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Abstract: We studied the translocation of polyelectrolyte (PE) chains driven by an electric field
through a pore by means of molecular dynamics simulations of a coarse-grained HP model mimicking
high salt conditions. Charged monomers were considered as polar (P) and neutral monomers as
hydrophobic (H). We considered PE sequences that had equally spaced charges along the hydrophobic
backbone. Hydrophobic PEs were in the globular form in which H-type and P-type monomers
were partially segregated and they unfolded in order to translocate through the narrow channel
under the electric field. We provided a quantitative comprehensive study of the interplay between
translocation through a realistic pore and globule unraveling. By means of molecular dynamics
simulations, incorporating realistic force fields inside the channel, we investigated the translocation
dynamics of PEs at various solvent conditions. Starting from the captured conformations, we
obtained distributions of waiting times and drift times at various solvent conditions. The shortest
translocation time was observed for the slightly poor solvent. The minimum was rather shallow,
and the translocation time was almost constant for medium hydrophobicity. The dynamics were
controlled not only by the friction of the channel, but also by the internal friction related to the
uncoiling of the heterogeneous globule. The latter can be rationalized by slow monomer relaxation in
the dense phase. The results were compared with those from a simplified Fokker–Planck equation for
the position of the head monomer.

Keywords: translocation; polyelectrolytes; Fokker–Planck equation; molecular dynamics simulation

1. Introduction

In nature, charged polymers such as proteins or RNAs are imported into, or exported
from, the cell nucleus by translocation through a nuclear pore [1]. These processes involve
helper molecules (importins/exportins). Translocation through a single pore has also been
implemented in the laboratory [2], which was mainly performed to study DNA sequences
carrying negative charges only. In laboratory setups, translocation is usually driven by an
electric field, and the applied trans-pore electric potential, around 200 mV, is much larger
than the cell transmembrane potential of ∼50–70 mV.

The translocation of polyelectrolytes (PEs) [3–5] is ensured by an external electric field
with an electric potential drop that is localized across the pore [6]. A long open PE chain
experiences entropic confinement and a free energy penalty upon insertion in the pore,
which acts against translocation. In moderate salt and weakly poor solvent conditions,
a PE forms partially globular structures of the pearl-necklace type, due to the interplay
between electrostatic repulsion and cohesive surface energy [7,8]. The presence of open
tails helps the PE to be captured by the pore [9]. However, the globular part should unfold
while engaging into the pore. Nucleating a small globule on the trans side can entail a
(secondary) free energy barrier against translocation if the solvent is poor enough. High salt
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conditions are typical in vitro, where the electric current of small ions is essential. In high
salt conditions, the electrostatic repulsion is screened, and the PE forms a single globule.
The neutral monomers are hydrophobic (H), while charged ones are polar/hydrophilic (P).
There are H/P composition profiles inside the globule. However, due to the high salt,
electrostatics plays no direct role in the PE structure. The energetic aspect of the unwinding
of heteropolymers by external force has been studied using Monte Carlo simulation, and it
was found that the hydrophobic part (core) was more resilient against unfolding [10].

In this work, we focus on the influence of the hydrophobicity and the heterogeneous
structure of PE globules on PE translocation. This dynamic process was studied using
molecular dynamics simulations. We assumed an overall high salt condition where elec-
trostatic interactions between monomers were mainly screened. We only distinguished
the hydrophobicity of the monomers and assumed that each monomer was either charged
hydrophilic (P) or neutral hydrophobic (H). The so-called HP model [11–13] captured the
corresponding physics.

In order to consider the channel properties, we modeled the translocation of the
PEs through the α-hemolysin pore by applying a realistic force field extracted from the
channel potential along the pore [14,15]. α-hemolysin is representative of the class of
asymmetric pores and is widely used for the in vitro study of translocation. α-hemolysin
has a (positively) charged cis protrusion, which favors the presence of (negatively) charged
biopolymer sequences in the vicinity of the pore entry. The trans edge is negatively charged.
Two regions, the cis vestibule and a trans channel stem, are separated by a narrow con-
striction, about 3 nm long and 1 nm wide, which is essentially polar. The α-hemolysin
channel has an electrostatic structure that influences the preferential translocation of neg-
atively charged ions. In an early Monte Carlo simulation study [15], we incorporated
realistic potential profiles of the α-hemolysin pore in a discrete manner to investigate the
sequence dependence of the translocation of polyampholytes. In this study, we utilized
the continuous force field of α-hemolysin to incorporate molecular dynamics simulations.
The translocation dynamics of negatively charged open polymers through the α-hemolysin
have been addressed by Muthukumar et al. [16–18]. Some simulation studies for open PE
translocation incorporating electrostatic interactions are available for a generic pore with
an explicit salt [5,19]. There are only a few works on the translocation of homopolymers
in poor solvent conditions [20,21]. To our knowledge, the translocation of globular het-
eropolymer PEs, such as globular proteins abundant in nature whose conformations are
partially denatured or possibly in the wet globule state [22], has not been addressed.

We performed molecular dynamics simulations of PEs to obtain the statistics of translo-
cation behaviors for various solvent conditions and for various chain lengths. Based on
a simplified theoretical model in which electrical and solvent effects are incorporated
into the potential energy for PE translocation, we rationalized the time scales obtained
from simulations.

2. Molecular Dynamics Simulation
Simulation Model

In the molecular dynamics simulations, we considered PE chains crossing a wall
through a pore. A PE chain consists of charged monomers and neutral monomers, both
of which have a size of σ. Every third monomer carries a (negative) unit (elementary)
charge −1. These P-type hydrophilic monomers were labeled as 1. Other monomers are
electrically neutral without a charge. These H-type hydrophobic monomers were labeled
as 0. Our simulations considered chains of various lengths (100)n, (010)n, and (001)n in
which (100), (010), and (001) were repeated n times, respectively.

We modeled the PE using a bead-spring chain of charged Lennard–Jones (LJ) particles
consisting of N beads each with a diameter σ. The interaction between two particles
was modeled by an LJ potential: ULJ(r) = εLJ[(σ/r)12 − 2(σ/r)6 − (σ/rc)12 + 2(σ/rc)6].
Here, εLJ represents the strength of the LJ potential; r denotes the center-to-center distance
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between two interacting particles; and rc is the cut-off distance. The excluded volume
interactions were modeled by the Weeks–Chandler–Andersen (WCA) potential.

