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Abstract: Due to the specific recognition performance, imprinted polymers have been widely investi-
gated and applied in the field of separation and detection. Based on the introduction of the imprinting
principles, the classification of imprinted polymers (bulk imprinting, surface imprinting, and epitope
imprinting) are summarized according to their structure first. Secondly, the preparation methods of
imprinted polymers are summarized in detail, including traditional thermal polymerization, novel
radiation polymerization, and green polymerization. Then, the practical applications of imprinted
polymers for the selective recognition of different substrates, such as metal ions, organic molecules,
and biological macromolecules, are systematically summarized. Finally, the existing problems in its
preparation and application are summarized, and its prospects have been prospected.

Keywords: imprinted polymers; principle; classification; preparation; application

1. Introduction

Sensitive sensing of the surrounding environment has become necessary for modern
life. Molecular recognition is the foundation of sense, which is very important to some
biological processes and is the focus of much material investigation due to its importance
in sensing processes, separations, and detection [1]. Based on the natural antibody–antigen,
enzyme–substrate recognition systems and synthetic receptors with selectivity were de-
veloped, namely imprinted polymers [2]. Imprinted polymers are porous materials that
are prepared via imprinting technology, which can completely match templates in cavity
structure and possess specific recognition functional groups/binding sites for template
molecules [3]. In 1972, the Wulff group first proposed the concept of molecularly imprinted
polymers (MIPs) [4]. In 1993, the theophylline-based MIPs were reported by the group of
Vlatakis in the journal of Nature [5]. Since then, MIPs have achieved rapid development,
and great progress has been made in the types, synthesis methods, and applications of
MIPs, as well as the principles of molecularly imprinted technology [6].

Recently, MIPs have been extensively used in many fields such as sample preparation,
analysis and detection, environment protection, and drug release [7–9]. With the application
expansion of MIPs, the requirements for structural design and preparation methods are in-
creasing, leading to more and more MIPs with different structures being prepared by different
methods [10–12]. Though many reviews of MIPs about specific aspects have been reported,
there are few reviews about the classification, preparation, and application [13–19]. With the
rapid development and application of new MIPs, now is an appropriate time to summarize the
recent progress [20–26].
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2. Recognition Principles of Imprinted Polymers

MIPs are versatile functional materials that not only have adsorption properties but
also have excellent recognition [11,12]. The specific recognition of MIPs is closely related
to their cavity structure and intermolecular interactions (Figure 1) [27], including (A)
reversible covalent bonds, (B) semi-covalent bonds, (C) electrostatic attraction, (D) van der
Waals interactions, and (E) metal coordination.
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Figure 1. Illustration of the molecular imprinting procedure [27].

In the process of MIPs preparation [28], template-functional monomer complexes are
formed firstly through intermolecular interactions, achieving a high degree of binding site
matching. Then, a cross-linking agent is added to fix the functional group in space via
polymerization, as the polymers are grown around template molecules; thus, precise cavity
matching can be achieved in this process. Finally, a three-dimensional cavity with specific
recognition for the template can be obtained by removing the template.

3. Classification of Imprinted Polymers

With the deepening of research, the types of MIPs are increasing. According to
the binding mode between template molecules and functional monomers, the MIPs are
divided into covalent/pre-assembled MIPs and non-covalent/assembled MIPs [12]. As
the difference of substrates, the MIPs can also be divided into polymers that recognize
ions, organic molecules, and biological macromolecules [11]. In addition, according to the
distribution position of templates in imprinted polymers, they can also be divided into bulk
imprinted polymers, surface imprinted polymers, and epitope imprinted polymers [29].

The distribution of templates in imprinted polymers has a significant influence on
the removal and recognition rate of templates, which determines the application of the
imprinted polymers (Table 1) [30,31]. For the bulk imprinted polymers, templates are
randomly distributed in the bulk of the matrix. The template near the center has a slow
removal and recognition rate, so they can only be used for the selective recognition of
metal ions or organic molecules. For surface imprinted polymers [32,33], templates are
located in the surface layer, making the fast removal and recognition of templates, which
can be used for the recognition of most substrates. For the epitope imprinted polymers,
only the exposed chain segments in the macromolecules are used as templates in the MIPs
preparation, resulting in a very fast removal and recognition of templates, making them
very suitable for the recognition of biological macromolecules [31].
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Table 1. Classification of MIPs.

Type Preparation Method Template Carrier Application Ref.

Bulk imprinted
polymers

bulk polymerization Rb+ none decontamination [34]
bulk polymerization melamine none sensor [35]

Surface imprinted
polymers

grafting polymerization BSA polymeric nanoparticles sample preparation [36]
grafting polymerization gallic acid Fe3O4 sample preparation [37]

Epitope-imprinted
polymers

electrochemical polymerization ncovS1 Au-TFME diagnostics [38]
irradiated polymerization peptide gold chip therapy [39]

3.1. Bulk Imprinted Polymers (BIPs)

BIPs are the earliest products obtained with molecular imprinting technology. Typical
preparation methods of BIPs are as follows: the templates and functional monomers are
mixed to form complexes; then, cross-linkers and initiators are added to the mixture; after
the polymerization of the system, the BIPs are obtained with mechanically ground and
sieved [6].

A rubidium (Rb) ion imprinted polymer was synthesized via bulk polymerization
using Rb+ ion as template [34], crown ether as ligand, methacrylic acid (MAA) as functional
monomer, ethylene glycol dimethacrylate (EGDMA) as cross-linker, and azobisisobutyroni-
trile (AIBN) as initiator. The maximum adsorption capacity of these BIPs was 213 mg/g,
and they exhibit excellent selectivity for Rb+ ions compared with Li+, Na+, and K+ ions. A
novel biosensor combining MIPs and Raman spectroscopy was developed to determine
melamine in milk [35]. MIPs were prepared via bulk polymerization of the template, MAA,
EGDMA, and AIBN. The detection limit of the obtained MIPs is 0.012 mmol/L, and the
detection time is reduced to less than 20 min in whole milk.

The reaction process of BIPs is the simplest, but the post-processing is complicated
and needs crushing and grinding. In addition, the complete removal of templates is
very difficult in BIPs, especially for templates distributed near the center. This can not
only slow the elution rate but also affects the adsorption efficiency. Therefore, imprinting
technology that establishes active sites on the surface layer of imprinted materials has been
extensively investigated.

