other functionality,
such as sensors, leads to the need to look at improving their mechanical requirements
above that of a monofunctional solid-state battery. The combined properties required
are dependent upon the targeted application and this influences not only the electrolyte
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but also the other components. Composite structural batteries [8] have been proposed to
substitute for vehicle parts, such as rooftops, so they need to combine the energy-storage
capacity with sufficient mechanical strength to withstand related stress. For this reason, one
or both electrodes are carbon-fibre-based and the overall assembly is expected to approach
the mechanical properties of resin composite. In contrast for wearable applications, the
expectation is on achieving flexibility to adapt to complex surfaces. In the Li-S system,
for example [9], graphene sheet-based electrodes have been extensively researched. For
both applications, composite polymer electrolytes are extensively researched [8,9], since
polymers can exhibit different mechanical behaviours.

The most commonly studied polymer for electrolyte applications is polyethylene oxide
(PEO), as it can dissolve alkali metal salts and achieve good ionic conductivity at high tem-
peratures [10], although it has low mechanical properties. The reported mechanical strength
of pure PEO varies from about 1 MPa to 15 MPa [11–13], dependent on its molecular weight
and manufacturing route, with a very low conductivity value of around 10−8 S/cm. One
strategy to improve the conductivity of the polymeric electrolyte is the addition of fillers,
which can be inactive, such as SiO2 [14], Al2O3 [15], or graphene oxide (GO) [16], or ce-
ramic ionic conductors, such as Li10GeP2S12 [17] or Li1.5Al0.5Ge1.5(PO4)3 [18]. Typically, the
reported effects of the additives are connected to the electrochemical performances and less
often to the mechanical properties. For example, Wen et al. [16] prepared a PEO–LiTFSI
electrolyte with an ethylene oxide to lithium ratio (EO/Li) of 10:1 and used GO as a filler.
An increase in the tensile strength from about 0.2 MPa to a maximum value of 1.31 MPa
was observed with the addition of 1% in weight of GO. The conductivity was reported to
have values of around 1.5 × 10−6 S/cm, which were seven times higher than the value for
the unfilled composition. However, further increase in the concentration of GO resulted
in a decrease in conductivity. Li et al. [19] prepared a PEO–LiTFSI electrolyte with an
EO/Li ratio of 20:1 using a high molecular weight PEO and explored the effects of different
concentrations of MnO2 nanosheet. Samples prepared with 5% in weight of filler showed
a maximum strength of about 2 MPa, twice that of the unfilled composition, while the
conductivity values at room temperature (RT) were 1.95 × 10−5 S/cm for the samples with
filler and 1.38 × 10−5 S/cm for the PEO–LiTFSI. Lee et al. [20] used a lower molecular
weight PEO with the same EO/Li ratio and Li1.4Al0.4Ge1.6(PO4)3 (LAGP) as a filler. The
addition of 20% in weight of LAGP caused a small increase in the conductivity values at
room temperature, from 4 × 10−6 S/cm to 5 × 10−6 S/cm, and an increase in the tensile
strength from 2.0 MPa to 2.5 MPa. A further increase in the amount of filler beyond 20% in
weight lowered the conductivity and increased brittleness with similar tensile strength.