For interactions between neutral monomers, we used the LJ potential without a
cut-off length. Different values of εLJ = εHH were chosen to take into account various
values of hydrophobicity. We assumed that the electrostatic interactions outside of the
channel were screened, but charged monomers remained hydrophilic. Hence, we set the
interaction parameters εPP between two charged monomers to be 0.6 kBT with a cut-off
distance rc = 21/6σ [12]. These interactions were considered to be purely repulsive. The
same repulsive interactions were assumed between a neutral monomer and a charged
monomer εHP = εPP. Charged monomers were assumed to only be under the influence
of the external electric field inside the channel; hence, they were driven from the cis to the
trans side.

In order to vary the solvent conditions, we set the value of the interaction param-
eter εHH between neutral monomers 0.3, 0.5, 0.7, 0.9, and 1.1 kBT so that the polymers
would be near the theta or poor solvent condition. The chain connectivity was ensured
by the finite extension nonlinear elastic (FENE) potential between two consecutive beads,
UFENE(r) = −0.5 kr2

0 ln[1− (r/r0)
2], where the spring constant is taken as k = 30 kBT/σ2

and the maximum bond length as r0 = 1.5σ [23].
A bilayer membrane was modeled as a double wall of thickness l = 5σ. Considering

that α-hemolysin pore is 10 nm long, 1σ is about 2nm in real units. The wall divides
the space into two subspaces: the cis and trans regions. For simulations, the common
steric influence was handled by including the repulsive forces caused by the particles that
made up the wall. Our simulation was set in infinite space. We put finite size membrane
in a separate cis side and trans side. Each wall of membrane spanned lateral areas of
20σ× 20σ for N = 30 or 40σ× 40σ for N = 90, which is large enough to ensure that the
chain does not cross the membrane from the outer periphery in a good solvent condition.
Figure 1 illustrates the wall, which had the lateral dimensions of 20σ× 20σ. The pore was
a 2σ × 2σ hollow at the center of the membrane. As we were mainly interested in the
behaviors of polymers, we assumed that beads constituting the wall were not mobile. The
Lennard–Jonnes parameters between the mobile monomers and immobile beads were set
to be εwm = 1.0 kBT with a cut-off distance of rc = 21/6σ so that the interactions would be
purely repulsive.

A pore perforated the membrane along z-direction.
The full scale simulation, including charge structure and the polarization of materials

due to the electric field, would be a formidable task to execute. We first extracted the
electrostatic part of the free energies Uel , which was applied the to charged particles inside
of the channel in accordance with Ref. [14] (See Figure 2). A driving electric field was set
across the pore (−1σ < z < 5σ), and the potential difference between the cis and trans
regions was ∼5.8 kBT per elementary charge, which corresponds to 150 meV at room
temperature. Hence, the magnitude of force, on average, acting on the charged monomer
would be ∼1 kBT/σ, which corresponds to ∼2 pN in real unit. The net electric force acting
on the chain depends on the number of charges and their positions inside the channel.
The electrostatic contribution to the free energy isthe opposite for cations and anions,
and the odd part of the free energy corresponding to the electrostatic energy vanishes when
averaging over. We took the average in order to get the remaining even part of the free
energy with respect to the charge, and we subtracted the average to get the odd part, which
was assimilated to the electrostatic contribution of free energy Uel . It was straightforward
to get the force by taking the derivative from the odd part of the free energy for small
ions: − dUel

dz . The corresponding force field of the α-hemolysin pore of electrostatic origin is
shown in Figure 2.
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Figure 1. Schematics of the translocation process. A bilayer membrane of thickness l = 5σ separates
the cis and trans regions. Negatively charged polymers engage through the pore and are driven by
electric field from the cis side to the trans side. Snapshots show conformations of captured PEs at
various solvent conditions. Blue colored monomers carry charge and are considered as hydrophilic
(polar). Yellow colored monomers are electrically neutral and are hydrophobic. Hydrophobic
monomers interact through an attractive Lennard–Jones potential of strength εHH.

Figure 2. The force field (top) and the free energy (bottom) of electrostatic origin when external
electric potential 150 mV is applied across α-hemolysin pore. Total potential drop is ∼5.8 kBT over
the distance of 6σ (=12 nm). The unit of force kBT/σ corresponds to ∼2 pN in real units. Forces
also reflect the fixed charge arrangement inside the channel. Blue lines are for anions and red lines
for cations.

In order to describe the motion of beads, we integrated the following equation with
the total energy U:

M
dv(t)

dt
= −ζ

∂ri
∂t
− dU

dri
+ fR(t),

where ζ is the frictional coefficient, and M is the mass of the bead. The Gaussian random
force fR has a zero average 〈fR(t)〉 = 0 and correlations 〈fR(t) · fR(t′)〉 = 6kBTζδ(t− t′).
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We integrated Newton’s equations of motion using the velocity Verlet algorithm with an
integration time step δt = 0.005 t0, where t0 = σ(1/kBT)1/2 is the characteristic time scale
with bead mass M = 1. A Langevin thermostat with the damping constant 1.0 t−1

0 was used
to keep the system at the fixed temperature T = 1.0.

Since only a very small percentage of attempts was successfully engaging, we set the
head monomer at the trans side channel edge (z = 0 in Figure 1) and equilibrated the chain
before the measurement of translocation time. We first performed runs over time ∼N2t0 for
the chain to relax to its equilibrium distribution, with the head monomer kept at the trans
side wall (z = 0). After equilibration, we ran until the chain was translocated or rejected.
The successful translocation means that the tail of the chain leaves the pore completely
to the trans side (z ≤ −1σ). If the head of the chain is retracted to the cis side boundary
(out of the pore), z ≥ 5σ, it is considered to be a rejection. Once the chain is rejected, it is
not allowed for re-entry. Any attempt to enter the pore should overcome the entropic free
energy barrier. It is treated as a new attempt.

The probability of being captured would depend on the channel structure. Here,
we may assume that the PE is captured when the head monomer is located inside the
channel ∼2σ away from the trans-side wall (Figure 1). Prior to the simulation study of
the translocation time of a (hydrophobic) PE, we obtained the probability that the head of
the captured polymer reached the trans side wall, which was the starting position of the
simulations. The probabilities that the head of the chain of N = 30 would reach the trans
side wall (z = 0) starting at the captured position (z = 2σ) were 0.17, 0.13, 0.07, 0.03, and
0.01 with average times of 24–29 (29, 28, 25, 24, and 29) and standard deviations of 15–22
for εHH = 0.3, 0.5, 0.7, 0.9, and 1.1, respectively. Below, we report the translocation time
starting at the trans side wall.

