
Citation: Fu, C.-P.; Cai, X.-Y.; Chen,

S.-L.; Yu, H.-W.; Fang, Y.; Feng, X.-C.;

Zhang, L.-M.; Li, C.-Y. Hyaluronic

Acid-Based Nanocarriers for

Anticancer Drug Delivery. Polymers

2023, 15, 2317. https://doi.org/

10.3390/polym15102317

Academic Editors: Jana Ghitman and

Raluca Stan

Received: 11 April 2023

Revised: 6 May 2023

Accepted: 9 May 2023

Published: 16 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

polymers

Review

Hyaluronic Acid-Based Nanocarriers for Anticancer
Drug Delivery
Chao-Ping Fu 1,2,3,* , Xing-Yu Cai 1,2, Si-Lin Chen 1,2, Hong-Wei Yu 1,2, Ying Fang 2, Xiao-Chen Feng 2,
Li-Ming Zhang 4 and Chang-Yong Li 1,*

1 Institute of Biomaterials and Tissue Engineering & Fujian Provincial Key Laboratory of Biochemical
Technology, Huaqiao University, Xiamen 361021, China

2 College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, China
3 State Key Laboratory of Molecular Engineering of Polymers (Fudan University), Shanghai 200438, China
4 School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
* Correspondence: fuchp@hqu.edu.cn (C.-P.F.); changyong.li@hqu.edu.cn (C.-Y.L.)

Abstract: Hyaluronic acid (HA), a main component of the extracellular matrix, is widely utilized to de-
liver anticancer drugs due to its biocompatibility, biodegradability, non-toxicity, non-immunogenicity
and numerous modification sites, such as carboxyl and hydroxyl groups. Moreover, HA serves as a
natural ligand for tumor-targeted drug delivery systems, as it contains the endocytic HA receptor,
CD44, which is overexpressed in many cancer cells. Therefore, HA-based nanocarriers have been de-
veloped to improve drug delivery efficiency and distinguish between healthy and cancerous tissues,
resulting in reduced residual toxicity and off-target accumulation. This article comprehensively re-
views the fabrication of anticancer drug nanocarriers based on HA in the context of prodrugs, organic
carrier materials (micelles, liposomes, nanoparticles, microbubbles and hydrogels) and inorganic
composite nanocarriers (gold nanoparticles, quantum dots, carbon nanotubes and silicon dioxide).
Additionally, the progress achieved in the design and optimization of these nanocarriers and their
effects on cancer therapy are discussed. Finally, the review provides a summary of the perspectives,
the lessons learned so far and the outlook towards further developments in this field.

Keywords: hyaluronic acid; anticancer drug carriers; prodrugs; drug delivery

1. Introduction

Hyaluronic acid (HA) is a linear macromolecular mucopolysaccharide composed of
D-glucuronic acid and N-acetyl-D-glucosamine connected by β-1,3 and β-1,4 glycosidic
bonds (see Figure 1). With its unique molecular structure and physicochemical properties,
HA maintains the structure of the extracellular matrix, regulates intracellular activities
and participates in the activation and transmission of cell signaling pathways that are
associated with inflammation initiation [1], wound healing [2] as well as tumor develop-
ment and metastasis [3]. The biological function of HA varies with its molecular weight,
leading to its division into three categories: HA oligosaccharides (oHAs, <25 disaccharide
units), low-molecular-weight HA (LMWHA, 10–100 kDa) and high-molecular-weight HA
(HMWHA, >100 kDa). The role of HA in tumor biology is rather complicated; for instance,
oHAs and HMWHA were found to inhibit tumor development and metastasis, whereas
LMWHA accelerated these processes [4].