Blending PEO with other polymers and plasticizers is another strategy used to modify
the electrolyte properties [21], even though the effect on mechanical properties is rarely
reported. Tao et al. [22] manufactured a blend of different weight ratios of PEO and
thermoplastic polyurethane (TPU) with a concentration of LiTFSI fixed at 30% in weight.
The PEO alone with LiTFSI showed a tensile strength of 0.18 MPa, while TPU alone with
LITFSI achieved 17.31 MPa, and subsequent polymericblends achieved values between
these two extremes. Similarly, the conductivity at 20 ◦C was 10−5 S/cm for PEO and
decreased with increasing amount of TPU down to about 6 × 10−7 S/cm for TPU alone.
Xu et al. [23] mixed PEO and polyvinylidene-fluoride (PVDF) in a 70-30 weight ratio
adding ZnO as filler and LiClO4 to achieve an EO/Li ratio of 10:1. A tensile strength of
2.35 MPa was achieved at 2% in weight of ZnO, while without the ZnO it reached 1.28 MPa.
The conductivity at room temperature had a maximum value for 2% in weight at about
6 × 10−5 S/cm, but decreased with higher values, and for 5% in weight it was even lower
than the composition without ZnO which had showed about 2.2 × 10−5 S/cm, highlighting
the susceptibility of the polymer to small increases in the filler content. Complex copolymers
have also been studied. For example, Zhang et al. [24] developed a pentablock copolymer
composed of polystyrene (PS)–PEO–Polypropylene (PP)–PEO–PS and different percentages
in weight of Li7La3Zr2O12 and LiTFSI for an EO/Li ratio of 11/8/1. The mechanical
strength of the copolymer was 1.68 MPa, but the addition of 30% in weight of LLZO
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reduced the maximum strength to 0.92 MPa, whilst the conductivity at room temperature
increased from about 1.5 × 10−5 S/cm to about 2 × 10−4 S/cm. For structural purposes, two
system electrolytes have also been proposed. Schneider et al. [25] developed an electrolyte
having a mechanically strong phase obtained from bisphenol A ethoxylate dimethacrylate
and a conducting liquid phase based on dimethyl methylphosphonate, ethylene carbonate,
and 1 M LiTFSI. The weight ratio of the liquid phase in the original mixture was 39%, and
the room-temperature storage modulus was around 530 MPa, regardless of the curing
temperature or method (UV or thermal), while the conductivity was about 2 × 10−4 S/cm.
One class of polymers that has gained attention as part of the electrolyte are polysulphones,
which are commonly used for their chemical and mechanical stability. Lu et al. produced
a copolymer between PEO and polysulfone (PSf) with a PEO to LiTFSI ratio of 8:1 and
added succinotrile (SN) to investigate its effect [26]. The best performances were achieved
for a 35% in weight of PEO, with a conductivity at room temperature of 10−7 S/cm at
30 ◦C and a tensile strength of 14.7 MPa. When SN was added to achieve a PSF–PEO:
SN: LiTFSI weight ratio 50/35/15, the conductivity increased to 10−4 S/cm, while the
tensile strength decreased to 9.6 MPa. Xu et al. [27] prepared a composite electrolyte from
PEO–polyoxyphenylene sulphone (PESf)–polyvinylacetate (PVA) and LiTFSI for a ratio of
EO/Li = 16/1. The best composition having 30% in weight of PVA and 20% in weight PESf
had a room-temperature conductivity in the order of 10−5 S/cm, but mechanical properties
were not reported.

In this work, we investigate the mechanical and electrochemical properties of a PEO–
PSf blend with a fixed amount of LiTFSI and the effect of LiTFSI on a PSf-rich composition,
which have not been reported before. Additionally, the films are simply cast from dimethyl-
sulfoxide (DMSO) instead of acetonitrile or tetrahydrofuran which are more commonly
used but are toxic. The developed system involves a simple manufacturing process and
a relatively low salt concentration, yet possesses good properties compared to other sys-
tems developed in the literature and confirms the potential of sulfone-based polymers as
battery electrolytes.

2. Materials and Methods
2.1. Materials

The materials used in this work were polyethylene oxide (molecular weight 4 × 105 g/mol,
Sigma Aldrich, Gillingham, UK), dimethylsulfoxide (99% pure, Sigma Aldrich, Gillingham,
UK), polysulfone (molecular weight ~30,000–40,000 g/mol, Sigma Aldrich, Gillingham,
UK), and lithium bis(trifluoromethane)sulfonimide (99% pure, Sigma Aldrich, Gillingham,
UK). The PEO was dried overnight in a vacuum oven at 50 ◦C, while PSf and LiTFSI were
dried at 110 ◦C. The preparation of the solutions is similar to what was reported in our
previous work [28], with the components being dissolved in an appropriate amount of
DMSO and left to stir for 48 h. The PEO–PSF weight ratios were initially 90-10, 80-20, and
70-30 with an EO/Li ratio of 50/1. Other samples based on the 70-30 PEO–PSF ratio were
manufactured with EO/Li ratios of 30/1, 20/1, and 16/1. The solutions were then placed
in a plasma-cleaned Teflon mould and dried in a vacuum oven at 60 ◦C for 48 h to obtain
a self-supporting continuous film with, typically, 0.2 mm thickness and 50 × 50 mm area.
For clarity, the sample code names have been expressed in the following format shown
in Table 1.