3. Results
3.1. Translocation Times and Their Dispersions: (100)n Sequences

We measured the number of monomers in the trans side nt to identify translocation
times for various solvent conditions characterized by εHH. If a monomer entered the trans
region (z ≤ −1σ), it was counted as a translocated monomer. We show the translocation
times tt for chain length N = 30 and N = 90 in Table 1 and Figure 3.

Table 1. Translocation times of PE (a) N = 30 and (b) N = 90 with various values of εHH. εHH = 0.1
and 0.3 correspond to good and theta solvent conditions, respectively.

(a) N = 30

εHH success rate tt tw td

0.1 1.00 260 ± 50 71 ± 29 189 ± 39
0.3 1.00 251 ± 41 65 ± 28 187 ± 39
0.5 1.00 235 ± 54 71 ± 37 163 ± 35
0.7 0.99 261 ± 57 91 ± 52 170 ± 31
0.9 0.94 327 ± 97 148 ± 90 179 ± 42
1.1 0.68 413 ± 130 212 ± 123 201 ± 43

(b) N = 90

εHH success rate tt tw td

0.1 1.00 1035 ± 144 69 ± 35 966 ± 134
0.3 0.99 974 ± 132 71 ± 38 903 ± 124
0.5 0.98 881 ± 100 76 ± 42 805 ± 91
0.7 0.96 1006 ± 157 106 ± 69 900 ± 130
0.9 0.88 1333 ± 280 212 ± 149 1121 ± 195
1.1 0.53 1959 ± 810 328 ± 207 1631 ± 714

The waiting time tw is the MD time required for the number of trans side monomers
to be nt = 5. The chain does not retreat back once the number of translocated monomers
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nt reaches five. This cut off point nt has been found to be nearly independent of the chain
length N. This is consistent with the fact that the retreating force mainly depends on the
local structure of the globule and is almost independent of the chain length. In poor solvent
conditions, nt = 5 suffices to ensure nucleation in the trans side. This condition does not
depend on the remaining chain length in the cis side. In good or intermediate solvent
conditions, the entropic free energy of the chain dangled in the cis side only grows with
chain length logarithmically. Hence, the free energy barrier to enter the pore has very weak
N dependence, so the cut-off point remains nearly constant. In our model, nt is a discrete
variable, and every third monomer carries a charge. This periodicity suppresses the weak
variation in the cut-off point that is expected in a continuous model.

Figure 3. (a) Total translocation time tt, drift time td, and waiting time tw of PEs for N = 30 (left) and
N = 90 (right) at various solvent conditions. (b) Translocation times tt (black) and waiting times tw

(red) as a function of chain length N for εHH = 0.3 (•) and εHH = 0.9 (�). (c) Probabilities of successful
translocation at various εHH for N = 30 and N = 90. (d) Distributions of total translocation times
tt, drift times td, and waiting times tw measured for N = 30 and N = 90 with εHH = 0.3 and 0.9,
respectively. The mean values are indicated as dotted lines.

After tw, the time until the tail of the chain leaves the channel is the drift time td.
The total translocation time tt is the sum of tw and td (See Figure 4). The waiting time tw
shows stronger solvent condition dependence than td, which is mainly determined by the
chain length. The overall translocation time tt increases with increasing εHH values for
εHH ≥ 0.5, together with relative standard deviation. In the driven regime, nt(t) increases
with time (step-wise) linearly with some fluctuations of ∼±2. For very poor solvent
conditions, εHH ≥ 0.9, the process accelerates at late times, which implies the formation of
stable globules in the trans side. Some movie files are available in Supplementary Materials.
Consistent with the results restricted to homopolymers [20], we found that the translocation
time at good solvent (e.g., εHH = 0.1) or theta solvent (e.g., εHH = 0.3) conditions was
somewhat longer than that in weakly poor solvent conditions (e.g., εHH = 0.5) because
the PE was not globular yet and did not need to be uncoiled. The PE at εHH = 0.5 was
slightly more compact than at εHH = 0.3, and the entropic force against translocation was



Polymers 2023, 15, 2550 7 of 21

smaller. In contrast to the results reported for homopolymers [20], the minimum in the
translocation time at a weakly poor solvent condition was very shallow, and, for moderate
hydrophobicity, the translocation time appeared almost independent of εHH. After the
shallow minimum, the translocation time markedly increased with hydrophobicity. Given
that we considered a regular PE, the dispersion in translocation times remained moderate
(See Figure 3d).

Figure 4. (a) The number of monomers in the cis side (blue) and the trans side (red) in a simulation
run (εHH = 0.7 and N = 30). The waiting time tw is the MD time required for the number of trans side
monomers to be n∗t = 5. After tw, the time until the tail of the chain leaves the channel is the drift
time td. Representative conformations are shown in (b). From left to right, the figures show an initial
conformation of PE at gate, a conformation in waiting period and in drift regime, and a conformation
almost translocated. Yellow and blue monomers represent H- and P-type monomers, respectively.

The entropic penalty is against the engagement of the PE toward the narrow chan-
nel. In good solvent conditions, the electrostatic driving force fel should be balanced by
the entropic force at the start. At the steady state, the net force is balanced by friction,
f = ζ dnt

dt . As translocation proceeds, more monomers are accumulated in the trans side.
Then, entropic force is favorable for translocation, and the drift becomes faster. The drift
speed is almost constant at εHH = 0.5. In poor solvent conditions, the globule should
unfold in order to engage through the narrow channel. The friction involved in passing
through the corrugated channel potential adds up with the internal globule friction upon
unwinding. As more and more monomers translocate, the surface tension becomes favor-
able for translocation and further promotes drift. Upon analyzing the translocation process
(See Figure 5a), we distinguished two regimes: (1) the waiting period and (2) the driven
period. The captured chain was waiting for further uncoiling or to overcome entropic
force. The waiting period ended when the translocated length reached the sufficient length
n∗t (≈ 5).

As shown in Figure 3 and Table 1, for the given N, td moderately increased with εHH.
The effective friction ζeff also increased moderately with increasing εHH (Table 2). The
simulation data in Figure 5b is the average of 100 trials after resetting tw to t = 0. The
effective friction ζeff reflects the channel friction and internal globule friction, depending
on the density of the globular structure. In an early regime of the drift, nt(t) grows
with time linearly. We extracted the effective friction ζeff from the slope via the relation
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ζeff ∼ fe/(dnt(t)/dt) and assumed that the driving force fe was almost constant. This
result for ζeff is summarized in Table 2.

