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Abstract: The objectives of the study were as follows: (1) to develop two methods for the preparation
of macroporous composite chitosan/hyaluronic acid (Ch/HA) hydrogels based on covalently cross-
linked Ch and low molecular weight (Mw) HA (5 and 30 kDa); (2) to investigate some properties
(swelling and in vitro degradation) and structures of the hydrogels; (3) to evaluate the hydrogels
in vitro as potential biodegradable matrices for tissue engineering. Chitosan was cross-linked with ei-
ther genipin (Gen) or glutaraldehyde (GA). Method 1 allowed the distribution of HA macromolecules
within the hydrogel (bulk modification). In Method 2, hyaluronic acid formed a polyelectrolyte
complex with Ch over the hydrogel surface (surface modification). By varying compositions of the
Ch/HA hydrogels, highly porous interconnected structures (with mean pore sizes of 50–450 µm)
were fabricated and studied using confocal laser scanning microscopy (CLSM). Mouse fibroblasts
(L929) were cultured in the hydrogels for 7 days. Cell growth and proliferation within the hydrogel
samples were studied via MTT-assay. The entrapment of low molecular weight HA was found
to result in an enhancement of cell growth in the Ch/HA hydrogels compared to that in the Ch
matrices. The Ch/HA hydrogels after bulk modification promoted better cell adhesion, growth and
proliferation than the samples prepared by using Method 2 (surface modification).

Keywords: chitosan; hyaluronic acid; genipin; covalently cross-liked chitosan; L929 mouse fibroblasts;
tissue engineering

1. Introduction

Polysaccharide hydrogels are of great interest for tissue engineering. Their resem-
blance to living tissues mimics the natural three-dimensional extracellular matrix (ECM)
and promotes cell attachment, proliferation and stem cell differentiation [1]. Chitosan
is a biocompatible and biodegradable polymer of natural origin with antimicrobial and
biologically adhesive properties [2]. Chitosan is widely employed for tissue engineering,
as evidenced by an ever-increasing number of publications [3]. For instance, it is applied
in the fields of skin [4], bone [5] and cartilage [6] tissue engineering. However, the rather
low mechanical strength of covalently non-cross-linked chitosan matrices could lead to
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low cell adhesion [7]. The matrices should provide appropriate rigidity to promote cell
adhesion and characteristic morphology, and, as a result, an increase of cell migration,
growth and differentiation.

Mechanical properties could be enhanced by cross-linking hydrogel matrices [8,9].
There are several cross-linking agents commonly used for this purpose. For instance, glu-
taraldehyde was proposed as a cross-linking agent to stabilize chitosan [8]. Another promis-
ing cross-linker, which should be mentioned here, is the natural compound genipin [10].

However, the covalent cross-linking of chitosan could reduce hydrogel swelling and
degradation because of a decrease of chitosan free amino and hydroxyl groups involved
in the cross-linking reaction [11]. Adjusting the hydrophilic–hydrophobic balance of the
matrices could affect cell adhesion and, as a result, could influence cell proliferation and/or
differentiation. The creation of composite materials can be one approach to this.

As is well-known, hyaluronan is promising for many biomedical applications [12].
Being a natural polysaccharide, hyaluronic acid is a key component of ECM and occurs
in many connective tissues (such as skin and synovial fluid). Hyaluronic acid acts as
a joint lubricant supporting tissue regeneration, hydration and elasticity. Hyaluronic
acid can promote these processes due to its polyelectrolyte nature, high water-holding
capacity and high viscosity as well as gel-forming ability. However, the biological activity
of hyaluronic acid depends on its molecular weight [13]. In nature, the molecular weight
of HA can vary within a wide range of 103–107 Da [12,13]. Native HA macromolecules
(e.g., in a normal synovial fluid) have rather high molecular weights, in particular more
than 1 MDa, and HA oligomers (up to 10 kDa) could be also found [14]. Hyaluronic
acid with high molecular weight can provide tissue integrity, water homeostasis and
possesses immunosuppressive and anti-inflammatory properties [15]. However, the pro-
proliferative and differentiation induction properties of HA with high molecular weight
are controversial [16,17], whereas HA with low molecular weight (<400 kDa) signals
injury and can initiate an inflammatory response [18]. Additionally, HA can stimulate
angiogenic activity and enhance cell proliferation [19]. Hyaluronic acid oligosaccharides
were shown to exhibit pro-antigenic properties and to stimulate endothelial cell migration
and proliferation [20].

Composite Ch/HA matrices can be prepared by using various methods. Because
Ch and HA are oppositely charged polyelectrolytes, they can form a water-insoluble
polyelectrolyte complex. Sodium hyaluronate/chitosan polyelectrolyte complexes have
been used for dental pulp regeneration [21], cartilage repair [22] and the regeneration of
periodontal tissues [23]. However, HA/Ch complexes are rather unstable at philological
conditions [21,24]. Therefore, to prepare rather stable composite Ch/HA matrices and, as a
result, to enhance their mechanical properties, the covalent cross-linking of Ch molecules
was proposed. This approach allows enhancement of both the stability and flexibility of
the composite Ch/HA matrices [9,25]. It should be mentioned that in these cases, HA of
high molecular weight (>600 kDa) was used.

In the current study, for the first time, HA with low molecular weight as well as
oligo-HA were entrapped in macroporous Ch-based matrices where Ch was previously
cross-linked with GA or Gen. Two different methods were used; in particular, Method 1 was
carried out via HA entrapment within the hydrogel volume, whereas Method 2 provided
HA distribution and adsorption onto the hydrogel surface. The properties of the matrices,
in particular their swelling behavior and degradation, were shown to be a function of the
technique used and of the molecular weight of the entrapped HA. Moreover, for the first
time, it was demonstrated that cell adhesion and morphology as well as cell distribution
and proliferation within the hydrogel matrix were dependent upon the technique used for
the preparation of the composite Ch/HA matrices.