Table 1. Sample specifications and sample code names.

Samples Composition Sample Code Names

PEO–PSf 90-10 having EO/Li = 50/1 PS9150

PEO–PSf 80-20 having EO/Li = 50/1 PS8250

PEO–PSf 70-30 having EO/Li = 50/1 PS7350
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Table 1. Cont.

Samples Composition Sample Code Names

PEO–PSf 70-30 having EO/Li = 30/1 PS7330

PEO–PSf 70-30 having EO/Li = 20/1 PS7320

PEO–PSf 70-30 having EO/Li = 16/1 PS7316

2.2. Sample Characterisation

To characterise the composite films, a number of analytical techniques were carried
out. X-ray diffraction (XRD) analysis was performed on a Siemens/Bruker D5000 (Siemens,
Munich, Germany) to determine the degree of crystallinity using the relationship shown in
Equation (1):

X =
Ic

It
(1)

where X is the crystallinity degree, Ic is the intensity of the crystalline peaks, and It is the
total peak intensity. Fourier transformed infrared (FT-IR) analysis has been conducted on a
Jasco FT-IR 6200 with a sensitivity of 4 cm−1 in the range 650–4000 cm−1.

Differential scanning calorimetry was performed using a TA Q200 with RCS90 as a
cooler (TA Instruments, Wilmslow, UK), and the crystallinity of the PEO was calculated
using Equation (2):

XC =
∆He

∆Hc
(2)

where ∆Hc is the enthalpy of the melting of crystalline PEO corresponding to 205 J/g [29]
and ∆He is the recorded value. A heat–cool–heat cycle between −85 ◦C and 100 ◦C was
set to perform DSC analysis, at a rate of 10 ◦C/min and holding the lowest and highest
temperature for 5 min, using the method suggested by Ref. [30]. Micro-tensile testing
was performed on a Deben micro-test tensile stage (Deben UK Ltd., Oxford, UK) with a
200 N cell. Micro-tensile tests were conducted according to ASTM D882 (“Standard Test
Method for Tensile Properties of Thin Plastic Sheeting”) [31]. Samples were cut as strips of
uniform width of 5 mm and length of 25 mm. Each sample tested was initially inspected
using an optical microscope which was used to take some representative images and to
check for visible flaws. While the most common method to observe polymeric crystals
would be a cross-polarized microscope, it is possible to identify them also with a standard
microscope [32]. The force and displacement values measured during the tensile tests,
whilst applying a constant displacement of 1 mm/min, were converted into engineering
stress and engineering strain through the relationships shown in (Equations (3) and (4)):

σ =
F
A

(3)

ε =
∆l
l0

(4)

where σ is the stress expressed in MPa, F is the force expressed in newtons, A is the cross-section
expressed in mm2, ε is strain, ∆l is the variation in length, and l0 is the initial length of the
sample, both expressed in mm. Electrochemical impedance spectroscopy was performed on a
Gamry Interface 1010E potentiostat (Gamry Instruments, Philadelphia, PA, USA) in the range
of 2 MHz to 1 Hz and the blocking electrode setup consisted of a 13 mm Swagelok-type cell
(Cambridge Energy Solutions, Cambridge, UK), which was placed in an oven and connected to
the Gamry Interface 1010E. To ensure thermal equilibrium, the Swagelok cell was left inside
the oven for roughly 2 h at the same temperature. The temperature was constantly monitored
through a RS1314 dual thermometer (RS Components Ltd., Corby, UK) in contact with the
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surface of the Swagelok-type cell. The conductivity of the electrolyte was calculated according
to [33] using Equation (5):