3.2. Surface Imprinted Polymers (SIPs)

SIPs are prepared with two main steps: modification of carrier and polymerization [40].
Typically, spherical or layered carriers such as silica, metal oxides, and nanomaterials are
modified with coupling agents, making it complex with template and polymerization
with cross-linker. Then, mixed with templates, functional monomers, and initiators, after
polymerization, the SIPs can be obtained. The recognition site of SIPs is located in the
surface layer, which can solve the problems caused by BIPs, such as deep embedding and
the difficult removal of templates [41].

In the work of Song and co-workers [36], bovine serum albumin (BSA) was first im-
mobilized on the anchored tetraalkylammonium groups of the poly (VBDC-CMS) nanopar-
ticles via anion exchange interactions, and the thickness-controlled imprinted film was
obtained with surface-initiated polymerization. Core–shell structural magnetic molecu-
lar imprinted polymer (MMIP) with surface imprinted technology was reported for the
recognition of gallic acid (Figure 2) [37], and hollow magnetic molecular imprinted poly-
mer (HMMIP) was synthesized by etching the intermediate silica layer of MMIP. The
results showed HMMIP had higher selectivity and adsorption capacity towards gallic acid
than MMIP.
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3.3. Epitope-Imprinted Polymers (EIPs)

EIPs are also known as antigenic determinant imprinted polymers; the antigenic
determinants refer to the segments of antigen macromolecules that can be recognized by
antibodies. Inspired by the specific recognition between antibodies and antigens, novel
EIPs were developed [42]. The preparation of EIPs is similar to that of SIPs, while only the
exposed chain segments rather than the biological macromolecules were used as templates.
The resulting imprinted materials can not only recognize the chain segments but also
can bind the entire biomacromolecules [43,44]. Using the chain segments as templates
for the MIPs preparation can reduce the impact of non-specific adsorption components
in biomacromolecules. In addition, the chain segments are relatively stable in reaction
conditions, which can avoid the destructive effect of harsh reagents on biomacromolecules
with traditional methods [45,46]. For the simple and early detection of COVID-19, EIPs
based on SARS-CoV-2 spike protein subunit S1 (ncovS1) were fabricated and applied in an
electrochemical sensor [38]. The obtained sensor showed a short reaction time of 15 min
and can detect ncovS1 both in a buffer solution and in the patient’s nasopharyngeal. A
helical peptide was selected from the HIV protease as a template (Figure 3) [39], mixed
with acrylic acid, N-benzyl acrylamide, acrylamide, and N,N-ethylene-bis-acrylamide;
imprinted polymers were obtained with UV irradiated polymerization, after the removal
of peptide, the EIPs shows highly recognition for HIV.
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4. Preparation Progress of Imprinted Polymers

MIPs are mainly prepared with free radical polymerization of template-functional
monomers and cross-linking agents [7–9], which can be realized with bulk polymerization,
emulsion polymerization, solution polymerization, suspension polymerization, etc. The



Polymers 2023, 15, 2344 5 of 26

MIPs are always prepared with thermal polymerization and in the presence of an initiator,
which needs a long reaction time and high energy consumption. To solve the problems
that appeared in traditional thermal polymerization, novel radiation polymerization tech-
nologies such as UV radiation, γ-rays radiation, electron beam, and microwave have been
used in the synthesis of MIPs [47]. Reaction time can be shortened via these radiation
polymerizations, and initiators were not required for some radiation polymerization. In
addition, plenty of organic solvents were used in the traditional approach, which will cause
environmental pollution and safety risk. To solve environmental and safety issues, besides
the traditional bulk polymerization, green strategies based on supercritical carbon dioxide,
ionic liquids, and deep eutectic solvents have also achieved rapid development [3].

4.1. Thermal Polymerization

The main and conventional approach for the preparation of MIPs is thermal polymer-
ization, including conventional thermal polymerization and thermal polymerization with
new technology (Table 2) [48]. Though long reaction time and the high energy consumption
is needed for thermal polymerization, they can be used for the preparation of most MIPs,
including bulk, surface, and epitope imprinted polymer.

Table 2. MIPs preparation with thermal polymerization.

Thermal Polymerization Approach Template Carrier Application Ref.

Traditional
oil bath benzylpiperazine none sample preparation [49]
oil bath tolfenpyrad Fe3O4 sample preparation [50]

Other
oven quercetin Fe3O4 sample preparation [51]

magnetic field nitrophenol Fe3O4 decontamination [52]

4.1.1. Conventional Thermal Polymerization

MIPs for benzylpiperazine were developed through thermal polymerization via both
self-assembly and semi-covalent methods, and the recognition abilities of the obtained
MIPs were compared [49]. For the self-assembly approach, benzylpiperazine and methyl
methacrylate form complexes through self-assembly. While for the semi-covalent approach,
the benzylpiperazine reacts with vinylbenzenesulfonyl chloride to form new molecules.
Magnetic SIPs using tolfenpyrad as a template were synthesized through thermal poly-
merization with 2-vinylpyridine and ethylene magnetite nanoparticles (Figure 4) [50]. The
maximum adsorption capacity of the MIPs toward the target was 7.20 mg/g and exhibited
excellent selectivity.
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4.1.2. Other Thermal Polymerization

Thermal polymerization is always carried out through liquid media for heat transfer;
now, heat transfer with other approaches for thermal polymerization was reported for the
MIPs preparation. Quercetin-based SIPs were successfully prepared via thermal polymer-
ization with an oven using AA and EGDMA as functional monomers and cross-linking
agents, respectively [51]. A rapid and direct strategy for thermal polymerization of polymer
shells at magnetic particle surface with an alternating magnetic field was developed for the
preparation of MIPs of para-nitrophenol at room temperature [52]. This method provides a
strategy for magnetic particle surface imprinting without obvious temperature increases.