The objectives of the study were as follows: (1) to develop two methods for preparing
macroporous composite Ch/HA hydrogels based on covalently cross-linked Ch and low
molecular weight HA; (2) to investigate some properties (such as swelling and in vitro
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degradation) and structures of the hydrogels; (3) to evaluate the hydrogels in vitro as
potential biodegradable matrices for tissue engineering.

2. Materials and Methods
2.1. Chemicals

Chitosan (Mw 320 kDa, degree of deacetylation 88.5%) was purchased from Bio-
progress (Shchelkovo, Russia), hyaluronic acid sodium salt (Mw 5 and 30 kDa) was from Shi-
seido (Tokyo, Japan) and glutaraldehyde was from Merck (Darmstadt, Germany). Genipin,
4′,6-diamidino-2-phenylindole dihydrochloride (DAPI) and lysozyme from chicken egg
white (lyophilized powder, 100,000 U/mg) were purchased from Sigma (St. Louis, MO,
USA). Dulbecco’s modified Eagle’s medium (DMEM), glutamine, sodium pyruvate, strep-
tomycin, penicillin, phosphate buffered solution (PBS, pH 7.4) and 3-(4,5-dimethylthiazol-
2-yl)-2,5-diphenyl tetrazolium bromide (MTT) were from PanEco (Moscow, Russia). Fetal
bovine serum (FBS) was purchased from PAA Laboratories GmbH (Pasching, Austria),
2-mercaptoethanol was from Loba Feinchemie (Fischamend, Austria), dimethyl sulfox-
ide (DMSO) was from Helicon (Moscow, Russia) and Calcein AM was from eBioscience
(San Diego, CA, USA).

2.2. Preparation of the Macroporous Composite Chitosan/Hyaluronic Acid Hydrogels

In this study, two methods for HA entrapment into the Ch hydrogel were used,
namely before (Method 1) and after (Method 2) cross-linking chitosan with genipin or
glutaraldehyde. Method 1 was used to provide bulk modification of the Ch hydrogel, and
Method 2 allowed us to get the surface modification of the hydrogel.

2.2.1. Bulk Modification (Method 1)

First, the HA solution (2.3% w/v, 6.6 mL) and then the Gen (0.95% w/v, 0.9 mL) or
GA (0.4275% w/v, 0.9 mL) solution were added dropwise to the Ch solution (2.5% w/v,
30 mL) and stirred (1000 rpm). The obtained mixture was incubated by stirring it (1200 rpm)
for 1.5 h at room temperature, and it was then lyophilized using Alpha 1-4/2-4 (Christ,
Hagen, Germany).

2.2.2. Surface Modification (Method 2)

A Gen (0.12% w/v, 0.9 mL) or GA solution (0.0525% w/v, 0.9 mL) was added dropwise
to a Ch solution (2.5% w/v, 30 mL) and stirred (1000 rpm), and the obtained solution was
incubated at room temperature for 2 h and then frozen and freeze-dried. The obtained
macroporous cross-linked hydrogel samples were incubated in a 2% (w/v) HA solution for
2 h. Then, they were washed twice with PBS (pH 7.4) and lyophilized again.

2.3. Characterization of Macroporous Covalently Cross-Linked Chit/HA Hydrogels
2.3.1. Fourier Transform Infrared Spectroscopy

FTIR-spectroscopy of the initial polysaccharides and the fabricated hydrogels was
realized with the use of a Spectrum Two FT-IR Spectrometer (PerkinElmer, Waltham, MA,
USA) as described previously [26]. All spectra were initially collected in attenuated total
reflectance mode and converted into transmittance mode. The spectra were normalized
using the intensity of C–O stretching vibrations of a pyranose cycle band (1081 cm−1) as
the internal standard.

2.3.2. Confocal Laser Scanning Microscopy

The structures of the swollen hydrogel samples were analyzed via confocal laser scan-
ning microscopy using a Nikon TE-2000 inverted microscope equipped with an EZ-C1 con-
focal laser (Nikon, Tokyo, Japan). The hydrogel samples were stained with Fluorescamine
(0.3 µg/mL in acetone) to provide amino-specific staining. The excitation wavelength was
408 nm, and fluorescence signals were collected at 515 ± 30 nm. Image analysis software
(ImageJ, National Institutes of Health, Bethesda, Maryland, USA) was used for 3D recon-
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struction of the hydrogel structure. To study the morphology of the obtained macroporous
hydrogels, a quantitative evaluation of micrographs was carried out by calculation of an
effective pore diameter (d) using Equation (1):

d = (L× S)
1
2 (1)

where L is a pore long axis length and S is a pore short axis length. The mean pore size was
determined by randomly measuring at least 100 pores for each hydrogel sample.

2.3.3. Hydrogel Equilibrium Swelling Degree Measurements

The swelling degree of the obtained hydrogels was studied using a gravimetric method.
For this purpose, the samples (5 × 5 × 2 mm) were incubated in DMEM at 37 ◦C for 24 h.
The weight of the swollen hydrogel was determined to be the difference between the
hydrogel weight and liquid weight on the balance plate after hydrogel removal. The
swelling ratio (Sw) of the hydrogels was calculated using Equation (2):

Sw(
ml
g
) =

Mw −Md
Md

× ρ (2)

where ρ is the density of the solution, Mw is the weight of the sample after immersion in
the medium and Md is the weight of the dried sample.

2.3.4. Study of Enzymatic Degradation of the Hydrogels In Vitro

The degradation of the hydrogel samples was carried out in PBS (pH 7.4) containing
2 mg/mL lysozyme at 37 ◦C for 7, 14 and 21 days. The samples in PBS (pH 7.4) without
lysozyme were used as controls. After 7, 14 and 21 days, the hydrogels were removed from
the solution, washed with milli-Q, dried at 50 ◦C to constant weight and weighed. The
weight loss (Wl) was calculated using Equation (3).