σ =
t

AR
(5)

where σ is the conductivity in S/cm, t and A are the thickness and surface area of the elec-
trolyte, respectively, and R is the bulk resistance obtained from the impedance spectroscopy.
The value of the bulk resistance is obtained by fitting the data using a circuit for non-ideal
blocking electrode [34,35], as shown in Figure 1. Rb represents the bulk resistance of the
electrolyte, a constant phase element (CPEd) is used to represent the non-ideal behaviour of
the geometrical capacitance of the solid polymer electrolyte (SPE)/electrode structure, and
a constant phase element (CPEe) is used to represent the non-ideal behaviour of the electric
double layer at the SPE/electrode interfaces.
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Figure 1. Representation of the circuit used for fitting.

The contact angle has been measured using a theta lite instrument from Biolin Scientific
(Manchester, UK) using the sessile-drop technique with deionized water droplets of about
1.5 µL. Following initial testing, there was evidence that the water droplets were leaving
impressions in the surface of the samples, probably indicating partial dissolution of material
within the time-frame of the experiment. Consequently, the measurements are an average
of three values taken during the first few seconds of contact with the surface to try to
minimise changes to the nature of the DI water.

3. Results and Discussion
3.1. X-ray Diffraction Analysis

The XRD data collected for all samples are shown in Figure 2. Typical peaks of the
crystalline phase of PEO are the single peak at 19 degrees and the triple peak at 24 degrees.
The halo underneath is an indicator of an amorphous phase, since PEO is a semi-crystalline
polymer [21]. Peaks associated with crystal complexes instead are not present suggesting
that PSf is able to prevent their formation, detrimental on the overall ionic conductivity [36],
as they have been observed below 20/1 EO/Li ratio [20,37]. While the crystallinity of PEO
is near 70%, consistent with data reported by other authors [38], the addition of 10% in
weight of PSf and 50/1 LiTFSI for the PS9150 samples brings it down to 61.8%, and this
is further reduced by increasing PSf up to 30% in weight for the PS7350 samples which
allows a crystallinity of 44.4%, as shown in Table 1. Decreasing the EO/Li ratio from 50/1
to 16/1 further reduced the crystallinity, but the effect is limited as the minimum value
achieved was 35.6%.

3.2. Differential Scanning Calorimetry Analysis

The heat–cool–heat cycle is thought to cancel the thermal history of the samples, which
depends on the manufacturing and storage of the films [39]. Therefore, the second heating
cycle is taken as reference for the properties displayed in Table 2.

In Figure 3, the normalised second heating scan of all the samples is shown with
melting peaks and glass transition temperatures. The melting temperature value decreased
as the concentration of PSf and LiTFSI increased with the exception of the PS7320 sample. Its
behaviour suggested that a different interaction between the PEO–PSf–LiTFSI is produced
at this composition. Data for melting point, glass transition temperature, enthalpy of
melting, and crystallinity percentage are shown in Table 2. Also, crystallinity computed
using Equation (1) is compared to the crystallinity obtained by XRD using Equation (2).



Polymers 2023, 15, 2581 6 of 15

Polymers 2023, 15, x FOR PEER REVIEW 6 of 16 
 

 

 
Figure 2. XRD scan for PEO only and all PEO–PSf compositions with offsets on the intensity scale 
to clarify observation. 

3.2. Differential Scanning Calorimetry Analysis 
The heat–cool–heat cycle is thought to cancel the thermal history of the samples, 

which depends on the manufacturing and storage of the films [39]. Therefore, the second 
heating cycle is taken as reference for the properties displayed in Table 2.  

In Figure 3, the normalised second heating scan of all the samples is shown with 
melting peaks and glass transition temperatures. The melting temperature value de-
creased as the concentration of PSf and LiTFSI increased with the exception of the PS7320 
sample. Its behaviour suggested that a different interaction between the PEO–PSf–LiTFSI 
is produced at this composition. Data for melting point, glass transition temperature, en-
thalpy of melting, and crystallinity percentage are shown in Table 2. Also, crystallinity 
computed using Equation (1) is compared to the crystallinity obtained by XRD using 
Equation (2).  