4.2. Radiation Polymerization

Many issues appeared in the traditional thermal polymerization for the preparation of
MIPs. On the one hand, a long time was needed, and the efficiency was always low. On the
other hand, the high reaction temperature needs more energy and also affects the stability
of the complexes formed by template and functional monomer [7–9]. In addition, the use
of additives such as initiators, dispersants, and emulsifiers causes the issue of residues,
leading to the obtained MIPs not being suitable for application in the medical area. In
order to solve these issues, novel radiation polymerization technologies have been rapidly
developed (Table 3) [47]. Radiation polymerization can not only shorten the reaction time
but also can be conducted at room temperature. Moreover, some radiation polymerization
does not even require an initiator, which can be used for the preparation of MIPs used in
the medical area [53].

Table 3. MIPs preparation with radiation polymerization.

Radiation Polymerization Approach Template Carrier Application Ref.

UV

solution polymerization benzyl mercaptan none sensor [54]
solution polymerization glutathione none sample preparation [55]
grafting polymerization Penicillin G Fe3O4 decontamination [56]
grafting polymerization caffeic acid TiO2 sensor [57]
solution polymerization atrazine none decontamination [58]

γ-rays

grafting polymerization atrazine fiber decontamination [59]
grafting polymerization erythromycin fabrics sample preparation [60]
solution polymerization phenytoin none sample preparation [61]
grafting polymerization bacitracin membrane sample preparation [62]
solution polymerization glucose none sample preparation [63]

bulk polymerization Er3+ none decontamination [64]
solution polymerization steroid none sample preparation [65]

Electron Beam

solution polymerization baicalin none sample preparation [66]
grafting polymerization ibuprofen membrane sample preparation [67]
solution polymerization chloramphenicol none sample preparation [68]
solution polymerization quercetin-nickel none sample preparation [69]
solution polymerization sulfamethazine none sample preparation [70,71]
grafting polymerization Th3+ fabrics decontamination [72]

Other

microwave radiation olivetol none sample preparation [73]
microwave radiation dimethyl phthalate none sample preparation [74]
microwave radiation bisphenol A none sample preparation [75]
microwave radiation gibberellin acid Fe3O4 sample preparation [76]
microwave radiation quercetin silica sample preparation [77]

Plasma grafting Cr6+ fiber decontamination [78]
ultrasonic irradiation naphthol attapulgite sample preparation [79]
ultrasonic irradiation caffeine none sample preparation [80]
ultrasonic irradiation caffeine none sample preparation [81]

4.2.1. UV Radiation Polymerization

Due to the easy accessibility of radiation equipment, UV radiation became the most
popular radiation approach for the synthesis of MIPs. Compared with traditional thermal
polymerization, UV radiation polymerization does not need a high reaction temperature.
For the low energy of UV radiation, it is always necessary to add an initiator. Novel benzyl
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mercaptan BIPs with controlled binding sites were synthesized via thermal polymerization
(80 ◦C) and UV radiation polymerization at room temperature [54]; the template-binding
strengths of the two methods are 39% and 67.5%, respectively, demonstrating the better
recognition performance of MIPs obtained with UV radiation polymerization. MIPs for
glutathione were prepared through controlled radical polymerization under UV radiation
at room temperature [55]; spherical shape, fast binding kinetic, and highly selective factor
was obtained for UV polymerization than those of traditional thermal polymerization,
and the proposed method was successfully used to determined glutathione in spiked
human urine.

The penicillin residues in the environment cause health risks and increase the develop-
ment of resistances, so its selective recognition from complex matrices is challenging work.
MIPs for the recognition of penicillin G were prepared through UV polymerization as
follows [56]: template was added to the acetonitrile, followed by the addition of MAA and
trimethylolpropane trimethacrylate, nitrogen was purged for 15 min, and AIBN was added;
the photopolymerization was conducted with high-pressure mercury. UV radiation poly-
merization has the merit of being conducted at a lower temperature, which can prevent the
degradation of the substrate. UV self-initiated MIPs based on Au and TiO2 functionalized
metal-organic framework has been first developed for the selective separation of caffeic
acid [57]; the preparation needs no initiator. The polymerization could be initiated by
hydroxyl radicals, which are generated by TiO2 under UV light. This is a more eco-friendly
and more efficient method than traditional thermal polymerization. Atrazine MIPs were
synthesized by far-infrared and UV radiation polymerization (Figure 5) [58]. Compared
with commercial solid phase extraction sorbent, higher recoveries of atrazine in practical
water samples were obtained for both MIPs. In some cases, UV radiation polymerization
can be carried out without the addition of an initiator, such as photocatalytic performance
observed for the carriers.
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4.2.2. γ-rays Radiation Polymerization

γ-rays are generally produced by the decay of radioactive elements such as 60Co,
which has a short wavelength and high frequency, resulting in higher energy and pene-
tration. No significant changes in temperature can be observed in γ radiation polymer-
ization, and no initiator is required [47]. Reversible addition-fragmentation chain transfer
(RAFT) polymerization was utilized to imprint atrazine [59] onto porous fabric via grafting
polymerization of MAA, which uses γ-rays for the generation of radicals. The positron
annihilation lifetime spectroscopy (PALS) results showed that monomer/chain transfer
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agent concentration ratios are effective for the formation of template cavities. In addition,
well-defined erythromycin imprinted porous polythylene/polypropylene nonwoven fab-
rics were also prepared with γ-rays radiation-induced RAFT-mediated polymerization [60],
and the greatest binding energy appeared at an MMA/erythromycin ratio of 4:1.

Zsebi and co-workers reported that MIPs use phenytion as a template, which has been
synthesized by γ-rays radiation copolymerization of acrylamide and EGDMA [61]. With
the increase in radiation dose, the imprinting factor of the obtained MIPs first increases
and then decreases, and the maximum imprinting factor is 2.5 with a radiation dose of
15 kGy. MIPs were prepared by γ-rays radiation polymerization, with bacitracin used
as the target molecule [62]. The MIPs materials showed higher adsorption capacity than
non-printed polymers and showed a greater selective recognition of bacitracin than other
substrates. γ-rays radiation-induced MIPs of glucose were reported by Djourelov’s group,
and the effect of cross-linker types and template amounts on the imprint quantities was
investigated [63]. The PALS results revealed that cavity size could be controlled with
cross-linker concentration and size, template/monomer ratio, and dose of irradiation. For
the preparation of errium ion imprinted polymers, a prepolymer complex was synthesized
first and then copolymerized via γ-rays radiation polymerization with different kinds
of functional monomer and cross-linking agents [64]. The obtained imprinted polymer
has an enrichment factor of 25 and could separate erbium from competitive ions such as
yttrium, dysprosium, holmium, and thulium. Due to the difficulty in monitoring trace
quantities of steroids in a biological environment, MIPs were obtained with thermal, UV,
and γ-rays radiation polymerization and used for preconcentration and cleanup of these
hormones [65].