Wl(%) =
Mi −Mt

Mi
× 100 (3)

where Mi is an initial weight of the hydrogel sample and Mt is the weight of the dried
hydrogel sample.

2.4. Cell Cultivation in the Hydrogels

In the current study, mouse fibroblasts (L929) from the Collection of Vertebrate Cell
Cultures (Institute of Cytology, Russian Academy of Sciences) were used. The L929 cells
were cultured in DMEM supplemented with 10% FBS and containing 2 mM L-glutamine,
1 mM sodium pyruvate, 50 µM 2-mercaptoethanol, 100 µg/mL streptomycin and 100 U/mL
penicillin. The cells were cultured in a 5% CO2 humidified atmosphere at 37 ◦C (CO2
incubator Heraeus B5060 EK/CO2, Hanau, Germany).

2.4.1. Hydrogel Sterilization

The hydrogel samples were sterilized via incubation with 70% ethanol for 1 h. After
sterilization, the samples were washed 3 times with PBS (pH 7.4).

2.4.2. In Vitro Cytotoxicity Study

The cytotoxicity of the hydrogel samples was studied via an extract test using L929
fibroblasts as model cells. For this purpose, the previously sterilized hydrogel samples were
incubated with the culture medium (25 mg per 1 mL of medium) at 37 ◦C, and supernatants
(extracts) were collected after 24 h. Then, the cells were added to a 96-well plate (104 cells
per well) and incubated in a CO2 incubator (37 ◦C, 5% CO2). The medium in each well
was replaced with 100 µL of the extracts after 24 h of incubation. The cells cultivated in
the medium without the extracts were used as a control. Cell viability was determined via
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MTT assay. For this purpose, the extracts were replaced with 100 µL of a MTT solution
(0.5 mg/mL DMEM) and then incubated at 37 ◦C for 1 h. Formazan crystals formed in the
living cells were dissolved after adding DMSO (100 µL per each well), and optical density
was measured at 540/690 nm using a Titertek Multiskan MCC/340 plate reader (Flow
Laboratories, McLean, VA, USA). Relative cell viability (V) was calculated according to
Equation (4):

V(%) = (ODt/ODc)× 100 (4)

where ODt is the optical density in testing wells and ODc is the optical density in the
control wells. Results are expressed as the mean ± standard deviation for three replicates.

2.4.3. Study of Cell Proliferation in the Hydrogels

Before cell seeding, the sterile hydrogel samples were previously incubated in the
culture medium at 37 ◦C for 24 h. Then, cells were seeded by dropping cell suspension
directly onto the hydrogel samples (2 × 104 cells/sample). Cell viability was evaluated
with an MTT assay after 7 days. For this purpose, the hydrogel samples with the cells were
transferred to a fresh 96-well plate, 100 µL of the MTT solution in DMEM (0.5 mg/mL)
was added to each well, and the plate was then incubated at 37 ◦C for 2 h. Then, formazan
crystals were dissolved after adding DMSO (200 µL per well) to each well, and 100 µL
aliquots were taken to measure optical density at 540/690 nm. In this study, the chitosan
hydrogel samples cross-linked either with Gen or GA were used as negative controls,
whereas the cell monolayer culture was taken as a positive control.

In order to take into consideration the impact of each hydrogel sample on the results
of the MTT assay, an additional experiment was carried out. For this purpose, culture
medium with FBS was added to the previously sterilized blank hydrogel samples (without
cells), and the samples were placed in a CO2 incubator for 7 days. Then, cell suspensions
were added into the 96-well plate (cell numbers ranging 5–20 × 104 cells/well), and the
plate was transferred to the CO2 incubator for 3 h. Finally, the pre-incubated hydrogel
samples were added to the previously attached cells, and the MTT assay was carried out
for both the cells cultivated in the presence of the hydrogel samples and the cells without
them. For each sample, a calibration curve was plotted that shows the optical density for
the cells cultivated in the presence of each hydrogel sample (abscissa X) versus the optical
density for the cells without the hydrogel sample (ordinate Y). Based on the obtained curve,
the optical densities were determined for all hydrogel samples.

The relative cell viability (V) for each sample was calculated according to Equation (4).
Results are expressed as the mean ± standard deviation for three replicates.

2.4.4. Study of Cell Morphology

The hydrogel samples for confocal microscopy were prepared as described previously
(see Section 2.4.3.). After 7 days of cell cultivation, the cells were stained with Calcein
AM vital dye and DNA fluorescent dye DAPI. For this purpose, a mixture of Calcein AM
(5 µg/mL) and DAPI (10 µg/mL) in DMEM was added to the hydrogel samples, and the
samples were incubated at 37 ◦C for 30 min. Then, the supernatants were replaced with the
fresh culture medium, and the samples were observed using a confocal laser microscope
(Nikon TE-2000, Tokyo, Japan). The excitation wavelengths were 360 nm for DAPI and
488 nm for Calcein AM, and fluorescence signals were collected in the range of 380–460 nm
for DAPI and 500–530 nm for Calcein AM.

2.4.5. Statistics

The data were analyzed using GraphPad Prism 5.0 software (Graph-Pad Software,
San Diego, CA, USA). All values are expressed as mean ± standard error of at least three
parallel replicates, and they were compared using one-way analysis of variance (ANOVA)
with Dunnett’s Multiple Comparison Test as a post hoc test. Values of p < 0.05 are considered
significant.
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3. Results and Discussion

In the current study, the hydrogels based on Ch cross-linked with Gen or GA and
modified with low molecular weight HA (MW 30 kDa) or oligo-HA (MW 5 kDa) were
obtained and characterized in terms of their structures, biocompatibility and their ability to
support cell growth and proliferation.