The controlled drug release system has been studied extensively since the 1960s to
improve the safety, effectiveness and utilization of drugs, and thus reduce the frequency of
administration. As an important class of controlled-release preparations, drug nanocarriers
were utilized to change the way that drugs enter the body and their in vivo distributions,
control the speed of drug release, and deliver drugs to targeted organs. For instance,
Lei et al. [5] found that HA can be used as a ligand for surface modification of albumin
nanocarriers, which may be used as a drug delivery system in tumor, joint, vitreous and
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skin tissues. Li et al. [6] found that HA encapsulated in gold nanoparticles could serve as
an active targeting drug delivery nanocarrier for the treatment of breast cancer. Ji et al. [7]
used HA to modify the surface of curcumin nanocrystals (Cur-NC) to obtain HA@Cur-NCs,
which significantly increased the efficiency of Cur utilization, prolonged the retention time
of Cur in vivo, and showed better anticancer effects in mice compared to free Cur and
Cur-NC. Various types of drug nanocarriers have been developed, such as macromolecular
prodrugs, inorganic composite nanomaterial carriers and organic carrier materials. With
modification sites, such as carboxyl and hydroxyl groups, HA can easily link to drugs
or drug nanocarriers coupled by modifying molecules. HA-based drug nanocarriers are
advanced because HA functions in the following aspects: (1) improving the biocompatibility
and biodegradability of the drug delivery system, thereby enhancing efficacy and reducing
toxicity; (2) enhancing the dispersity of nanocarriers in aqueous solution and improving the
drug delivery; (3) constructing tumor-targeted drug delivery systems, as HA is a natural
ligand to the endocytic HA receptor, CD44, which is overexpressed in many cancer cells.
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Figure 1. Chemical structure of HA and the hypothesized procancer (promoting cancer growth)
and anticancer (preventing cancer growth) activity of HA with different molecular weights and
its application.

HA-based drug nanocarriers have been used in anticancer therapies. Agrawal et al. [8]
prepared LPT-HA-NCs by encapsulating nanocrystals of lapatinib (LPT-NCs) with HA to
improve their therapeutic efficacy towards triple-negative breast cancer. The results showed
that the encapsulated drug carrier exhibited superior anticancer activity to the free drug,
and effectively inhibited the metastasis of cancer cells to other sites. Therefore, we have
summarized the recent advancements regarding HA-based anticancer nanocarrier families,
which include macromolecular prodrugs, inorganic composite nanomaterial carriers and
organic carrier materials.

2. HA-Based Prodrugs

The concept of macromolecular prodrugs was first introduced by Ringsdorf in 1975 [9]
and has since been extensively studied and developed. Common macromolecular prodrugs
are composed of water-soluble polymers, small-molecule drugs and modified molecules for
the coupling of two such drugs. These drug carriers are effective due to the following factors:
(1) they improve the solubility of sparingly soluble or insoluble drugs in aqueous solutions,
thus enhancing their bioavailability; (2) they modify the pharmacokinetic behavior of the
original drug, extending its half-life in blood and maintaining its activity, hence prolonging
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the action time of the drug; and (3) they increase the delivery accuracy to target tissues and
reduce systemic distributions, thereby reducing the toxicity and side effects.

The first HA-based prodrug, HA Mitomycin (HA-MMC), was prepared by Akima et al. [10]
in 1996 by coupling HA with MMC through chemical reactions. HA modification was
found to effectively reduce the number of malignant metastatic lung nodules. Thereafter,
HA-based prodrugs became increasingly popular in this research area. By linking HA to
antitumor drugs using different modified molecules, different HA-based prodrugs can be
designed. This section highlights the advances made in the development of HA prodrugs
for antitumor therapies, including doxorubicin (DOX), paclitaxel (PTX), camptothecin
(CPT) and cisplatin (CDDP).

2.1. The Doxorubicin Prodrug

Doxorubicin (DOX) is one of the most effective chemotherapy drugs but has high
toxicity to the kidneys, liver and heart. HA has been chemically coupled to DOX with
different coupling reagents, as shown in Figure 2. By coupling HA (35 kDa) to DOX through
the pH-sensitive acylhydrazone bond (Figure 2A), Cai et al. [11] successfully synthesized
an acid-sensitive hyaluronan-doxorubicin (HA-DOX) prodrug with different drug load-
ings (5–15%, w/w). Histological analysis showed that the prodrug not only effectively
reduced the cardiotoxicity and side effects of DOX but also delayed tumor progression
(by about 10 weeks) and improved the survival rate of laboratory animals. Moreover,
Oommen et al. [12] prepared another HA-DOX prodrug via amide linkage of the 3′-amino
group of DOX and the carboxyl group of HA (150 kDa) using carbodiimide coupling
chemistry (Figure 2B). In vitro cell experiments showed that this prodrug was far less toxic
to mouse embryonic fibroblast NIH3T3 cells and human breast cancer MCF-7 cells (CD44
low-expression cell line) than DOX but was highly toxic to human colon cancer HCT116
cells (CD44 high-expression cell line). In addition, an HA-DOX prodrug responding to
both pH and reducing environments was synthesized by conjugating DOX to an HA back-
bone through disulfide linkages and hydrazone bonds (Figure 2C,D) [13]. Through the
activation of tumor-microenvironment-triggered drug release, the dual-stimuli-response
HA-adriamycin prodrug exhibited the strongest cytotoxicity and apoptosis-inducing ability
among all the tested groups. A multifunctional biopolymer–anticancer drug combina-
tion nanomedicine has been designed by Zhang et al. [14], consisting of oHAs and DOX
co-loaded in a polymer-lipid hybrid nanoparticle functionalized with an internalizing
cyclic peptide iRGD, which shows promise in inhibiting primary triple-negative breast
cancer tumors and preventing spontaneous metastasis to the lungs and lymph nodes in a
mouse model.
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2.2. The Paclitaxel Prodrug