4.2.3. Electron Beam Radiation Polymerization

Electron beam (EB) radiation polymerization is conducted under high-energy electron
beams, which originated from electron accelerators. The high-energy electrons can interact
with substances to generate free radicals, thereby triggering chain polymerization. The
energy loss of EB radiation polymerization is only 1/40 of thermal polymerization and will
not cause environmental pollution [66]. Baicalin MIPs was prepared with EB radiation poly-
merization for the first time by the Liu group; no initiator was needed for this EB radiation
polymerization [66]. This approach has a very high efficiency, which opens up a new path
for the industrial application of MIPs. A porous imprinted membrane was synthesized
with EB radiation polymerization; the obtained MIPs are suitable for the recognition of
ibuprofen [67]. Ibuprofen was first coordinated with metal ions as a template, and the MAA
and EGDMA were added; after EB radiation polymerization and removal of the template,
the obtained MIPs have excellent selectivity for the chiral ibuprofen. Chloramphenicol
imprinted microspheres of uniform size were obtained with rapid precipitation polymer-
ization, which was initiated via EB radiation [68]. The results show that EB radiation
can successfully imprint chloramphenicol in a three-dimensional network structure, and
MIPs with a high specific surface area can be obtained. Wang et al. Successfully prepared
quercetin-nickel coordination MIPs by EB radiation polymerization [69], the obtained MIPs
showed significant selectivity for the complex, with the highest adsorption capacity of
82. 22 µmol/g.

In the work of Liu and co-workers, BIPs were prepared by EB radiation polymerization
using sulfamethazine as a template, acrylamide as a functional monomer, and EGDMA
as a cross-linker [70,71]. The results showed that excellent recognition performance of the
MIPs was obtained at 150 kGy, and the corresponding imprinting factor was as high as
12.91. Thorium ion imprinted polymers were reported by Selambakkannu et al. using EB
radiation grafting polymerization [72]; the resulting functional nonwoven fabrics not only
have high adsorption capacity but also have good selectivity towards thorium ions.
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4.2.4. Other Radiation Polymerization

Besides UV, γ-rays, and EB radiation polymerization, new radiation polymerization
based on microwave, ultrasound, and plasma has been developed in the preparation of
MIPs in recent years.

A simple and fast polymerization strategy was developed for the synthesis of olivetol
MIPs [73]. With the help of microwave radiation, polymerization was carried out in
5.5 min, and the recovery of olivetol, m-toluidine, and phenol for the MIPs were 87.3–93.6%,
18.9–24.9%, and 21.4–27.2%. Dimethyl phthalate (DMP) MIPs were prepared with the
same approach; the selectivity coefficients were 5.6, 2.6, and 1.4 for DMP, dibutyl phthalate,
and dioctyl phthalate [74]. The microwave-assisted approach was also developed for
the rapid preparation of bisphenol A MIPs; compared with thermal polymerization, the
proposed approach shortened the reaction time 20-fold [75]. The obtained MIPs fiber
was used for selective extraction of bisphenol A, diethylstilbestrol, and hexestrol in tap
water. Gibberellin acid (GA) magnetic MIPs beads were fabricated via microwave radiation
polymerization [76], and the obtained beads were used for the selective separation of
GA in real samples. The GA MIPs beads exhibited selective absorption behavior for the
target template and showed higher adsorption capacity (708.4 pmol). Quercetin SIPs were
prepared using silica as a carrier under microwave radiation [77]; the obtained results
showed that this method could greatly shorten the reaction time, and the maximum
adsorption for the template is 2.87 µmol/g. Chromium ion imprinted polypropylene
fibers were synthesized via the plasma-mediated grafting method (Figure 6) [78], and the
obtained imprinted materials exhibited excellent selectivity to chromium ion compared
with non-imprinted fibers.
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Naphthol SIPs were fabricated by ultrasonic radiation polymerization with attapulgite
as a matrix, and acrylic acid modified β-cyclodextrin as a functional monomer [79]. Com-
pared to polymers synthesized by thermal polymerization, the MIPs prepared by ultrasonic
radiation had higher selectivity and faster adsorption rate to different templates. MIPs
based on ultrasound-assisted polymerization were used for the separation of caffeine [80],
and microspheres with uniform size distributions were obtained with the specificity of
the template. In addition, magnetic caffeine MIPs microspheres were also reported by
Phutthawong’s group [81], with the same ultrasound-assisted precipitation polymerization.

4.3. Green Polymerization

Organic solvents are always used in the synthesis of MIPs with conventional ap-
proaches, which not only cause environmental pollution but also pose potential safety
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hazards [10–12]. To solve these problems, many green approaches were developed for the
synthesis of MIPs, including supercritical CO2, ionic liquids, and deep eutectic solvents, as
well as bulk polymerization and sol–gel polymerization (Table 4) [3].

Table 4. MIPs preparation with radiation polymerization.

Green Polymerization Template Carrier Application Ref.