 

Figure 2. XRD scan for PEO only and all PEO–PSf compositions with offsets on the intensity scale to
clarify observation.

Table 2. DSC second-heating data with XRD crystallinity comparison.

Sample

Tc,
Crystallization
Peak Tempera-

ture (◦C)

TM,
Melting Peak

Tempera-
ture (◦C)

Tg, Glass
Transition

Temperature (◦C)

∆He,
Enthalpy of
Melting (J/g)

XC(DSC),
Crys-

tallinity DSC

XC(XRD),
Crys-

tallinity XRD

PEO 47.73 66.56 −47.70 130.6 63.71% 68%

PS9150 42.12 64.03 −47.76 125 60.98% 61.8%

PS8250 40.38 60.36 −47.60 102 49.76% 49.00%

PS7350 38.73 59.3 −47.64 87.15 42.51% 44.40%

PS7330 31.78 51.93 −47.69 56.79 27.70% 43.90%

PS7320 36.60 58.15 −47.71 83.93 40.94% 39.00%

PS7316 27.63 46.21 −47.84 48.05 23.44% 35.60%

The values measured for the glass transition temperature are very close to each other
and to virgin PEO, while the PSf glass transition temperature is known to be at a higher
temperature range. Since the effect of PSf is evident from the mechanical and electrical
properties, the observed single glass transition temperature suggests that it does belong to
a PEO-rich phase but there is at least a PSF-rich phase with a glass transition outside of the
temperature range −85 ◦C to 100 ◦C.

Moreover, at close to room temperature, the environmental effect can significantly
affect the measurements, and this can justify the discrepancy between the PS7316 and
PS7330 samples. The discrepancy between the two crystallinity values is high but the peak
crystallization for these compositions is 27 ◦C and 31 ◦C, respectively, which might have
caused a crystallization over time that has affected the measurements [38].
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3.3. Electrochemical Impedance Spectroscopy Analysis

The EIS curves taken at different temperatures for the PS7330 samples are shown
in Figure 4.
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As commonly happens [40], the increase in temperature causes a reduction of the
resistance and, therefore, an increase in conductivity. The trend is common to all sample
configurations (Figure 5).

The conductivity at 25 ◦C measured in this work for the PS9150 samples (4.83 ×
10−5 S/cm) is higher than reported in previous work [28], and, generally, considered a
high value [21,41,42]. This could indicate that the longer dissolution time in the film-
manufacturing approach was particularly beneficial. In comparison, this value was better
than the ionic conductivity at 25 ◦C for both PS7350 samples (3.11 × 10−5 S/cm) and
PS8250 samples (3.62 × 10−6 S/cm). The PS7330 and PS7316 samples with the high
concentration of salt showed higher conductivity with values of 1.17 × 10−4 S/cm and
1.91 × 10−4 S/cm, respectively. The PS7320 samples showed lower conductivity values
over the entire temperature range, compared with the PS7330 samples. This might be seen
as counterintuitive, as a higher amount of salt should represent a higher ionic conductivity,
but this specific composition did not follow a pseudo-linear trend in any of the other
characterizations performed in this study. As the results from the DSC suggest, the samples’
morphology comprises several phases, where the amorphous phase(s) is responsible for
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most of the ionic conductivity. The lower conductivity of the PS7320 samples can, probably,
be related to a different morphology, which allows for a different degree of crystallization.
This, in turn, hinders the conductivity, as evidenced by the diverse interaction between the
components shown by the FT-IR analysis which follows. From Figure 5, it is also worth
noticing that at the temperature of 5 ◦C, which still represents an operating temperature
for structural solid-state batteries, the ionic conductivity of the PS9150 samples averages
at 1.88 × 10−5 S/cm, the PS7330 samples show values around 2.85 × 10−5 S/cm, and the
PS7316 samples exhibit a remarkable 4.71 × 10−5 S/cm. Overall, the composition which
demonstrates the highest conductivity for the whole temperature range is certainly that
of the PS7316 samples. However, when considering the multidisciplinary approach being
considered in this article, the mechanical testing results still need to be taken in tandem
with the conductivity measurements.
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3.4. Fourier-Transform Infrared Spectroscopy Analysis