3.1. Preparation of the Macroporous Ch/HA Hydrogels

The macroporous matrices were prepared via the lyophilization of hydrogels from Ch,
which was cross-linked with Gen or GA. As is well-known, this approach allows one to
obtain non-soluble Ch hydrogels, which demonstrate rather high swelling behavior. The
conditions for preparation of the Ch/HA samples were chosen based on polyelectrolyte
complex formation mechanisms described earlier [27], whereas chitosan gelation from Ch
solution using Gen or GA was also reported by us previously [28]. The conditions for cross-
linking Ch hydrogels, namely pH and Gen/NH2 ratio, were selected based on our previous
results, in particular the dependence curves of gelation time on Gen concentration [29]. The
results of the change in the elasticity modulus of the chitosan hydrogels are shown in the
Supplementary Materials (Figure S1). As a result of chitosan cross-linking with GA, more
rigid hydrogels were formed than those in the case of Gen. Thus, equilibrium values of the
modulus of elasticity measured with single-wall compression were found to be twice as
high for the chitosan hydrogels cross-linked with GA than for Gen cross-linked hydrogels,
even with lower cross-linker content in the case of GA. We also took into account that the
polymer system should be liquid for at least 1.5 h, which is needed for the degassing and
casting of the polymer solution in special forms for freezing.

In the current study, two approaches to the preparation of the macroporous Ch/HA
hydrogels with cross-linked Ch were developed (Figure 1). These approaches differ by way
of the HA entrapment and its distribution in/on the Ch hydrogel.

In Method 1, the cross-linker was added to the mixtures of the Ch and HA solutions.
As a result, one could suggest that HA molecules were distributed more or less evenly
within the Ch hydrogel and formed polyelectrolyte complexes with Ch macromolecules
(bulk modification). In Method 2, the chitosan macromolecules were first cross-linked
with Gen or GA to get Ch cross-linked hydrogels, and after that, the HA solution was
added, providing polyelectrolyte Ch/HA complex formation mostly on the surface of the
Ch hydrogel. Thus, we obtained composite hydrogels, which differed in their structure
due to HA macromolecule being distributed either mostly within the hydrogel volume (see
Method 1) or over the hydrogel surface (see Method 2).

The hydrogel samples modified with HA over the surface (surface modification),
hereafter referred to as Ch/HA-5s and Ch/HA-30s, differed only by HA molecular weight
(5 and 30 kDa, relatively). These samples were additionally washed after the modification
step and then freeze-dried. It should be noted that when using the freeze-drying technique,
a number of freeze-drying cycles could affect the hydrogel structure. In order to take this
effect into account, an additional set of the bulk-modified hydrogels was prepared and
evaluated in the current study. For this purpose, the bulk-modified Ch/HA-5v and Ch/HA-
30v hydrogels as well as the Ch hydrogels without HA (a control) were also washed with
PBS (pH 7.4) and then lyophilized.

Thus, as seen in Table 1, two sets of the samples were prepared:
(1) Initial samples. These samples were obtained using Method 1 (bulk modification)

for Ch/HA-5v, Ch/HA-30v and the non-modified Ch hydrogels in which Ch was cross-
linked with Gen or GA.

(2) Washed samples. This set of samples can be divided in two parts, the first part being
a subset of samples from the initial samples (1) but additionally washed with PBS (pH 7.4)
after preparation and lyophilized (see Chw, Ch/HA-5w and Ch/HA-30w). The second
subset of samples was prepared using Method 2 (surface modification) (see Ch/HA-5s and
Ch/HA-30s) in which Ch was first cross-linked with Gen or GA, and then the hydrogels
were incubated in the HA solution and finally washed with PBS (pH 7.4).
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Table 1. A list of the prepared hydrogel samples and conditions for their preparation.

Sets Samples
Ch

Concentration,
%

pH
HA
Mw,
kDa

Washing
Conditions

Ch/HA,
w/w

[Gen/GA]/[NH2]
Ratio

mol/mol

Gen
Concent-
ration,

%

GA
Concentr-

ation,
%

Initial
Ch 2.5 5.6 - - - 0.01 0.12 0.0525

Ch/HA-5v 2.5 5.6 5 - 5:1 0.01 0.95 0.4275

Ch/HA-30v 2.5 5.6 30 - 5:1 0.01 0.95 0.4275

Washed

Chw 2.5 5.6 - PBS (7.4) - 0.01 0.12 0.0525

Ch/HA-5w 2.5 5.6 5 PBS (7.4) 5:1 0.01 0.95 0.4275

Ch/HA-30w 2.5 5.6 30 PBS (7.4) 5:1 0.01 0.95 0.4275

Ch/HA-5s 2.5 5.6 5 PBS (7.4) Surface
mod 0.01 0.12 0.0525

Ch/HA-30s 2.5 5.6 30 PBS (7.4) Surface
mod 0.01 0.12 0.0525

3.2. Characterization of the Hydrogels

The FTIR spectra of the initial polysaccharides and the fabricated hydrogels are pre-
sented in Figure 2. The spectra of chitosan and hyaluronan show all well-resolved charac-
teristic bands. The intense group of bands that extends from 1500 to 1700 cm−1 appears for
all hydrogel samples. This group is the superposition of amide I and II bands and C=O and
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COO- bands. The main changes, which could be expected due to chitosan crosslinking and
Ch/HA polyelectrolyte complex formation, overlap with the carboxylate ion stretching
vibrations (about 1580 cm−1).
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Figure 2. FTIR spectra of the initial polysaccharides and macroporous chitosan/hyaluronic acid
hydrogels with cross-linked chitosan.

3.2.1. Study of the Hydrogel Structures

To provide rather large specific surfaces for cell attachment and growth, hydrogels
should have macroporous structures with open, interconnected geometry [30]. An inter-
connected, porous structure with pores of optimal size is known to stimulate cell growth,
provide uniform cell distribution and spreading and promote neovascularization. In ad-
dition, these parameters are crucial in terms of effective mass and gas exchanges, which
allows cells to be supplied with nutrients and oxygen [31].