As a broad-spectrum anticancer drug, paclitaxel (PTX) can be used to treat a variety
of cancers, including ovarian, breast, lung, prostate, esophageal and cervical cancers,
as well as melanomas, Kaposi’s sarcoma and other types of solid tumors. However,
clinical applications of PTX are limited due to its strong hydrophobicity and adverse side
effects [15].

Rosato et al. [16] prepared an HA PTX prodrug (HYTAD1-p20) by coupling 4-
bromobutyric acid with HA (200 kDa) and PTX (Figure 3A). The solubility of PTX in
aqueous solutions was increased by nearly 500 times, and the prodrug showed stronger
cytotoxicity as well as a higher uptake by cells.
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Figure 3. The chemical structure of the hyaluronan-PTX conjugate. (A) A hemisuccinate N-
hydroxysuccinimide (NHS) activated ester of PTX is linked to an HA-ADH derivative; (B) A 2′-
PTX-4-bromobutyrate is conjugated to HA; (C) An amino acid-PTX derivative is linked to HA
activated by carbodiimide; (D) A hemisuccinate NHS activated ester of PTX is linked to an HA-
ethylenediamine derivative.

Moreover, the Prestwich research team proposed another route for the preparation of
an HA PTX prodrug (HA-Taxol) in 1999, as shown in Figure 3B [17]. The group chemically
coupled the 2’-OH of PTX with the HA-ADH. They also prepared a fluorescent (BODIPY)-
labeled HA derivative for in vitro cell experiments. Thereafter, a series of HA-Taxol-based
functional derivatives were prepared, and their antitumor effects in different tumor mouse
models were evaluated (Figure 3C,D) [18]. The models included non-resistant (SKOV3ip1)
and resistant (HeyA8-MDR) ovarian cancer models, as well as head and neck squamous cell
carcinoma models. Modification of HA enhanced the sensitivity of tumor cells to PTX in
the drug-resistant ovarian cancer models, hence alleviating the resistance of HeyA8-MDR
cells to the drug.

2.3. The Camptothecin Prodrug

Camptothecin (CPT, a Chinese tree derivative) affects topoisomerase I, allows DNA
cleavage but inhibits subsequent ligation, therefore resulting in DNA strand breaks. How-
ever, CPT has poor solubility in water, and the lactone ring in its molecular structure is
unstable in aqueous solutions. This makes the drug prone to breakdown, reducing its
activity. Therefore, a series of CPT prodrugs have been developed in order to improve
the solubility and stability of CPT in aqueous solutions, including gemcitabine [19] and
irinotecan [20], which have already been used in cancer chemotherapy.

Xu et al. [21] selected two HAs with different molecular weights (8 kDa and 100 kDa) to
modify CPT, as illustrated in Figure 4A. The two hyaluronic CPT prodrugs (HA-CPT-8k and
HA-CPT-100k) were prepared by derivatization with adipic acid dihydrazide (ADH). The
reactivity of HA increased with the activated CPT-NHS ester N-hydroxysuccinimide. After
modifications, the solubility of CPT in aqueous solutions increased from 2.08 µg/mL to
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420 µg/mL and 620 µg/mL for HA-CPT-8k and HA-CPT-100k, respectively. Additionally,
HA-CPT-100k showed a higher drug loading capacity than HA-CPT-8k. In the study,
human liver cancer HepG2 cells which express CD44 and human ovarian cancer A2780 cells
were employed to investigate the cellular uptake and the anticancer effect of HA-CPT.
The results showed that HepG2 cells had a higher uptake of both HA-CPT-8k and HA-
CPT-100k and that the A2780 cell uptake of HA-CPT-100k was much lower than that of
HA-CPT-8k. Moreover, the drug clearance analysis showed that the CPT entering the cell
through diffusion and penetration was quickly cleared from the cell (4 h). In contrast, the
concentration of HA-CPT synthesized by directly modified CPT (with HA) reached its peak
after two hours of incubation, but only 20% of the prodrug had been cleared (as shown in
Figure 4B). This finding showed that the prodrug effectively prolonged the residence time
of CPT in the cells.
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In addition, Yang et al. [22] designed a new synthetic route for hyaluronan CPT
prodrugs, as depicted in Figure 4C. The novel approach involved substituting 5% of the
carboxyl groups in HA with the aldehyde groups. Thereafter, the reactant was reacted
with L-Tartaric acid bishydrazide modified CPT and then coupled with a cholesterol
group to synthesize a cholesterol group-containing hyaluronanic CPT prodrug molecule
capable of self-assembling into nanoparticles in the solution. The resulting nanosized CPT
prodrug accumulated in tumor tissues in vivo, demonstrating enhanced tumor-targeted
drug delivery capabilities compared to general macromolecular prodrugs, due to its high
permeability and retention effect (EPR effect) in solid tumors.