Bulk

sulpiride none sample preparation [82]
benzylparaben none decontamination [83]

basic blue none decontamination [84]
bisphenol A none decontamination [85]
levofloxacin none sample preparation [86]

Supercritical carbon
dioxide

acetamide none sample preparation [87]
acetamide none sample preparation [88]
gallic acid none sample preparation [89]

labdanolic acid none sample preparation [90]
flufenamic acid none drug delivery [91]

Ionic liquids

isoquercitrin none sample preparation [92]
naproxon POSS sample preparation [93]

methyl gallate none sample preparation [94]
propranolol none sample preparation [95]
aconitic acid none sample preparation [96]

Deep eutectic solvent
chlorogenic acid none sample preparation [97]

bovine hemoglobin none sample preparation [98]
gallic acid none sample preparation [99]

Sol-Gel
gossypol silica sample preparation [29]

glyphosate paper sensor [100]
Quercetin silica sample preparation [101]

4.3.1. Bulk Polymerization

Bulk polymerization is the simplest and most environmentally friendly approach
for the preparation of MIPs [102]; only template molecules, functional monomer, cross-
linking agent, and initiator (not necessary for γ-rays and EB radiation polymerization) were
needed in this polymerization, which has been widely used in the preparation of powder
BIPs. Sulpiride MIPs were prepared by bulk polymerization with itaconic acid (ITA) as a
functional monomer [82]. The obtained MIPs were demonstrated with the molar ratio of
sulpiride/ITA/EGDMA of 1/4/15, and the obtained MIPs showed good performance with
a high imprinting factor of 5.36 and a maximum adsorption capacity of 61.13 µmol/g. MIPs
based on methacrylic acid functionalized β-cyclodextrin monomer was prepared through
bulk polymerization for the selective recognition of benzyl paraben (Figure 7) [83]. The
functional monomer shows strong interactions with the template, including π-π stacking,
inclusion complex, and hydrogen bonding. In addition, the binding experiment results
revealed that the β-cyclodextrin could significantly enhance the recognition affinity.

Basic Blue dye MIPs were synthesized with bulk polymerization and used for the
adsorption of Basic Blue in wastewater [84]. The Basic Blue adsorption on the MIPs obeyed
the second-order kinetic model and the Langmuir isotherms model, with maximum adsorp-
tion capacities of 99.0 mg/g. Bisphenol A MIPs was synthesized via bulk polymerization
using phenolphthalein as a dummy template [85]. MIPs particles with a diameter of
40–60 µm and a high surface area of 359.8 m2/g were obtained; the obtained MIPs showed
specific adsorption for bisphenol A. Frontal polymerization was successfully applied for
the first time in the fabrication of levofloxacin MIPs [86], this approach offered a solventless
polymerization, and the reaction time can be shortened to 30 min.
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Though bulk polymerization can be widely used in the green synthesis of powder
MIPs, it is powerless for the preparation of spherical MIPs or SIPs, which need dispersion
media. Therefore, it is necessary to develop green reaction media for the synthesis of MIPs.

4.3.2. Supercritical Carbon Dioxide Polymerization

As it has many advantages, such as being non-flammable, non-toxic, and easily
removed, supercritical carbon dioxide (scCO2) became an environmentally friendly alterna-
tive to traditional organic solvents [103]. Viveiros et al. developed a cheap acrylate and
acrylamide-based copolymer in scCO2, methacrylamide-based MIP showed the maximum
adsorption capacity for model pharmaceutical impurity, acetamide [87]. In the further
investigation of Viveiros et al., a computational approach was used to optimize the MIP
synthesis in scCO2. The results showed that itaconic acid and 2-hydroxyethyl methacrylate
have strong interactions with acetamide [88].

Gallic acid MIPs were synthesized using scCO2 as a green process and MAA and
MMA as functional monomers [89]. The template removal rate with Soxhlet extraction was
about 95–99%, and the results indicate that the synthesized MIPs possess high selectivity
and separation abilities. To reveal the regional distribution of labdanolic acid (LA) [90], a
series of MIPs were prepared using scCO2 and used for the separation of LA. In all of the
obtained MIPs, 2-(dimethylamino)ethyl methacrylate MIPs exhibited the optimal result for
LA purification. A novel class of flufenamic acid (FA) MIPs was also synthesized using the
scCO2 technique [91], the NMR experiments confirmed that the main interaction that exists
between the FA and functional monomer is hydrogen bonds.

4.3.3. Ionic Liquids Polymerization

Ionic liquids (ILs) are organic salts consisting of anions and cations, which can remain
liquid at ambient temperature. Compared with traditional organic solvents, ILs exhibit
many advantages such as being non-flammable, having excellent thermal stability, and
being non-volatile, completely recycled, leading to their wide application in the synthesis of
polymers [104]. It has been shown that synthesizing MIPs in ILs can accelerate the reaction,
enhancing the recognition and adsorption capacity. Nowadays, besides solvents, ILs can
also be used as templates, monomers, cross-linkers, and additives for polymerization [3].

Isoquercitrin (ISO) MIPs were synthesized in ILs, using 4-vinylpyridine as a functional
monomer [92]. The optimal recovery of obtained MIPs for ISO was 87.78%. Naproxon
MIPs were synthesized with a mixture of polyhedral oligomeric silsesquioxane (POSS)
substituted MA, 4-vinylpyridine, and EGDMA in ILs of [BMIM]BF4 [93]. The highest
imprinting factor of the MIPs synthesized with modified MA was 22, which is much
higher than that synthesized without POSS. Methyl gallate (MG) MIPs was also prepared
in the same ILs; the highest imprinting factor is 10.9 at the optimized polymerization
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parameters [94]. Propranolol MIPs were synthesized by Booker’s group with four different
ILs, and the cavity size of the obtained MIPs was revealed by PALS [95]. Aconitic acid MIPs
were also prepared in ILs by Booker’s group; under UV radiation and thermal conditions
giving polymer microspheres. Compared with traditional polymerization in acetonitrile,
higher selectivity indices were obtained for the MIPs synthesized in ILs [96].

4.3.4. Deep Eutectic Solvent Polymerization

Deep eutectic solvents (DESs) are considered the fourth generation of ILs, which are
salt mixtures obtained with the complexation of hydrogen acceptor and naturally derived
uncharged hydrogen bond donors [105]. DESs can also be made from non-ionic compounds,
which is better than conventional ILs. In addition, DESs also possess the merits of low cost,
low toxicity, biodegradability, and no need for additional purification.