In this study, the macroporous structures of the hydrogels were obtained via freeze-
drying. As is well-known, the properties of the system to be frozen have a great influence
on the formation of the macroporous structures. Varying the composition of a polymer
system for hydrogel preparation allows for the formation of matrices that can differ in
structure (morphology, average pore size, pore size distribution, etc.). As a result, the
obtained structures can affect cell localization and distribution within the hydrogels.

The structures of the swollen hydrogels were studied using CLSM. 3D reconstructions
of these hydrogel samples are shown in Figures 3 and 4. Some differences in the swollen
hydrogels’ structures as function of their composition, type of cross-linking agent and
preparation method were observed.

The mean pore sizes for all hydrogel samples are shown in Figure 5. The pore sizes of
the GA cross-linked hydrogels were smaller than those of the samples cross-linked with
Gen, as GA is a more reactive cross-linking agent [32]. Therefore, in the case of GA, a
formation of smaller ice crystals at freezing occurred, and as a result, an arrangement of
denser structures was observed. For the most compact Ch hydrogel cross-linked with GA,
an average pore diameter was 50 ± 9 µm. After an additional freezing cycle and washing
of the sample, the pore size increased up to 375 ± 48 µm. The pore size increased because
of the repeated swelling and subsequent freezing, and novel pores formed due to a partial
destruction of the hydrogel structure as a result of growing ice crystals.
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Figure 3. 3D reconstructions of the swollen macroporous chitosan (A–D) and composite chi-
tosan/hyaluronic acid hydrogels in which Ch was cross-linked with genipin (Gen) (A,B,E,F,I,J)
or glutaraldehyde (GA) (C,D,G,H,K,L). Bulk modification (Method 1) with HA Mw 5 kDa (E–H) or
30 kDa (I–L). Scale bar is 500 µm.
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Figure 4. 3D reconstructions of the swollen macroporous chitosan/hyaluronic acid hydrogels in
which Ch was cross-linked with genipin (Gen) (A,B) or glutaraldehyde (GA) (C,D). Surface modifica-
tion (Method 2) with HA Mw 5 kDa (A,C) or 30 kDa (B,D). Scale bar is 500 µm.
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which Ch was cross-linked with genipin (a) or glutaraldehyde (b). The Ch/HA-v hydrogels were
prepared via bulk modification (Method 1), and the Ch/HA-s hydrogels were prepared via surface
modification (Method 2).

An entrapment of HA macromolecules into the composite hydrogel in which Ch
was cross-linked with GA led to an increase in average pore size. A formation of rather
big pores simultaneously with small pores was observed in the case of initial Ch/HA
hydrogels prepared via bulk modification (Method 1). Thus, the mean pore size of 50 µm
for the Ch hydrogel increased up to 94 ± 6 µm for the Ch/HA-5v sample. Moreover, an
additional freezing cycle of these hydrogels resulted in an enhancement of the pore size
up to 256 ± 31 µm for Ch/HA-5w sample. The pore sizes of the hydrogels prepared via
surface modification (Method 2) were 340 ± 33 µm and 311 ± 29 µm for the Ch/HA-5s
and Ch/HA-30s samples, respectively, in which Ch was cross-linked with GA, whereas in
the case of the Ch/HA samples based on Ch cross-linked with Gen, the average sizes were
298 ± 15 µm (for Ch/HA-5s) and 319 ± 22 µm (for Ch/HA-30s). This could be explained
by the washing of the samples after surface modification.

In the case of cross-linking with Gen, both Ch and Ch/HA hydrogels prepared via bulk
modification were found to have higher mean pore sizes (within a range of 230–320 µm)
than those in the hydrogels in which Ch was cross-linked with GA (94 ± 6 and 89 ± 6 µm
for Ch/HA-5v and Ch/HA-30v samples, respectively). One can also see that additional
washing resulted in the increase of the mean pore sizes of the non-modified and bulk-
modified hydrogels cross-linked with Gen up to 387 ± 14 µm (for the Ch/HA-30w sample)
and 400 ± 43 µm (for the Ch/HA-5w sample). The biggest pores (452 ± 27 µm) were
obtained for the Chw hydrogel in which Ch was cross-linked with Gen after additional
hydrogel washing followed by the freeze-drying step.

Pore size is one of key parameters for cell cultivation within matrices. On one hand,
this is the parameter that depends upon the composition of the hydrogel used. On the other
hand, different kind of cells could prefer matrices that differ in mean pore sizes. To provide
diffusion of nutrients and metabolites at cell cultivation, the matrices with an average pore
size of >50 µm are desirable [33]. Thus, we could suggest that our hydrogels with the mean
pore sizes mentioned previously were suitable to support cell growth and proliferation.
However, it should also be mentioned that vascularization within the hydrogel is also
dependent upon its pore size. For instance, the depth and rate of vessel formation were
higher for matrices with mean pore sizes of 50–150 µm than those for hydrogels with
smaller pores within a range of 25–70 µm [34,35]. As for the matrices with pores >200 µm,
the development of bigger vessels was revealed, which was not the case for the matrices
with smaller pores [36]. Cell proliferation and/or differentiation are known to depend
upon the porosity of the hydrogel, in particular mean pore sizes. Thus, matrices with pores
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within a range of 70–120 µm, in contrast to those with pores ranging from 10 to 70 µm,
were shown to better support chondrocyte proliferation as well as accumulation of type II
collagen and glycosaminoglycans [35]. As for the differentiation of mesenchymal stromal
cells into chondrocytes and the repair of cartilage defects, they were more effective in poly(ε-
caprolactone) matrices with pores of 400 µm than in those with pores of 100–200 µm [37].
It has also been reported that matrices with a pore size within a range of 380–405 µm
demonstrated chondrocyte growth, whereas matrices with pore sizes from 186 to 200 µm
promoted fibroblast proliferation [38].

Thus, in our study, hydrogels with pore sizes in the range of 50–450 µm were pre-
pared. Therefore, we expected that the matrices with these pore sizes were suitable for the
cultivation of cells.