The most important peaks to identify the organic components are in the range of
1800 cm−1 to 700 cm−1 (Figure 6b). The triplet peaks centred at 1090 cm−1 are associated
with the crystalline phase of PEO [24,34], and appear slightly shifted with an increasing
amount of PSf, suggesting some interaction between the two polymers. Similarly, when the
LiTFSI salt content is increased, the relative ratio of the triplets is significantly modified,
indicating that the salt is altering the crystalline phase, as observed in the data from the
XRD and the DSC. The peak around 1193 cm−1 is associated with the CF3 stretching [43]
and its intensity increases with the amount of salt.

The small peaks at 1359 cm−1 and 1340 cm−1 can be associated with the methylene
group wagging (-CH3) in the crystalline phase and tend to merge and broaden with the
increasing amount of PSf and LiTFSI. This could suggest an interaction between these
components and the crystalline phase of PEO. The low-intensity peak at 865 cm−1 is related
to the benzene ring [27] of the PSf, but does not appear to be influenced by the overall
composition of the blend.

The peak at 1240 cm−1 and 1280 cm−1 can be associated with the twisting of the
CH2 bond [44], and the variation of their relative ratio can be associated with a different
orientation of the PEO chains [45]. This is increasingly modified with higher amounts of
PSf and LiTFSI, and it can be related to the superior mechanical properties of the blends
with 50/1 EO/Li ratio. The peaks at 840–850 cm−1, and, to a lesser extent, at 2800 cm−1
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(Figure 6a), are slightly modified by the addition of a high amount of LiTFSI. This indicates
a complexation, as shown by Wen et al. [46], even if for a relatively low amount of salt as in
16/1 EO/Li ratio the variation is limited. Additionally, the broad peak above 3000 cm−1

can be associated with water absorption, as the salt has the tendency to absorb it from
the environment much more readily than PEO. Another couple of peaks of interest are
placed at 1030–1070 cm−1 which can be related to the sulfonyl group SO2 [47], but also
overlap with PEO. The increasing amount of PSf and then LiTFSI causes a change in the
overall shape of the absorption curve, with a marked increase of the latter for the PS7330
composition and PS7316 composition, for which it is higher than the PEO crystalline peaks,
and less intense for PS7320 composition. This suggests that the PSf or LiTFSI (as both
possess SO2) have a different interaction at this concentration, which could relate to the
different mechanical properties. The PS7320 samples have a higher maximum stress, while
the PS7316 ones display brittle fractures, and this might be due to the strong interfacial
bond responsible for the separation of the amorphous phase from the crystalline phase.
A summary of peak wavenumbers and vibration modes is shown in Table 3.
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Table 3. Summary of FT-IR peaks.

Wavenumber (cm−1) Vibration Modes

840–850 CH2 rocking

865 Benzene ring

1030–1070 SO2

1090 C-O-C (crystalline)

1193 CF3 stretching

1240–1280 CH2 twisting

1340–1359 CH3 wagging

>3000 O-H stretching (water)