EDS-modified MIPs were synthesized for the recognition of chlorogenic acid (CA) [97];
the extraction rate of CA was 12.57 mg/g. Magnetic DESs MIP was synthesized for the
recognition and separation of Bovine hemoglobin [98], and the maximum adsorption ca-
pacity was calculated with the Langmuir isotherms model to be 175.44 mg/g. In addition,
the imprinted materials showed a high imprinted factor of 4.77, which presented outstand-
ing recognition specificity. Gallic acid MIPs were synthesized with bulk polymerization
using DESs as functional monomers (Figure 8) [99], the obtained MIPs has a mesoporous
structure with an average pore diameter of 9.65 nm. The adsorption behavior followed
pseudo-second-order kinetic model, with a maximum adsorption capacity of 0.711 mmol/g.
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4.3.5. Sol-Gel Polymerization

In the separation investigation of gossypol, the sol-gel method was applied for the
synthesis of SIPs [29]. Typically, gossypol was dissolved in acetone, and (3-aminopropyl)
triethoxysilane was added to the mixture to obtain self-assemble complexes. Then, activated
silica carrier, cross-linker tetraethoxysilane, and acetic acid were added. Finally, SIPs were
obtained with reaction at room temperature for 24 h. Results revealed that the MIPs
obtained with sol-gel polymerization was a desirable sorbent for rapid adsorption of
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gossypol, and the MIPs obtained with bulk polymerization was suitable for selective
recognition of gossypol. A paper-based fluorescent senor targeting glyphosate, integrated
with surface imprinting technology, was reported by Wang’s group [100]. SIPs were
prepared via sol–gel polymerization, and the obtained SIPs exhibited high selectivity for
glyphosate. The detection accuracy of the obtained sensor was relatively good, with a
recovery rate of 92–117% for practical samples. The sol–gel approach was used for the
fabrication of quercetin-based SIPs (Figure 9) [101], the adsorption could reach equilibrium
within 90 min, with a maximum adsorption capacity of 35.7 mg/g. The mechanism for
adsorption isotherm and kinetics of SIPs was proved to obey the Freunflich isotherm model
and pseudo-second-order kinetics model.
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5. Application Progress of Imprinted Polymers

Due to their excellent recognition, structure-activity prediction, and widespread appli-
cability, the MIPs have achieved rapid progress [10–12]. Based on their strong recognition
ability, high selectivity, and good stability, MIPs are extensively used in various fields
such as solid phase extraction and analytical detection. In addition, MIPs are expected
to achieve industrial production and application in environmental monitoring, the food
industry, clinical medicine, natural products, and other industries [106–109]. According to
the difference in templates, the latest progress in the recognition applications of MIPs in
metal ions, organic molecules, and biological macromolecules was summarized.

5.1. Ion-Imprinted Polymers (IIPs)

IIPs are polymers prepared through imprinting technology using ions as templates,
which have been extensively applied for the reparation and determination of heavy metals
in wastewater [110]. Due to the small radius of ions, for the preparation of IIPs, poly-
merizable ligands are always needed for the formation of template-functional monomer
complexes (Table 5).
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Table 5. Applications of IIPs.

Template Type Preparation Method Liner Range LOD Application Ref.

Pb2+ SIPs thermal polymerization Maxcapacity = 51.2 mg/g decontamination [111]
Cd2+ SIPs sol–gel Maxcapacity = 26.1 mg/g decontamination [112]

Cr2O7
2– SIPs thermal polymerization Maxcapacity = 201.55 mg/g decontamination [113]

As3+ SIPs sol–gel 2.5–20 µg/L 1.60 µg/L sample preparation [114]
Hg2+ SIPs thermal polymerization Maxcapacity = 78.3 mg/g decontamination [115]
Ni2+ BIPs thermal polymerization Maxcapacity = 86.3 mg/g decontamination [116]
Zn2+ BIPs thermal polymerization 25–200 µg/L 2.90 µg/L sample preparation [117]
Pd2+ BIPs thermal polymerization Maxcapacity = 5.085 mg/g decontamination [118]
Br- BIPs chemical cross-linking Maxcapacity = 18.89 mg/g decontamination [119]

Cu2+ BIPs thermal polymerization Maxcapacity = 287.45 mg/g decontamination [120]

Novel nanostructured magnetic IIPs were prepared for the selective separation
of Pb(II), using ITA as a functional monomer [111]. The fast adsorption rate revealed
the Langmuir adsorption and second-order kinetic model, and the selective factors of
Pb(II)/Co(II), Pb(II)/Cu(II), Pb(II)/Zn(II) were 45.6, 6.45, and 8.3, respectively. Cd(II)
ions were first imprinted within modified chitosan, which has been further grafted to
magnetic silica [112]. The highest adsorption capacity for Cd(II) was 26.1 mg/g, and
the selective factors of Cd(II)/Cu(II), Cd(II)/Cr(II), Cd(II)/Pb(II) were 3.315, 3.875, and
2.061. Magnetic Cr(III) IIPs were prepared using Cr2O7

2− as a template, 4-vinylpyridine
as a monomer [113]. The highest adsorption capacity of Cr(III) was 201.55 mg/g, and
the adsorption capacity decreased by only 8.2% after being reused six times. As(III) IIPs
were prepared via bulk polymerization using 3-mercaptopropyl trimethoxy-silane and
dithioerythritol as monomers [114], the obtained IIPs showed a good spherical structure
with a high surface area of 779.80 m2/g. In the treatment of practical water samples,
the IIPs showed a recovery rate of 95.0–105.0%. Novel magnetic Hg(II) IIPs with
Fe3O4@SiO2 incorporation were prepared through surface imprinting (Figure 10) [115],
using allyltiourea as a coordinated monomer. The optimal adsorption capacity for
Hg(II) was as high as 78.3 mg/g, and the relative selectivity factor of Hg(II)/Ni(II),
Hg(II)/Cu(II), Hg(II)/Co(II), Hg(II)/Cd(II) was 623, 355, 623, and 155, respectively.
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Except for the severely toxic heavy metal ions, IIPs have also been applied in the
recognition of other ions. For rapid removal of Ni(II) ions from waste, Ni(II) IIPs were
prepared by bulk polymerization, and the effect of synthesis parameters on recognition and
adsorption properties was investigated [116]. The selective factors of the obtained IIPs for
all samples are greater than one, and the obtained IIPs showed high reusability and stability.
Zn(II) IIPs were synthesized by free radical polymerization using morin as a ligand and
4-vinylpyridine as a functional monomer [117]. The detection limit of the obtained IIPa
was 2.9 µg/L, with a dynamic linear range of 25–200 µg/L. Three functional monomers,
including 4-vinylpridine, 2-(allylthio) nicotinic acid, and 2-Acetamidoacrylic acid, were
chosen to prepare Pd(II) IIPs [118]; the results of competitive adsorption experiments
showed high selectivity for Pd(II). Novel Br(I) IIPs were synthesized for selective separation
of Br(I), using modified chitosan as monomer and glutaraldehyde as cross-linker [119],
and the optimal adsorption capacity was 18.89 mg/g. The obtained IIPs showed high
selectivity for Br(I), and the adsorption process followed the Freundlich isotherm model and
second-order kinetic model. Novel Cu(II) phenanthroline(vinyl benzoate)2H2O complex
was synthesized and used to construct new IIPs (Figure 11) [120], the IIPs showed high
adsorption capacity of 287.45 mg/g at 1600 mg/L Cu2+ ions.
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5.2. Organic Molecular Imprinted Polymers (OMIPs)