3.2.2. Study of the Hydrogel Swelling

As is well-known, the swelling behavior of the hydrogels is of great importance, as
it allows one to estimate cells’ ability to survive within the matrix. In addition, swelling
properties could affect degradation rate. Earlier, the degradation rate was shown to increase
along with swelling degree enhancement [39,40]. Moreover, the mechanical properties of
wet hydrogels were found to be significantly reduced [9,22], which could negatively affect
cell adhesion, morphology and proliferation. Regulation of the hydrophilic–hydrophobic
balance of the hydrogels is of great importance in order to promote cell adhesion [41].
Because hyaluronic acid is hydrophilic, its entrapment could result in changing the swelling
properties of the Ch hydrogels after modification with HA. Moreover, it was shown that
introduction of high molecular weight HA into Ch hydrogels resulted in an enhancement
of pore size, swelling ratio and degradation rate [22].

The total swelling of the hydrogel samples is considered to be a sum of two parameters,
namely polymer swelling, which is related to the swelling capacity of the hydrogel walls,
and structural swelling, which characterizes the amount of water retained in the pores. As
for our study, the hydrogels’ swelling capacity measurements are shown in Figure 6. It
can be seen that the modification of the chitosan hydrogels with HA as well as additional
washing and freeze-drying markedly affected the equilibrium swelling degree of the
samples (Figure 6a,b). Minimal swelling degrees of 21.6 ± 1.4 and 17.5 ± 1.8 mL/g were
found for the initial non-modified Ch hydrogels cross-linked with Gen and GA, respectively.
The bulk modification with HA led to these increased values (27.4 ± 2.1 and 24 ±2.3 mL/g
for Ch/HA-30v samples in which Ch was cross-linked with Gen or GA, respectively). For
the hydrogels modified with oligo-HA (Mw 5 kDa), the swelling degree values either did
not change or increased a little bit (see Figure 6a,b). However, after the additional washing
cycle, the swelling degree values of both non-modified Ch hydrogels and Ch/HA samples
after bulk modification increased. Thus, for washed Ch hydrogels, the enhancement was
up to 29.9 ± 2.2 and 27.6 ± 5.5 mL/g for Ch hydrogels cross-linked with Gen or GA,
respectively.

In the case of surface modification with HA (Method 2), swelling increased compared
to the swelling values obtained for both the initial samples and the washed hydrogels after
bulk modification (Method 1). Moreover, modification with HA (Mw 30 kDa) led to a
significant increase in total swelling. The maximum equilibrium swelling degree values
were 34.3 ± 3.1 mL/g and 33.3 ± 3.0 mL/g for two Ch/HA-30s samples in which Ch was
cross-linked with Gen or GA, respectively. This increase could be explained by the impact
of pore walls swelling on polymer swelling (see Figure 6c,d). This can be attributed to
partial damage to Ch/HA polyelectrolyte complexes as a result of interaction with various
ions in the cultivation medium (DMEM). The entrapment of oligo-HA (Mw 5 kDa) into
the hydrogel composition led to a less pronounced increase in the swelling degree of the
Ch/HA samples.
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with genipin (a,c) or glutaraldehyde (b,d) after incubation of the hydrogels in culture medium
(DMEM) for 24 h.

It should be noted that additional washing and freeze-drying did not affect the polymer
swelling behavior of both non-modified Ch and Ch/HA samples after bulk modification
(see Figure 6c,d). An increased equilibrium swelling of these hydrogels after washing could
be explained by changes in the hydrogel structures and a retention of water within the
hydrogel pores due to enhanced porosity as a result of re-freezing (see Figures 4 and 5).
Thus, an increase of mean pore sizes and porosity in the samples in which Ch was cross-
linked with Gen or GA because of repeated swelling was observed.

These results are consistent with those reported earlier [22]. Correia et al. showed
that HA entrapment leads to an increase in the swelling degree of the Ch/HA hydrogels
compared to the swelling degree of the Ch hydrogel.

3.2.3. Study of Enzymatic Degradation of the Hydrogels

The study of matrix degradation behavior is of great importance, as it allows estimation
of the time needed for growing cells to fill the pores (cavities) of the hydrogel and in parallel
to synthesize an extracellular matrix, which should replace our polymer matrix. In addition,
the degradation rate of the polymer matrix should be well-correlated with the rate of novel
tissue formation. In order to provide an optimal tissue regeneration rate, the polymer
matrix should decompose no faster than ECM is deposited. As is well-known, there are
different mechanisms of hydrogel destruction, for instance, resorption and degradation
under water and CO2 action, or degradation as a result of enzyme hydrolysis. Here, we
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studied biodegradation of Ch and Ch/HA hydrogel samples using a solution of lysozyme in
PBS (pH 7.4) (Figure 7). Lysozyme is known to cleave chitosan macromolecules. Hydrogel
degradation in PBS (pH 7.4) without lysozyme was used as a control. As seen in Figure 7,
the degradation of all hydrogel samples in the lysozyme solution (in PBS) was faster than
that in PBS (pH 7.4), whereas trends in the behavior of all the samples were preserved.
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Figure 7. Weight loss of the hydrogels based on chitosan cross-linked with genipin (a,c) or glutaralde-
hyde (b,d) after 21 days of incubation in lysozyme solution (2 mg/mL, in PBS) (a,b) and PBS at pH
7.4 (c,d).

The composition of the hydrogels was found to influence hydrogel degradation behav-
ior. The Ch/HA-5s and Ch/HA-30s samples were the weakest, whereas the non-modified
Ch hydrogels cross-linked either with Gen or GA were the most stable. The Ch hydrogel
samples cross-linked with GA were a bit more stable than those cross-linked with Gen.
It can be assumed that that covalent cross-linking hampered the cleavage of Ch macro-
molecules via lysozymes due to steric hindrance. Moreover, hydrogel structure could also
affect this process. For example, the Ch hydrogel cross-linked with GA had the densest
structure, which could limit diffusion. Therefore, biodegradation proceeded more slowly,
and weight loss was less than 2% after incubation for 21 days. Additional washing and
lyophilization of Ch samples led to a slight enhancement of the weight loss rate. The most
pronounced effect was found for GA-cross-linked Ch hydrogel, as the most drastic change
in the hydrogel structure was observed for this sample (see Figures 4 and 5).