2.4. Cisplatin

The prodrug cisplatin (cis-dichlorodiamminoplatinum (II) or CDDP), a platinum-
containing anticancer drug that belongs to the class of cell cycle non-specific drugs, is
commonly used to treat cancer. Although the drug has significant antitumor efficacy,
high doses are toxic to the kidneys and liver and are associated with the inhibition of
bone marrow functions [23,24]. Forrest and his research team [25] attempted to reduce
the toxicity and side effects of CDDP and improve its drug utilization rate by designing
and synthesizing an HA-based CDDP prodrug (HA-CDDP), then studied the behavior of
the released drug. Their results demonstrated that HA-CDDP significantly increased the
drug’s cumulative concentration in tumor tissues, which led to sustained release behavior.
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Additionally, the drug had an action time of up to 96 h within the effective concentration
range; meanwhile, the associated damage to the liver, spleen and kidney was significantly
reduced. Notably, in addition to the above antitumor drugs, HA has also been used
to modify some compounds with antitumor activities, including butyric acid [26] and
quercetin [27]. This subsequently improves the solubility of these compounds in water and
reduces systemic toxicities, thereby increasing their antitumor activity.

3. HA-Based Inorganic Composite Carrier Materials

HA is widely applied in the modification of inorganic nanomaterials, including quan-
tum dots (usually cadmium sulfide and cadmium selenide); metal nanoparticles, such as
gold nanoparticles; metal oxide nanoparticles, such as iron oxide nanoparticles; carbona-
ceous materials, such as fullerene and carbon nanotubes; and siliceous materials, such as
mesoporous silica.

3.1. Metal Nanoparticles

Gold nanoparticles (AuNPs) have unique optical properties and chemical inertness,
making them easily modifiable on their surfaces, and are thus increasingly popular in
various fields, including drug and gene delivery, immunotherapy, photothermal therapy,
biosensors and photoacoustic imaging. They are also being gradually introduced into other
fields, such as intelligent diagnosis and treatment [28]. Cao et al. [29] reported that an
HA-modified AuNP cancer vaccine could effectively evoke antitumor immune responses
in mice and inhibit tumor growth. Specifically, the authors simultaneously modified gold
nanoparticles with a sulfhydrylated HA (HA-SH) and a sulfhydryl-containing antigen
(ovalbumin, OVA), resulting in a stable dispersion and good water solubility of the gold
nanoparticle solution (HA-OVA-AuNPs). The nanoparticles could specifically be recog-
nized and taken up by dendritic cells, thereby upregulating CD44 receptors, generating
active oxygen molecules under near-infrared laser-mediated irradiation and producing a
local thermal effect. Consequently, this action accelerated destruction of the lysozyme and
enhanced the activity of protein groups as well as the presentation of downstream MHC
I antigens, ultimately leading to activation and response of tumor-specific cancer-killing
CD8+ T cells. Notably, CD8+ T cells are important components of the human immune
system and can effectively remove virus-infected and cancer cells.