Due to the wide variety and designable of intermolecular interactions, the most
widely used imprinting materials are still the recognition and detection of various organic
molecules, including synthetic and natural drugs, dyes, chemical materials, additives,
etc. [106–109]. Many OMIPs have been introduced in the section on MIPs classification and
preparation; here, we mainly summarize the latest application (Table 6).
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Table 6. Applications of OMIPs.

Template Type Preparation Method Liner Range LOD Application Ref.

Aniline SIPs thermal polymerization 1–200 ng/mL 1.0 ng/mL sample preparation [121]
Melamine BIPs thermal polymerization 6.02–90 µM 6.02 µM sample preparation [122]
Methotrexate SIPs sol-gel 0.05–250 µg/L 12.51 ng/mL sample preparation [123]
Harmine BIPs thermal polymerization Maxcapacity = 6.0 mg/g decontamination [124]

DEHP SIPs thermal polymerization 3–2000 µg/L 0.92 ng/mL sample preparation [125]
DYKD EIPs thermal polymerization Maxrecovery = 79.1% sample preparation [126]

Naproxen SIPs thermal polymerization SNaproxen/RNaproxen = 4.1 enantioseparation [127]
Salidroside SIPs thermal polymerization total release = 86% drug delivery [128]

A core–shell magnetic MIPs was prepared by the suspension polymerization/surface
imprinting technology, which was used for aniline adsorption from textile wastewater [121].
The obtained MIPs showed a detection limit of 1 ng/mL, with good linearity, recovery, and
precision. Melamine MIPs were synthesized and embedded into a thermally conductive
layer; the obtained sensor exhibited an excellent recognition for melamine, with a detection
limit of 6.02 µM [122]. Methotrexate (MTX) magnetic MIPs were synthesized via the sol-gel
method, and the MTX adsorption capacity was 39.56 mg/g, with an imprinting factor of
9.40 [123]. Heterocyclic aromatic amine (haa) MIPs nanospheres were prepared via RAFT
polymerization (Figure 12) [124]; then, core–shell structural haa-MIPs with hydrophilic
shells (MIP-HSs) were synthesized via grafting polymerization. The hydrophobic haa-MIPs
cannot recognize harmine in an aqueous solution, with the improvement of hydrophilic,
the MIP-HSs showed efficient recognition of harmine in an aqueous solution.
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Novel graphene oxide (GO) based MIPs were fabricated and used for selectivity
concentration of bis(2-ethylhexyl) phthalate (DEHP), which is a widely used plasticizer in
the plastic industry [125]. DEHP was selectivity separated in real water by GO-MIPs under
optimized conditions; the enrichment factors are over 100-fold. EIPs were synthesized
using the DYKD peptide as a template [126], and the obtained EIPs were used as selective
adsorption materials with good recoveries and high selectivity for DYKD and DYKDDDDK
peptides. Novel biomimetic magnetic SIPs were reported by Goyal and co-workers, which
can be used for the enantioseparation of a chiral drug such as S-naproxen [127]. The
highest binding capacity was found to be 127 mg/g, with a high imprinting factor of 12.88.
Magnetic natural salidroside MIPs were synthesized via surface imprinting technology
(Figure 13) [128], and the efficiency of controlled release and specificity of recognition
was investigated. The total amount of salidroside release at 37 ◦C is 86%, and the release
procedure followed Fickian kinetics.
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5.3. Biomacromolecules Imprinted Polymers (BMIPs)

With the development of surface imprinting technology, especially the emergence
of epitope imprinting technology, imprinted polymers have been widely used in the
recognition and separation of biological macromolecules (Table 7) [10–12]. Instead of
imprinting the whole biological macromolecules, imprinting exposed peptides is gaining
popularity for its low cost and high stability [129–133].

Table 7. Applications of BMIPs.

Template Type Preparation Method Liner Range LOD Application Ref.

Peptide EIPs thermal polymerization Dissociation Constant = 16.8 diagnostics [134]
Cyt c SIPs sol–gel and cross-linking Maxcapacity = 86.47 mg/g sample preparation [135]
BSA BIPs thermal and cross-linking Maxcapacity = 485.87 mg/g sample preparation [136]

Peptide EIPs electropolymerization 0.001 to 10.0 pg/mL 0.2 fg/mL sample preparation [137]
Cyclodextrins BIPs thermal polymerization Maxcapacity = 7.93 µmol/g sample preparation [138]

Trypsin EIPs thermal polymerization / risk assessing [139]
Trypsin SIPs UV radiation 0.006–0.24 µg/mL 25.33 ng/mL sensor [140]

Sialic acid EIPs chemical cross-linking enhance fluorescence biological imaging [141]
Protein EIPs thermal and cross-linking Maxcapacity = 46.6 mg/g sample preparation [142]

Glu-FH & BLM EIPs sol–gel and cross-linking enhanced inhibiting targeted therapy [143]
RNase A EIPs sol–gel and cross-linking high therapeutic efficacy targeted therapy [144]

PD-L1 EIPs grafting and cross-linking enhancing efficacy of therapy drug delivery [145]

EIPs were synthesized for three epitope peptides from the epidermal growth factor,
realizing the selection of epitopes for diagnostic applications, which has been verified with
many proteins [134]. Mesoporous EIPs were prepared to enhance the selective separation
of Cytochrome c (Cyt c) with amphiphilic ILs as a surfactant; the exposed nonapeptide of
Cyt c was used as the template [135]. The obtained EIPs have an appropriate cavity size,
which can promote the mass transfer of Cyt c, leading to a high capacity of 86.47 mg/g. To
improve the mechanical property and imprinting performance (Figure 14) [136], BSA
molecularly imprinted alginate composite cryogel membrane was synthesized. The results
of the tensile test revealed that the mechanical strength of the obtained membrane has
reached 90.00 kPa, and the elongation could reach 93.70%. In addition, the imprinted
membrane has a high adsorption capacity of 485.87 mg/g.
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Figure 14. Preparation process of the BSA imprinted membrane [136].