The slope shows the time dependence of the translocation speed (Figure 5b). The flat
speed in the inset captures the drift regime. For nt(t) > N/2, the slope dnt(t)/dt changed
as the trans globule promoted the translocation process at later times, and the effective
friction was reduced accordingly. This effect was more evident for larger εHH. The process
accelerated as the imbalance of surface tension contributed as the driving force. The depen-
dence of the translocation speed on nt could be interpreted as the change in the effective
friction as reported for polymers ejected out from a cavity [24,25].

Table 2. The effective frictional constant obtained from early (drift) regime by the slope ∼dnt(t)/dt
assuming the constant force. The number in the parenthesis is from the average slope for times
nt < N/2. Fitting results, k′ and ζ, are obtained according to Equation (2) in drift regime (t > tw).

εHH
N = 30 N = 90

ζeff k′ ζ ζeff k′ ζ

0.3 20.0 (21.6) 2.00 18.1 23.6 (24.1) 0.2 23.0
0.5 17.4 (20.3) 1.90 15.8 21.4 (22.4) 0.5 20.5
0.7 18.8 (24.3) 2.50 16.7 25.2 (27.2) 1.7 22.5
0.9 20.6 (32.6) 3.20 17.5 32.8 (38.3) 2.1 28.5
1.1 24.9 (41.3) 4.40 19.6 45.1 (53.0) 2.2 38.0

In adopting the HP model of globule, we tried to obtain the friction constant ζ for the
given solvent quality. We assumed that the free energy of the HP globules on the cis and
trans sides consisted of surface energy and potential energy under the electric field across
the channel. With nt monomers in the trans side, the free energy accounting for surface
tension and external electric potential is defined as follows:

F = k(1− 1/p)2/3{n2/3
t + (N − nt − l)2/3} − nt

p
|Ue|, (1)

where p is the periodicity of the charge sequence. Because the channel is filled, it does
not contribute to the free energy variation, and is filled up to fluctuations in monomer
and charge content of the channel. In the driven regime, we solved the simplified kinetic
equation for nt(t):

k′{−(nt)
−1/3 + (N − nt − l)−1/3}+ 1

p
|Ue| = ζ

dnt

dt
. (2)

We compared the nt(t) obtained from simulation and from the numerical solution
of the Equation (2) for t > tw and extracted the prefactor k′ = 2

3 k(1− 1/p)−1/3 and ζ
(See Figure 5). Note that, with p =3, it happened to be that k′ was equal to the prefactor
of the free energy term in Equation (1), k′ = k(1− 1/p)2/3. The fitting results for k′ and ζ
are summarized in Table 2. The fitted values of ζ were somewhat smaller than ζeff from
the early driven regime. This reflects the nucleation of the trans globule accelerating the
translocation. Consistent with the fact that the translocation time tt and the drift time td
had minimums at εHH = 0.5, both ζ and ζeff were smallest for εHH = 0.5.

We further investigated the influence of the chain length N on translocation. The mea-
sured values are shown in Figure 3b, and the values at εHH = 0.9 are summarized in
Table 3. The drift time td increased approximately linearly with N, and the magnitude
of the effective friction coefficient also tended to increase. The waiting time tw showed
moderate dependence on the chain length N. The standard deviation remained as large as
the average values of tw (Figure 3d).
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Figure 5. (a) The number of monomers nt(t) in the trans side for N = 30 (left) and N = 90 (right). Insets
show translocation speed dnt(t)

dt . (b) The number of monomers in the trans side and the translocation
speed (insets) during drift period for N = 30 (left) and N = 90 (right). Time tw was reset to t = 0
(t > tw). For all panels, the green, blue, magenta, navy, and purple lines are for εHH = 0.3, 0.5, 0.7, 0.9,
and 1.1, respectively. Each curve was obtained by averaging over 100 trials. Note that translocation
was fastest at εHH = 0.5 (blue).

Table 3. Translocation time dependence on chain length N for εHH = 0.9.

N Success Rate tt tw td

30 0.94 327 ± 97 148 ± 90 179 ± 42
45 0.96 546 ±125 171 ± 84 376 ± 89
60 0.85 769 ± 142 171 ± 110 598 ± 111
75 0.83 1070 ± 205 195 ± 121 876 ± 168
90 0.88 1333 ± 280 212 ± 149 1121 ± 195

The effective friction ζeff is related to the relaxation of uncoiling the globule [26–31].
We checked the globule structures for N = 30 and N = 90 for various values of εHH.
The monomer density correlation function g(r) and density ρ of cis side globules are shown
in Appendix A.

As the monomer relaxation time t0 had a larger value in a polymer melt with a
high density [32,33], the unit time t0 was larger in polymer globules with higher den-
sity, and, thus, the effective friction coefficient increased with the density of the globules
(See Appendix A). Although the drift regime is well defined on average for most of εHH,
each trajectory of translocation can differ significantly from the average, especially at poor
solvent conditions. In Figure 6, we plotted several typical trajectories of PEs of N = 90 at
εHH = 0.9. The slow progression of translocation in the drift regime, depicted as plateaus in
nt(t) trajectories, can be attributed to the slow monomer relaxation in the dense core of the
globule as opposed to the P-rich corona (see also Ref. [10]).
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Figure 6. (a) Several typical trajectories (grey lines) of nt(t) for N = 90 with εHH = 0.9. The average
trajectory is shown as a dashed line for comparison. (b) Conformations of polyelectolytes during the
translocation. The corresponding trajectory is shown as a blue line and the times corresponding to the
snapshots are indicated by arrows. Translocation process appeared to be paused when no monomer
was released from the cis side globule. Yellow and blue colored spheres represent hydrophobic and
hydrophilic charged monomers, respectively.

Note that the equilibrated initial cis side globule has a well optimized free energy and
is tougher to uncoil than the fresh-folded trans side globule. Therefore, the friction upon
the folding of the trans side globule is lower than the friction upon extraction from the
equilibrated cis side globule. Because the local structure and interface (a few monomers in
size) relax very fast and the free energy relaxes very fast after/upon folding, the measured
density profiles of H- and P-type monomers in the trans side globules (not shown) are
alike with those in the equilibrated cis side globule (shown in Appendix A Figure A1). The
full intermixing inside the globule between older and newer parts is slower and mainly
affects the unwinding friction of the trans globule (in the case of retraction). The effect of
aging on friction would be much stronger for larger entangled globules [26,27,30]. Figure 7
demonstrates mixing degrees of monomers in the trans and cis globules. Monomers are
colored as blue to red along the contour from head to tail. The mixing of colors is less
frequent in the trans side.