As for the Ch/HA hydrogels, the entrapment of HA led to an increase in the weight
loss of the samples. For hydrogels after bulk modification, HA molecular weight as well
as washing did not markedly influence hydrogel degradation. Thus, the weight losses of
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these hydrogels were more or less similar; in particular, they were 15–19% after 21 days of
incubation in the lysozyme solution.

As for the Ch/HA samples after surface modification, we observed faster weight
losses than those for the Ch hydrogels. Moreover, the samples with oligo-HA (Mw 5 kDa)
degraded faster than those with Mw of 30 kDa. Thus, the most pronounced effect (41%)
was revealed for the Ch/HA-5s hydrogel sample in which Ch was cross-linked with Gen.
As for the Ch/HA hydrogels in which Ch was cross-linked with GA, they degraded faster
than the Ch samples as well, but they degraded more slowly compared to the Ch/HA
hydrogels in which Ch was cross-linked with Gen. For instance, the weight loss of the
Ch/HA-5s hydrogel with GA was 29% after 21 days of incubation in the lysozyme solution.

3.3. In Vitro Study
3.3.1. Cytotoxicity Study of the Hydrogels

Because GA is rather toxic [42], there is increasing interest in using genipin as a cross-
linker, which would impart stability and rigidity to biocompatible hydrogels. Genipin is
5–10 thousandfold less cytotoxic than glutaraldehyde [43]. The limiting factor for genipin
widespread use is its rather high cost. Recently, a new method for genipin preparation from
geniposide using Fusarium solani was reported [10]. In this context, Gen is a promising
alternative to GA to improve the mechanical properties of Ch-based matrices [44]. In this
study, we used Gen along with GA to prepare cross-linked hydrogels. Therefore, it was of
great importance to evaluate the possible cytotoxic effects of both of these compounds.

The cytotoxicity of the hydrogels was studied using an extract test (Figure 8). This
technique allows estimation of the cytotoxic effects of the compounds released from the
matrix after incubating the hydrogel samples in DMEM (10% FBS) for 24 h. Cell viability
was measured via MTT assay after cell cultivation in these extracts for 24 h. As seen in
Figure 8, there was a 90% decrease of cell viability for the extracts of the Ch/HA hydrogels
prepared via surface modification. This could be attributed to an acidic environment as a
result of the partial destruction of a Ch/HA polyelectrolyte complex. For other hydrogels,
we did not observe any decrease in viable cell numbers after cell cultivation in these extracts
for 24 h compared to the control (monolayer cell culture in DMEM + 10% FBS).
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cell culture was taken as a control (100%). Data are expressed as the mean ± SD. Asterisk indicates
significant difference versus control (* p < 0.05). Three parallel replicates were carried out for
each sample.
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3.3.2. Growth of Cells in the Hydrogel Samples In Vitro

Hyaluronic acid as one of the key components of the ECM provides many specific in-
teractions with growth factors, adhesive proteins and receptors. Therefore, HA entrapment
into the chitosan hydrogels could alter the bioactivity of these matrices. To estimate the
effects of the hydrogel properties on cell behavior, particularly cell adhesion, spreading
and proliferation, mouse fibroblasts L929 were cultivated in the hydrogels for 7 days. Cell
morphology was observed via CLSM, and cell proliferation was evaluated by using the
MTT assay.

3.3.3. Morphology of Cells in the Hydrogels

As seen in Figure 9, the L929 cells were distributed evenly over the matrix surface in
both cases of initial (non-modified) Ch hydrogels and Ch/HA samples after bulk modifica-
tion. After 7 days of cultivation, the cells in these matrices were found to attach, spread
well and form monolayers on the hydrogels’ surfaces. In contrast, in the Ch/HA hydrogels
after surface modification, the cells were distributed less evenly, were not well-spread
and formed multicellular aggregates (Figure 10). This could be explained by a negatively
charged HA surface, which causes an electrostatic repulsion of negatively charged cell
membranes [45]. As a result, the cells were spherical in shape and did not spread. As for
the Ch hydrogels and the Ch/HA hydrogels (bulk modification) after washing, the cells in
these samples were distributed evenly over the surface. However, the cellular aggregates
in these hydrogels were also revealed (see Figure 9H,J).

Thus, it can be concluded that the surfaces of the Ch/HA hydrogels after bulk modi-
fication were better for L929 fibroblast adhesion, spreading and growth than those after
surface modification.

3.3.4. Cell Proliferation in the Hydrogels

The growth and proliferation of cells within the hydrogel samples was studied via
MTT assay (Figure 11). A number of viable L929 fibroblasts in the hydrogels were found to
depend upon the hydrogel type. As can be seen in Figure 11, cell numbers for all hydrogels
in which Ch was cross-linked with Gen were higher than those for all hydrogels in which
Ch was cross-linked with GA. This fact can be explained by the smaller average pore sizes
of the hydrogels from Ch cross-linked with GA (50–100 µm) compared to those of the
samples in which Ch was cross-linked with Gen (>250 µm). The structures with smaller
pores could have led to limited cell migration and reduced cell proliferation. It is worth
noting that in the case of the washed samples, increased cell growth was revealed. After
additional hydrogel washing and lyophilization, the numbers of viable cells were higher
for the Ch hydrogels, and especially for those that were cross-linked with GA, than the
same values for initial hydrogels. This could be also attributed to changes in the samples
structure, as for the GA-cross-linked hydrogels, these changes were more pronounced.
These results could be also explained by an enhancement of the specific surface of the
samples due to their increased porosity. As a result, these changed hydrogel structures
could contribute to the observed improved cell adhesion and growth. Thus, additional
washing and lyophilization of the matrices affected the hydrogel structures by increasing
their pore sizes and porosity, which in turn led to enhanced cell migration within the
matrices. Therefore, the structures of the washed hydrogels were more favorable for cell
growth and proliferation.
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Figure 9. CLSM images of L929 mouse fibroblasts cultivated in chitosan (A–D)and chi-
tosan/hyaluronic acid hydrogels in which Ch was cross-linked with genipin (Gen) (A,B,E,F,I,J)
or glutaraldehyde (GA) (C,D,G,H,K,L) for 7 days. Bulk modification (Method 1) with HA Mw 5 kDa
(E–H) or 30 kDa (I–L). Living cells were stained with Calcein AM (in green), and cell nuclei and
hydrogel structures were stained with DAPI (in blue). Scale bar is 200 µm.