3.5. Micro-Tensile Testing

The micro-tensile testing data recorded during the test are force and displacement. The
nominal stress is calculated using the initial area of the specimens obtained as an average
of several values of thickness and width measured along the length of the specimen. Before
each test, the specimens were observed with optical microscopy to identify the typical
distribution of the crystals and ratio between the amorphous and the crystalline phases. In
order to assess the effects of the PSf and the Li salt, a number of pure PEO samples were
tested as reference. The average stress-elongation curve obtained for the pure PEO is shown
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in Figure 7a. The polymer shows a linear elastic behaviour up to the maximum stress
recorded (over 10 MPa), and, then, the corresponding number and extension of the voids in
the amorphous phase are responsible for the observed drop in the stress-elongation curve
from 0.25 mm. The sample after the peak stress can sustain a continuous deformation, with
a constant stress around 8 MPa until the extension of the voids significantly reduce the
strength of the film and the stress drops to zero.
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Following the trend observed in the previous study [28], the main focus in this work
was on the PEO–PSf 70-30 ratio compositions, which had shown the best mechanical
properties in that study. One immediate observation was that the small variation in the
manufacturing procedure had a significant impact on the mechanical properties. The PEO
(Figure 7a) achieved a maximum stress of 10 MPa ± 3.3 MPa and a Young’s modulus of
690 MPa ± 140 MPa. The literature reports different values for PEO [48–50]. The addition
of LiTFSI or other salts is known to reduce the mechanical properties of PEO [20], and it has
been observed that thickness variation can have an impact on mechanical properties [51,52],
and large fluctuations are also observed in salt-containing blends [53].

The average stress-elongation curves for the composite samples are shown in Figure 7b–f,
with a macroscopic image taken at 1.5 mm elongation for all the samples except for PS7316,
for which rupture had occurred at around 0.4 mm. A summary of the average Young’s
modulus and maximum stress values, which are obtained from the stress-elongation curves,
are in Figure 8a,b. Figure 7b displays the curve for the PS9150 samples, which appears to
have a mostly ductile behaviour, as the curve has a steep onset and then stabilises around
the stress value of 17.5 MPa. A similar trend is shown by the PS8250 samples (Figure 7c),
which also reaches a peak at around 17 MPa, before decreasing and stabilising at around
14 MPa. Figure 7d shows the stress-elongation curve for the PS7350 samples. In this case,
the samples displayed slight shifting towards a brittle behaviour, as also confirmed by the
image taken during the test and shown underneath the curve. Nonetheless, the samples
in Figure 7d still manage to sustain up to about 16 MPa of stress. Figure 7e displays the
averaged stress-elongation curve for the PS7330 samples, which also appears to have a
somewhat brittle nature, reaching a peak at around 10 MPa and then displaying a slow
decrease in the stress handling. As indicated by the previous characterization methods,
the PS7320 samples once again behave in an ambiguous way compared to the PS7330 and
PS7316 compositions. Figure 7f shows the averaged stress-elongation curve for the PS7320
samples, revealing a behaviour similar to the PEO–PS9150 samples, as the curve steeply
reaches and holds about 13 MPa of stress. This is also confirmed by the image of the sample
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shown in Figure 7f, as the sample itself is deformed in a dissimilar way compared to the
sample’s images in Figure 7e,g.
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Finally, the curve for the PS7316 samples is shown in Figure 7g where, as expected,
the behaviour is clearly brittle, and the samples show little elastic deformation and failure
after a limited elongation. A closeup view of the fracture area of a PS7316 sample is shown
in Figure 9c.
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The Young’s modulus of PSf is around 2.5–3 GPa [54,55], while the PEO blends
containing 10 and 20% in weight PSf are above 1 GPa (Figure 8a) and the modulus is
still around 800 MPa for PS7350, PS7330, and PS7320. The minimal impact of the salt
addition on the mechanical properties seems valid until the salt content is high enough to
dramatically influence the modulus, as seen for PS7316, where the value is below 200 MPa.
The maximum stress follows a similar trend, as the addition of 10% in weight PSf increases
the value from about 10 MPa to close to 19 MPa, but a further increment of 20 and 30% in
weight reduces this value to 17.5 and 16 MPa, respectively. Increasing the salt content, as
in the case of PS7330, reduces the value further to 10 MPa, similar to the value for pure
PEO. The PS7320 samples have, surprisingly, higher resistance, that dramatically drops to
about 2 MPa for the PS7316 samples (Figure 7g). The deformation of the samples evolves
through the formation of voids and crazing which indicate a ductile behaviour, which likely
generate at the interface between different compositional variations of the amorphous
region. The addition of PSf and, more importantly, LiTFSI changes the behaviour of the SPE.
Increasing the PSf produces large voids (Figure 9a), while increasing the amount of LiTFSI
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makes the voids smaller and more spread throughout the amorphous phase (Figure 9b).
For the highest concentration tested, the samples break because the amorphous phase
separates easily from the spherulitic phase (Figure 9c). The samples containing a uniform
amount of LiTFSI deform through large voids (200 µm) oriented in the force direction, but
there are no clear connecting fibrils across the boundaries (Figure 9a), suggesting that the
mechanism involved at interfaces between phases is cavitation, similarly to that reported
by Zhou et al. [56]. Similar voids are observed at higher LiTFSI content (Figure 9b). For
the PS7316 samples, it is noticeable that the breaking occurs at a much lower stress, and
decohesion between the crystalline phase and amorphous phase is evident (Figure 9c). This
is probably because the interaction between the PEO and the PSf phase is now changed,
as suggested by the FT-IR. No significant trend is observed for the crystallite dimension,
although a better polarizing microscopy might help in visualizing small crystallites, as
the average size of the visible ones is typically 200 µm. The average Young’s modulus
measured are higher than what would be expected from a binary blend as it does not follow
a simple series or parallel model [57].