Figure 7. Illustrations of monomer mixing in cis and trans sides with N = 90 for εHH = 0.5 and 0.9.
Colors of monomers indicate the order of translocation from head to tail.
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Table 4 summarizes the sequence dependences of translocation times for three se-
quences: (100)10, (010)10, and (001)10. When the chain started with favorable charge as a
head monomer, the capture probability was high. At a good solvent condition of εHH = 0.3,
the translocation probability of (100)10 was ∼1, but (001)10 translocated with a probability
of 0.29. At a poor solvent condition εHH = 0.9, (100)10 had a long waiting time but still
had a good success rate of 0.94. In contrast, most of the trials of (001)10 were rejected, and
successful ones had relatively short translocation times.

Table 4. Translocation times of sequences (100)10, (010)10, and (001)10. The corresponding probabilities
of success are shown in parenthesis below the translocation times.

0.3 0.5 0.7 0.9 1.1

(100) 252 235 261 327 413
(1) (1) (0.99) (0.94) (0.68)

(010) 232 225 244 263 338
(0.88) (0.89) (0.78) (0.79) (0.57)

(001) 241 241 220 210 375
(0.29) (0.29) (0.18) (0.03) (0.02)

3.2. Free Energy Profiles and the Solution of Fokker-Planck Equation

In order to rationalize the solvent-dependent behavior of translocation times, we
solved a Fokker–Planck equation for the position of the head monomer. The profile
of the potential energy U can be obtained as a function of the number of monomers ,
m = nt + np, residing in the trans region (nt) and pore (np) (i.e., z ≤ 3σ). There are mainly
three contributions: (a) the channel entropic effect Fc, (b) electrostatic potential energy Fe,
and (c) surface energy Fs; the latter is relevant in the poor solvent conditions. The early
translocation process m < 5 was mainly controlled by Fc. The reference energy value was
taken as the energy in the cis side. As a monomer engaged into the channel, the free energy
increased until the monomer reached the trans-side channel end, which was mainly due to
the entropic penalty, even in the presence of the electric field favorable for translocation.
The electrostatic contribution to the free energy decreased by 5.8 kBT per translocated
charge. We set the electrostatic potential energy as Fe = −1.9 m, assuming that 1/3 of
monomers were charged (i.e., p = 3). The surface energy is calculated as:

Fs =

{
k′(N −m)2/3, (m ≤ l),
k′{(N −m)2/3 + (m− l)2/3}, (m > l).

(3)

In order to obtain a more precise form of the free energy over a wider range of
translocation states, especially to cover small m regions while taking into account the
influence of the entropic effect Fc, we exploited the following simulation to compute the
success rate. We counted successful attempts of arrivals at a specific position, m = b.
As shown in detail in the Appendix B, the success rate πb(x) is related to the potential
energy U by the following equation:

πb(x) =

∫ x
a eU(y)dy∫ b
a eU(y)dy

, (4)

with the fixed (absorbing) boundaries at a, b and the starting point at x. The differential
of the success rate is dπb(x)

dx ∼ eU(x), and the logarithm of the differential of the success
rate yields ∼U(x). In order to get the free energy profile, we evaluates the success rate
for various values of m in a discrete manner. (Figure 8a) The translocation processes were
repeated for ∼ 104–105 times , with the PEs equilibrated with fixed number m. After
taking the logarithm of the difference in success rate, πb(m + 1)− πb(m), we obtained the
potential energy U(m + 1

2 ). This approach is generally valid and operational until the top
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of the (last) barrier m† is reached and the measured success rate saturates to 100%. Since
the potential energy is mainly given by Fe and Fs in the following drift regime, we used the
free energy expression F = Fe + Fs starting from m†.

Based on the discrete points obtained, we constructed the potential profiles U(x) using
polynomial representation (see Table 5). To construct effective potentials for Fokker–Planck
equations for head monomers, we took the continuum model from the discrete values,
which is the number of monomers in the (z > 0) region. What matters in an FP equation is
the height of the barriers. A continuous free energy profile was made to catch the free energy
height properly when the head monomer engaged toward the potential. Note that the initial
position of the head was set to be at m = 4, where the head monomer was still confined by
the pore. For m = 5, head monomer was released from the pore across the electric potential
to the trans side. There was a small energy barrier against the negatively charged monomers
toward the end of channel. (See Figure 2). The potential values at discrete points were
obtained by taking the logarithm of the success rate increment (Equation (4)). There was
discontinuity in our geometric environment between m = 4 and m = 5. Therefore, to capture
the electrostatic properties of the channel potential, we used two polynomials before and
after x0 = 4.5 in the polynomial expression (Table 5). The polynomial representations
of potentials for various values of εHH are shown in Figure 8a. We wanted to describe
the polymer under translocation through a Fokker–Planck equation for the motion of
the head of the polymer. The translocation system is complex, and its friction depends
on the translocated length and excited internal polymer modes. Strictly speaking, the
polymer should be described by a (Fokker–Planck) equation in configurational space.
The translocating PE is confined in the channel or collapsed into a globule. Except when a
strongly fluctuating PE chain section is involved, such as in a good solvent (εHH = 0.1) or
theta solvent condition (εHH = 0.3) outside the channel, it is legitimate to solve the simple
Fokker–Planck equation for the head monomer, which ignores internal modes [34,35]. The
Fokker–Planck equation with the proper potential is expected to be useful throughout.

Table 5. Polynomial representation of free energies: Region 1 [0:4.5] defined as a3x3 + a2x2 + a1x + a0.
Region 2 [4.5:10] defined as b5(x− x0)

5 + b4(x− x0)
4 + b3(x− x0)

3 + b2(x− x0)
2 + b1(x− x0) + b0

with x0 = 4.5. The drift regime curves were reconstructed by using the fitted value of k′ and electrical
field slope E0 = −1.9.