Modification of the Ch hydrogels by HA entrapment in both methods led to cell
growth enhancement in the Ch/HA matrices. The bulk HA modification of the hydrogels
led to increased numbers of viable cells. Moreover, between the initial bulk-modified
samples and samples modified on the surface, their relative cell viability values were
comparable. For instance, in the case of the hydrogels in which Ch was cross-linked with
Gen, cell viability rates in Ch/HA-5v, Ch/HA-30v, Ch/HA-5s and Ch/HA-30s hydrogels
were 77 ± 8%, 78 ± 10%, 80 ± 15% and 76 ± 12%, respectively. In the case of the hydrogels
with GA, cell viability rates in Ch/HA-5v, Ch/HA-30v, Ch/HA-5s and Ch/HA-30s were
63 ± 12%, 55 ± 6%, 55 ± 6% and 62 ± 10%, respectively. Maximum cell viability values
were found for the washed samples. Thus, as seen in Figure 11, the maximum number of
living cells (104 ± 13%) was revealed for the washed Ch/HA-30w sample in which Ch
was crossed-linked with Gen. It should be also noted that we did not find any significant
differences in cell viability for the Ch/HA samples that differed in the molecular weight of
hyaluronic acid used.

Thus, both methods for the modification of cross-linked Ch hydrogels via entrapment
of hyaluronic acid allowed us to enhance cell growth and proliferation.
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Figure 10. CLSM images of the L929 mouse fibroblasts cultivated in the chitosan/hyaluronic acid hy-
drogels in which Ch was cross-linked with genipin (Gen) (A,B,E,F) or glutaraldehyde (GA) (C,D,G,H)
for 7 days. Surface modification (Method 2) with HA Mw 5 kDa (A–D) or 30 kDa (E–H). Living cells
were stained with Calcein AM (in green), and cell nuclei and hydrogel structures were stained with
DAPI (in blue). Scale bars are 500 (A,C,E,G) and 200 (B,D,F,H) µm.
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Figure 11. Viability of L929 mouse fibroblasts cultivated in the hydrogels in which Ch was cross-
linked with genipin (a) and glutaraldehyde (b) for 7 days. Results of MTT assay. The monolayer
cell culture (without the hydrogel sample) was taken as a control (100%). Data are expressed as the
mean ± SD. Asterisk indicates significant difference versus control (initial Ch hydrogels) (*** p < 0.001;
* p < 0.05). Three parallel replicates were carried out for each sample.

4. Conclusions

In this study, two different methods are proposed for the fabrication of cross-linked
chitosan hydrogels modified via the entrapment of hyaluronic acid (Mw 5 kDa or 30 kDa) as
a bioactive compound. In order to prepare the macroporous composite Ch/HA hydrogels
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based on polyelectrolyte complexes, hyaluronic acid was entrapped in the Ch hydrogels
either via bulk modification (Method 1) or surface modification (Method 2). The chitosan
macromolecules were cross-linked with GA or Gen.

All hydrogels were characterized in terms of their FTIR spectra, swelling behavior,
structure, in vitro enzymatic degradation and their ability to support cell adhesion and
growth. The effects of HA on the Ch/HA hydrogel properties mentioned previously were
evaluated regarding the function of the method for HA entrapment, the molecular weight
of the HA and the cross-linker (Gen or GA) used for Ch cross-linking. The swelling degree
and degradation were found to depend on the method used and the composition of the
Ch/HA hydrogel samples. Thus, HA entrapment into the Ch hydrogels led to an increase
in the swelling degree as well as an enhancement of the degradation of the Ch/HA samples.
Moreover, HA entrapment via surface modification (Method 2) resulted in bigger changes
in these parameters than in the samples prepared using Method 1. All hydrogels were not
toxic, which was confirmed in the extract test using the L929 mouse fibroblasts. The 3D cell
growth and proliferation in the hydrogels were studied. Cell morphology and viability in
the hydrogels were shown to depend on hydrogel composition and the preparation method
used. The Ch/HA hydrogels after bulk modification promoted better cell adhesion and
spreading as well as cell growth and proliferation compared to the samples prepared using
Method 2 (surface modification). Moreover, additional washing and freeze-drying provided
better cell adhesion and proliferation, whereas HA introduction into the hydrogels resulted
in enhanced cell growth compared to the Ch samples.

Thus, by varying the Ch-based hydrogel composition and fabrication technique,
macroporous composite Ch/HA hydrogels with highly porous interconnected structures
were developed. A chitosan component of these hydrogels provided rather good cell
adhesion, whereas a combination of Ch with HA enhanced cell growth and proliferation.
The cross-linked chitosan hydrogels modified with hyaluronic acid could be promising for
tissue engineering.
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https://www.mdpi.com/article/10.3390/polym15102371/s1, Figure S1: Kinetics of a change in
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(0.005 mol/mol); (2) Gen/NH2 (0.01 mol/mol). The value of the modulus of elasticity was deter-
mined using a modified Kargin balance using the method of single-axis compression under stepped
loading. The samples had the form of tablets with a diameter of 20 mm and a height of 8 mm. The
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