Metalloproteinase MMP-1 can be regarded as a disease biomarker, which is meaningful
in early diagnosis, so it is of great significance for the selective separation of MMP-1.
Epitope peptide was prepared by cleaving MMP-1 in silico with trypsin, and peptide
fragments were obtained [137]. The EIPs were synthesized with electropolymerization onto
indium tin oxide electrodes and successfully applied for the detection of MMP-1. For the
selective extraction of branched cyclodextrins, photo-irradiated MIPs were synthesized
using azobenzene as a functional monomer [138], and the purity of cyclodextrin could reach
90.8% after going through MIPs. To reveal the risk of MIPs, the in vivo behavior of nano
MIPs was investigated by Kassem and co-workers [139], and nano MIPs were found in each
tissue type. The nano MIPs can be cleared via both feces and urine; the low cytotoxicity
lays the foundation for in vivo application of nano MIPs. EIPs were synthesized with
two-step spin-coating and photopolymerization on polymeric films for the detection of
trypsin (Figure 15) [140], and uniform distributed template is achieved. The imprinted film
exhibits higher sensitivity of 0.970 and a higher imprinting factor of 4.5.
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To solve the problem of lack of effective targeting for fluorescent conjugated polymer
(FCP) in biological imaging, sialic acid (SA) was used as a template in the construction of
FCP-based MIPs [141]. The obtained SA MIPs showed enhanced fluorescence intensity
than NIPs and exhibited selective staining for cancer cells. To modulate the adsorption
and release performance of carriers, thermoresponsive EIPs were synthesized with thermal
polymerization followed by chemical cross-linking [142]. The obtained EIPs could adsorb
46.6 mg/g of template protein, with an imprinting factor of 4.0. In addition, the template
could capture the template at 45 ◦C and release it at 4 ◦C. To achieve both precise targeting
and drug delivery, dual-template EIPs were fabricated for target diagnosis and drug
delivery of pancreatic cancer cells [143]. Modified epitope peptide (Glu-FH) and bleomycin
(BLM) were used for the fabrication of dual-template EIPs, and the obtained EIPs not only
showed an obvious targeting effect but also showed enhanced inhibiting to cancer cells. A
sialic acid imprinted biodegradable nanoparticle-based protein delivery was developed
for targeted cancer therapy [144]. With the loading of cytotoxic ribonuclease A (RNase A),
the obtained EIPs showed specific tumor-targeting ability and high therapeutic efficacy.
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PD-L1 peptide imprinted polymers were prepared by precipitation (Figure 16) [145], with
incorporation of merocyanine 540 (MC540)-grafted magnetic nanoparticles and green-
emitting upconversion nanoparticles. The obtained composites could kill tumor cells
precisely, with an enhancing efficacy of photodynamic therapy.
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6. Conclusions and Future Prospects

Due to the rapid development and application of MIPs, the recognition principle,
classification, preparation, and application were summarized for the overall perspective
understanding of the MIPs. To expand the application of MIPs and improve the mass
transfer rate of templates, surface imprinting materials, and epitope imprinted materials
have been rapidly developed based on bulk imprinting materials. The epitope imprinting
technology uses exposed peptides as a template, which not only reduces the impact of non-
specific adsorption but also avoids the impact of the preparation process on the stability
of biological macromolecules. In addition, to solve the issues of long reaction time, high
temperature, high energy consumption, and high pollution for traditional preparation
techniques, new radiation polymerization based on UV, γ-rays, EB, microwave, ultrasound,
plasma, and green polymerization based on scCO2, ILs, and DESs have been widely studied
and applied. Finally, according to the difference in templates, the latest progress in the
recognition applications of MIPs in metal ions, organic molecules, and biomacromolecules
was also summarized.

Though the types and preparation methods of imprinting materials have been rapidly
developed, and their products have also been widely used, there are still some issues that
need to be further investigated.

(1) Intermolecular interaction is the basis for achieving chemical selectivity. However, the
current design of interaction between template molecules and functional monomers
for ligands is mainly qualitative [12,27,28], which is difficult for the precise construc-
tion of imprinting materials. Therefore, quantitative analysis of intermolecular inter-
actions needs to be achieved through computational simulation or other advanced
characterization methods.

(2) Cavity matching is the foundation for achieving physical selectivity. However, there is
limited research on the nanoscale cavity, which can not reveal the influence of intrinsic
cavities inside imprinted materials on selectivity. Therefore, it is necessary to optimize
the physical selectivity by utilizing PALS, which is sensitive to the determination of
the nanoscale [60,64,99,146–148].
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(3) Most of the reported MIPs were only investigated with pure template samples or
simulated samples, which may not apply in practice, as the practical samples are more
complicated. Therefore, the obtained MIPs should be examined with practical samples.

(4) Though the surface imprinting materials and epitope imprinted materials show
promising applications, especially for the detection, diagnostics, imaging, and deliv-
ery of biomacromolecules, the preparation process is very complicated. For large-scale
production and practical application, the synthesis process of these imprinting materi-
als needs optimization.

(5) Though the MIPs have an excellent recognition ability, the adsorption capacity is
always very low, and future work needs to be focused on the improvement of adsorp-
tion capacity.

(6) Imprinting polymers for metal cations, organic molecules, and biological macro-
molecules has been well-developed, but there are few reports about imprinting
polymers for the recognition and selective separation of anions [120]. Therefore,
it is necessary to develop imprinting polymers of anion and establish the structure-
performance relationship.
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