εHH a3 a2 a1 a0 b5 b4 b3 b2 b1 b0

0.3 −0.336 1.143 1.437 −4.758 0 0 0.0022 −0.025 −1.819 −5.742
0.5 −0.251 0.676 2.275 −5,246 0 0 0.003 −0.070 −1.232 −4.194
0.7 −0.287 0.986 1.939 −5.526 0 0 0.011 −0.174 −0.705 −2.959
0.9 −0.282 0.908 2.831 −7.038 0.0202 −0.3336 1.9913 −5.1950 4.2521 −1.565
1.1 −0.160 0.333 3.753 −7.558 0.0196 −0.3228 1.9213 −4.9750 3.9750 1.479

The probability to find the head at y after time t starting from x at time t = 0, p(y, t|x, 0),
satisfies the homogeneous Fokker–Planck equation:

∂

∂t
p(y, t|x, 0) =

1
ζ

∂

∂y

[
dU(y)

dy
p(y, t|x, 0)

]
+ D

∂2

∂y2 [p(y, t|x, 0)]. (5)

Because we considered the translocation of the polymer, we set the boundary condi-
tions at the ends of the interval inside, wherein the head of the polymer was constrained
to m ∈ [a, b]. The boundary conditions for the translocation are absorbing boundaries at
both a = 0 and b (=m∗ = 10), which means that, when the head of the polymer reaches the
absorbing barrier, it is removed from the system so that the probabilities of being on the
boundaries are zero.

p(y = a, t|x, 0) = p(y = b, t|x, 0) = 0. (6)
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Then, the probability, πb(x), of exit through b is given by Equation (4), and we find
the mean exit time as follows:

T1(b, x) =
1

Dπb(x)
∫ b

a eU(y)dy

[∫ x

a
eU(y)dy ·

∫ b

x
eU(y′)dy′

∫ y′

a
e−U(z)πb(z)dz

−
∫ b

x
eU(y)dy ·

∫ x

a
eU(y′)dy′

∫ y′

a
e−U(z)πb(z)dz

]
. (7)

The detailed derivation for the translocation times (including higher moments) for
the head of the polymer by the Fokker–Planck equation is shown in Appendix B (See also
Ref. [36]).

A complete picture was also obtained numerically using the Runge–Kutta method,
and the results of πb and T1 were consistent with the integral expressions of Equation (4)
and Equation (7). Figure 8 and Table 6 summarize the success rates πb and the exit times T1
obtained from Equations (4) and (7), with absorbing boundaries at a = 0 and b = m∗ = 10
and with the starting position at x = 4. In order to compare with the simulation results, the
time unit t0 = 1/D = ζ/kBT (kBT = 1) was multiplied. The results were compared with
the waiting time tw obtained from simulations, where we set the initial head position at the
trans end (i.e, m = 4) and the exit boundary to be m = 0 (rejected) and m = 10 (nt = 5). The two
results agreed well for εHH ≤ 0.7 and started deviating from each other at εHH = 0.9.

Figure 8. (a) Effective potential U(m) of (100)10 sequence (N = 30) for various values of εHH. m is
the number of monomers passing the cis-side boundary of the membrane. The continuous forms
U(x) (dashed lines) was obtained by fitting discrete values of U(m) with polynomials, as in Table 5.
(b) Estimates of exit time T1 and (c) success rate using the Fokker–Planck equation (Table 6) with
absorbing boundaries at m = 0 and m = 10 (nt = 5). The waiting times tw from simulation are shown
for comparison.
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Table 6. The exit times T1 and success rate πb obtained from Equations (4) and (7). In order to
compare with simulation results tw, time unit ζeff was multiplied.

εHH πb T1 T1ζeff tw

0.3 1.000 2.845 56.9 65
0.5 0.999 3.561 62.0 71
0.7 0.997 4.113 77.3 91
0.9 0.989 5.488 113.1 148
1.1 0.615 5.634 140.3 212

4. Conclusions

We studied the translocation of (uni)globular polyelectrolytes by means of MD simula-
tions. The uniglobular structure is expected for hydrophobic PEs at high salt conditions,
which are typical for translocation through a pore driven by an electric field. The PE was
simulated in the HP model, where neutral monomers are hydrophobic and charged ones
are hydrophilic. The hydrophobicity of the H monomers sets the density of the PE globule.
The main new feature with respect to our (and others’) previous work is the unraveling of
the PE globule during (prior to) translocation.

In this work, we used simple periodic sequences in which extra barriers against
translocation of antagonistic charges, as described previously for polyampholytes [15],
were not present. Hydrophobicity has several effects. More hydrophobic globules are
harder to unwind and present higher monomeric friction during unwinding due to their
increased density. The friction effect is especially important at high hydrophobicity, where
the globules may become quasi-glassy [33], despite their mesoscopic size. Translocation
processes can be decomposed into three stages: capture, waiting, and drift. We only
studied the two latest stages and started with a PE well engaged into the pore. The waiting
process extends as long as the PE still fluctuates back to its initial position. The waiting
time increases with hydrophobicity. At a high hydrophobicity it involves the nucleation
of a trans globule, which manifests as an extra (secondary) barrier against translocation
(Figure 8a). During the drift process, the translocated mass increases nearly linearly with
time. The drift time is found to go through a shallow minimum, which is also visible in
the total time (waiting time + drift time), for a weak hydrophobicity before increasing
markedly for a larger hydrophobicity. The friction due to the channel potential prevails in
weak hydrophobic regimes. The channel potential is heterogeneous in small scales, and
this causes extra dissipation.

The polymer globules studied here were reminiscent of globular proteins, even though
proteins typically carry the charges of both signs. It is currently assumed/accepted that,
in some processes, the proteins could be partially denatured and reach the softer polymer
globule state either dry or wet [22]. The wet globule has similar properties to the HP
globules studied here. It would be interesting to investigate the translocation of globular
proteins with well-controlled denaturation.

For real proteins, the side chains of the amino-acids would affect translocation behavior.
Although it depends on the size of channel, the translocation times showed non-monotonic
increases with the number of arms [37,38]. The study for the translocation of hydrophobic
chains with side-groups will be investigated in the near future.
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Appendix A. Density Correlations

We measured the density correlation functions g(r) with respect to the center monomer
for initial conformations with various εHH (Figure A1). For εHH < 0.8, the globular boundary
was not clear. The behavior of the correlation g(r) ∼ 1/r was reminiscent of the Gaussian
chain. For εHH > 0.8, globule boundary was better defined, and g(r) had a second peak ∼2
that was similar to a dense liquid. The fraction of the charged monomer inside the globule was
clearly reduced for large εHH, thus implying partial phase separation between H- and P-type
monomers frustrated by connectivity. The core was filled with more hydrophobic monomers,
and the corona was more hydrophilic. We checked the core densities of the globules r < Rc
with Rc = 2. For N = 30, the core densities were ρc = 0.24, 0.35, 0.48, 0.57, and 0.62 for
εHH = 0.3, 0.5, 0.7, 0.9, and 1.1, respectively. For N = 90, the core densities were ρc = 0.25, 0.54,
0.74, 0.82, and 0.88 for εHH = 0.3, 0.5, 0.7, 0.9, and 1.1, respectively.