A summary of the mechanical and electrical properties of the films is reported in
Table 4 below. A comparison with solid polymer electrolyte films produced by other
authors is included.

Table 4. Comparison between two of the films produced for this work and some of those from
different authors.

SPE EO:Li Ratio E-RT (MPa) σmax at RT (MPa) σ at RT (S/cm) Ref.

PS9150 50:1 1410 19.20 4.83 × 10−5 -

PS7330 30:1 820 10.03 1.18 × 10−4 -

PEO with 1% wt GO 20:1 - 1.31 1.5 × 10−6 [16]

PEO–PVdF with 2% wt ZnO 10:1 - 2.35 6 × 10−5 [23]

PEO/PSf copolymer with succinotrile 8:1 - 14.7 10−7 [26]

PEO–PESf–PVC 16:1 - - 10−5 [27]

PEO–LiTFSI–LAGP60 20:1 103.4 2.3 2 × 10−6 [20]

PEO–LiBF4–LAGP20 20:1 400 12 [13]

3.6. Contact Angle

To evaluate the hydrophilicity of the films, the contact angle has been measured for all
the samples (Figure 10a,b).
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The measured angle of pure PEO is nearly 80◦ (Figure 10a), similar to the value
reported by Ramires et al. [58] for PEO films. The addition of PSf, which has a similar
contact angle [59], and LiTFSi, which is a highly hygroscopic salt, cause the film to be more
hydrophilic, since the results show that the angle is reduced to about 68◦ for PS9150 and
PS8250, and reaches 65◦ for PS7350. The reduction is related to the addition of the salt or
the PEO–PSf-LiTFSI interaction since PSf concentration appears to have limited influence
on the contact angle value. The addition of a higher amount of salt has no effect for PS7330
as it has the same angle as PS7350 at 65◦ but a further increase makes the material more
hydrophilic since PS7320 and PS7316 have contact angles around 50◦ and 47◦, respectively

4. Conclusions

Different blends of PEO–PSf–LiTFSI with different weight ratios of PEO–PSf and
EO/Li have been prepared and characterised.

• The addition of PSf and LiTFSI improves the mechanical and electrical properties of
PEO and makes it more hydrophilic;

• DSC suggests the presence of multiple phases, based on deductions from additional
characterisation results;

• The best combinations are: PS9150, with 4.83 × 10−5 S/cm at room temperature, a
maximum stress of 19.2 MPa and a Young’s modulus of 1410 MPa, and PS7330, with
1.18 × 10−4 S/cm at room temperature, a maximum stress of 10.02 MPa, and a Young’s
modulus of 820 MPa;

• There is a threshold in the amount of LiTFSI that can be added to still have good
mechanical properties as suggested by the PS7316 composition, which showed a
brittle failure and significantly lower modulus and maximum stress compared to all
other compositions.
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