Figure A1. Density correlation functions for various values of εHH = 0.3, 0.5, 0.7, and 0.9. N = 30 (top),
N = 90 (bottom). Polymers were equilibrated in the cis side before translocation. Green histograms
represent the density of the shell [r, r + 0.2σ] counting all monomers from the center. Blue histograms
represent the density of the charged monomers in the shell [r, r + 0.2σ].

The density profile of the globule mainly controls the internal globule friction during
unraveling in the driven regime. An easy comparison can be made with the variation of
the monomeric relaxation time τ in the melt (α–relaxation time), which is well documented
for simulations of dense homopolymer systems. From Refs. [32,33] the density of melt ρ
and the monomeric relaxation time τ are found as the following:

ρ(ε) = 1.0119 exp[−0.2933(1/ε− 0.5)],

τ(ε) = 0.233 exp(3ε). (A1)

In our current study, we adopted the HP model, where globules were well-defined
for εHH ≥ 0.7 (N = 30). We estimated the effective density in the quasi-plateau, which
is better defined for higher εHH, and show them with vertical bars on the density axis
in Figure A2. Equations in Equation (A1) represent fit functions at higher densities from
Refs. [32,33]. We expected the curve to be meaningful down to density 0.5. In Rouse-type
dynamics, the friction is directly proportional to the monomeric relaxation time τ. Both τ
and ζeff increased by 30–40% when εHH increased from 0.7 to 1.1. The effective number of
monomers, Neff ∼ 10, involved in the motion inside the dense globule and the effective
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friction due to unraveling ζeff
unrav ' τNeff/b2 qualitatively matched ζeff. It must nonetheless

be stressed that unraveling is not the only source of friction, especially at a moderate
density. For the larger chain length N = 90, the density and the monomeric relaxation
time τ reached larger values. In the quasi-plateau (around r = 2.0σ), we had ρ = 0.74, 0.80,
and 0.90 and τ = 1.58, 2.33, and 6.54 for εHH = 0.7, 0.9, and 1.1, respectively. The relaxation
time increased by about a factor of four when εHH increased from 0.7 to 1.1. On the other
hand, when measuring the average densities up to r = 2.9σ, the variations in densities and
monomeric relaxation times were much more moderate, and we obtained ρ = 0.57, 0.64,
and 0.68 and τ = 0.79, 1.00, and 1.17. The variation of the total effective frictions in the drift
regime was closer to the estimates from r = 2.9σ than from r = 2.0σ.

Figure A2. Monomer relaxation time τ (taken as the α–relaxation time) as a function of density for a
homopolymer chain from the simulation studies [32,33]. We indicate the “plateau” density of the HP
globules (N = 30) with blue vertical bars (from left to right εHH = 0.7, 0.9, and 1.1). The red curve
corresponds to Equation (A1) in the main text.

Appendix B. Fokker–Planck Equation for the Translocation

We described the translocation of the head of the polymer using the Fokker–Planck
equation. The probability to find the head at y after time t starting from x at time t = 0,
p(y, t|x, 0), satisfies the homogeneous Fokker–Planck equation:

∂
∂t p(y, t|x, 0) = LFP(y)p(y, t|x, 0)

= − ∂
∂y [A(y)p(y, t|x, 0)] + 1

2
∂2

∂y2 [B(y)p(y, t|x, 0)], (A2)

where the drift coefficient A(y) = − 1
ζ

dU(y)
dy and the diffusion coefficient B(y) = 2D are

time independent. It also satisfies the backward Fokker–Planck equation:

∂
∂t p(y, t|x, 0) = ∂

∂t p(y, 0|x,−t) = L†
FP(x)p(y, 0|x,−t)

= A(x) ∂
∂x [p(y, t|x, 0)] + 1

2 B(x) ∂2

∂x2 [p(y, t|x, 0)]. (A3)

Because we considered the translocation of the polymer, we set the boundary con-
ditions at the ends of the interval inside which the head of the polymer was constrained.
The boundary conditions for the translocation were absorbing barriers at y = a = 0 and
y = b = 10, which means that, when the head of the polymer reached the absorbing barrier,
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it was removed from the system so that the probabilities of being on the boundaries would
be zero:

p(y = a, t|x, 0) = p(y = b, t|x, 0) = 0. (A4)

In order to solve for the mean exit time and the variance in the exit time for the
translocation, we wrote the FP equation as follows:

∂

∂t
p(y, t|x, 0) +

∂

∂y
J(y, t|x, 0) = 0 (A5)

and we defined the probability current as

J(y, t|x, 0) = A(y)p(y, t|x, 0)− 1
2

∂

∂y
[B(y)p(y, t|x, 0)]. (A6)

For the translocation process, the head of the polymer was initially at x in (a, b). The
probability, gb(x, t), that the head would exit through b after time t is given by the time
integral of the probability current at b from time t to infinity:

gb(x, t) =
∫ ∞

t dt′ J(b, t′|x, 0)

=
∫ ∞

t dt′
[

A(b)p(b, t′|x, 0)− 1
2

∂
∂b [B(b)p(b, t′|x, 0)]

]
. (A7)

Then, the probability, πb(x), of the exit through b is given by

πb(x) = gb(x, 0) =
∫ ∞

0
dt′ J(b, t′|x, 0), (A8)

and the cumulative probability, Prob(Tb > t), that the head would exit after time t given
that it exits through b is

Prob(Tb > t) =
gb(x, t)
gb(x, 0)

=
gb(x, t)
πb(x)

. (A9)

By using the fact that p(b, t′|x, 0) satisfies the backward FP equation, we found an
equation for gb(x, t)

L†
FP(x)gb(x, t) =

∫ ∞

t
dt′L†

FP(x)
[

A(b)p(b, t′|x, 0)− 1
2

∂

∂b
[
B(b)p(b, t′|x, 0)

]]
=

∫ ∞

t
dt′

∂

∂t′

[
A(b)p(b, t′|x, 0)− 1

2
∂

∂b
[
B(b)p(b, t′|x, 0)

]]
=

∫ ∞

t
dt′

∂

∂t′
J(b, t′|x, 0)

= J(b, ∞|x, 0)− J(b, t|x, 0)

=
∂

∂t
gb(x, t), (A10)

where J(b, ∞|x, 0) = 0. By taking t→ 0 limit, we derived an equation

A(x)
∂

∂x
gb(x, 0) +

1
2

B(x)
∂2

∂x2 gb(x, 0) = −J(b, 0|x, 0) (A11)

and J(b, 0|x, 0) = 0 if b 6= x ,because p(b, 0|x, 0) = δ(x− b). Thus, we found the equation
for πb(x)

A(x)
∂

∂x
πb(x) +

1
2

B(x)
∂2

∂x2 πb(x) = 0 (A12)
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with the boundary conditions πb(a) = 0 and πb(b) = 0. The solution of the equation is

πb(x) =

∫ x
a ψ−1(y)dy∫ b
a ψ−1(y)dy

, ψ−1(y) = e−
∫ y

a
2A(x)
B(x) dx. (A13)

Next, we considered the mean exit time, T1(b, x), given an exit through b. The mean
exit time is defined as

T1(b, x) =
∫ ∞

0
t Prob(Tb = t)dt

=
∫ ∞

0
t
[
− ∂

∂t
Prob(Tb > t)

]
dt. (A14)

By integrating by parts, we obtain

T1(b, x) = [−t Prob(Tb > t)]∞0 +
∫ ∞

0
Prob(Tb > t)dt

=
∫ ∞

0

gb(x, t)
πb(x)

dt (A15)

and
πb(x)T1(b, x) =

∫ ∞

0
gb(x, t)dt, (A16)

where we used [−t Prob(Tb > t)]∞0 = 0. By applying the backward FP operator L†
FP, we

found an equation

L†
FP(x)[πb(x)T1(b, x)] =

∫ ∞

0
L†

FP(x)gb(x, t)dt

=
∫ ∞

0

∂

∂t
gb(x, t)dt

= gb(x, ∞)− gb(x, 0), (A17)

where gb(x, ∞) = 0. Thus, the mean exit time satisfies the following equation

A(x)
∂

∂x
[πb(x)T1(b, x)] +

1
2

B(x)
∂2

∂x2 [πb(x)T1(b, x)] = −πb(x) (A18)

with the boundary conditions πb(a)T1(b, a) = πb(b)T1(b, b) = 0. The solution of the
equation is

T1(b, x) =
2

πb(x)
∫ b

a ψ−1(y)dy

[∫ x

a
ψ−1(y)dy ·

∫ b

x
ψ−1(y′)dy′

∫ y′

a

ψ(z)πb(z)
B(z)

dz

−
∫ b

x
ψ−1(y)dy ·

∫ x

a
ψ−1(y′)dy′

∫ y′

a

ψ(z)πb(z)
B(z)

dz
]

. (A19)

Finally, we drived the variance in exit time, V(b, x), given an exit through b. We
considered the nth moment of exit time

Tn(b, x) =
∫ ∞

0
tn Prob(Tb = t)dt

=
∫ ∞

0
tn
[
− ∂

∂t
Prob(Tb > t)

]
dt

= [−tn Prob(Tb > t)]∞0 +
∫ ∞

0
nt(n−1) Prob(Tb > t)dt

= n
∫ ∞

0
t(n−1) gb(x, t)

πb(x)
dt (A20)
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and

πb(x)Tn(b, x) = n
∫ ∞

0
t(n−1) gb(x, t)

πb(x)
dt, (A21)

where we used [−tn Prob(Tb > t)]∞0 = 0. By applying the backward FP operator L†
FP, we

found an equation

L†
FP(x)[πb(x)Tn(b, x)] = n

∫ ∞

0
t(n−1)L†

FP(x)gb(x, t)dt

= n
∫ ∞

0
t(n−1) ∂

∂t
gb(x, t)dt

=
[
nt(n−1)gb(x, t)

]∞

0
− n

∫ ∞

0
(n− 1)t(n−2)gb(x, t)dt

= −nπb(x)Tn−1(b, x), (A22)

where
[
nt(n−1)gb(x, t)

]∞

0
= 0. Thus, the 2nd moment of exit time satisfies the equation

A(x)
∂

∂x
[πb(x)T2(b, x)] +

1
2

B(x)
∂2

∂x2 [πb(x)T2(b, x)] = −πb(x)T1(b, x) (A23)

with the boundary conditions πb(a)T2(b, a) = πb(b)T2(b, b) = 0. The solution of the
equation is

T2(b, x) =
4

πb(x)
∫ b

a ψ−1(y)dy

[∫ x

a
ψ−1(y)dy ·

∫ b

x
ψ−1(y′)dy′

∫ y′

a

ψ(z)πb(z)T1(b, z)
B(z)

dz

−
∫ b

x
ψ−1(y)dy ·

∫ x

a
ψ−1(y′)dy′

∫ y′

a

ψ(z)πb(z)T1(b, z)
B(z)

dz
]

. (A24)

The variance, V(b, x), in exit time is given by

V(b, x) = T2(b, x)− [T1(b, x)]2. (A25)

In order to obtain the numerical values for the probability (πb(x)), the mean exit time
(T1(b, x)), and the variance (V(b, x)), we numerically solved Equations (A12), (A18) and (A23)
using Mathematica. We used the explicit Runge–Kutta method with a difference order of
nine for the NDSolve function in Mathematica.

Another popular method solves the Fokker–Planck equation in the Laplace variable s
associated to the time t. The moments of the first passage time distributions can be obtained
from the small s expansions of the probability density and probability flux. We start out
from the Laplace transformed Equation (A2) :

sp(y, s|x)− δ(y− x) = LFP(y)p(y, s|x)
= − ∂

∂y [A(y)p(y, s|x)] + 1
2

∂2

∂y2 [B(y)p(y, s|x)], (A26)

Equation (A26) is solved to successive orders in s for s ∼ 0 with adsorbing boundary
conditions. The expansion of the probability flux J(y|x, s) to the second order is obtained as
J(y|x, s) ∼ J0(y|x) + sJ1(y|x) + s2 J2(y|x) for various starting positions x, which allows us
to assess the success rate for reaching b first rather than a, πb = J0(b|x), and the average first
passage time at b, T1 = −J1(b|x)/J0(b|x) or the average square time T2 = J2(b|x)/J0(b|x).
All moments of the distribution of capture times by b can be obtained recursively.
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