Another type of metal nanoparticle, iron oxide nanoparticles or superparamagnetic
iron oxide nanoparticles (SPIONs), commonly used in magnetic resonance imaging, have
also been extensively studied. Li et al. [30] developed polyethylenimine (PEI) iron oxide
nanoparticles by modifying them with two different molecular weights of HA (6 and
31 kDa), and then tracked in vivo distributions after intravenous injections into the tails
of mice. The results indicated that although the liver and spleen were significantly af-
fected, the nanoparticles modified with the 31 kDa HA exhibited superior antitumor effects
compared to the 6 kDa counterparts. On the other hand, Zheng et al. [31] developed a
multifunctional micellar dual tumor-targeted drug delivery platform based on HA micelles
co-encapsulated with the therapeutic agent docetaxel and iron oxide nanoparticles. This
multifunctional micelle is capable of converting light into heat under near-infrared light
irradiation conditions to further achieve thermal therapy temperatures and induce pho-
tothermal ablation of breast cancer cells. This finding is expected to improve the efficiency
of combined photothermal chemotherapy.

3.2. Quantum Dots

Quantum dots (QDs) are nanomaterials with unique luminescent properties. They
mainly include cadmium sulfide, cadmium selenide and cadmium telluride, and have
an emission wavelength that generally ranges from 650 to 800 nm. When used in vivo,
it is necessary to modify ligands or organic compounds on the surface of QDs for safer
and more stable molecular imaging. For instance, Kim et al. [32] chemically modified the
surfaces of QDs, then coupled them with different amounts of HA to obtain HA-modified



Polymers 2023, 15, 2317 7 of 15

QDs (HA-QDots). Animal experiments revealed that a small amount of HA-modified
QDs were distributed throughout the body, while sufficient levels were observed across
various tissues, with the liver having the highest concentration. Overall, they concluded
that this might be related to the presence of a large number of HA receptors in the liver.
Similarly, Hou et al. [33] prepared HA-modified porous silica (pSiO2) nanocarriers based
on a two-phase method, a carrier with large channels and high loading capacity (29.3%).
Ag2S quantum dots were then embedded into the porous structure of the pSiO2 carriers to
impart good photothermal effects to the carriers. This facilitates the carriers’ reactive drug
release and combined photothermal chemotherapy.

3.3. Carbonaceous Nanomaterials

Carbonaceous nanomaterials have attracted extensive research interest, among all
inorganic nanomaterials, owing to their exceptional mechanical, thermal and optical prop-
erties. Notably, some carbonaceous nanomaterials, such as carbon nanotubes, have been
shown to produce fluorescent or acoustic signals used for imaging, in a similar fashion to
AuNPs, and also have photothermal conversion effects which are useful for photothermal
therapy in the visible and infrared regions [34]. However, their clinical applications are
constrained by the biocompatibility of carbonaceous materials.

Carbonaceous nanomaterials can also be subdivided into fullerene (C60), nanotubes,
nanodots, nanodiamonds and graphene derivatives, based on their sizes and shapes.
Datir et al. [35] developed an HA-modified multi-walled carbon nanotube and used the
hydrophobic cavity of the nanotube to load anticancer drugs, such as DOX. Zhang et al. [36]
investigated the effects of different variables on the fabrication of hybrid microfibers com-
posed of HA and multiwalled carbon nanotubes, resulting in high-performance microfibers
with potential applications in various fields. Lee et al. [37] constructed an injectable hydro-
gel system based on graphene oxide using glycol chitosan and oxidized hyaluronic acid,
which is expected to have applications in bone tissue defects (Figure 5B). Zhang et al. [38]
prepared a multifunctional tumor-targeting drug delivery system, HA-C60-Tf, with good
water solubility and tumor-targeting activity. This delivery system can greatly enhance the
pharmacological activity of the drug at the target site.

3.4. Silica Nanomaterials

Mesoporous silica nanoparticles (MSNPs) are gradually gaining popularity in the
fabrication of biofunctional materials owing to several advantages, such as adjustable
pore size, large capacity, excellent chemical stability, good biocompatibility and ease of
synthesis [39]. Ricci et al. [40] recently coupled two forms of HA with different molecular
weights of 6.4 kDa and 200 kDa to aminopropyl functionalized MSNPs, then compared
the physical, chemical and biological properties across the modified MSNPs. Their results
showed that HA-based modification significantly improved the stability of silica dispersion,
as evidenced by higher cellular uptake in MSNPs modified with HMWHA. Prior to this,
Yu et al. [41] had used HA-MSNPs loaded with the antitumor drug DOX to construct
a targeted drug delivery system. The researchers had further evaluated the associated
cytotoxicity in vitro, the uptake capacity by human colon cancer HCT-116 cells, and then
explored HA-MSNPs’ potential value in drug delivery.
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4. HA-Based Organic Carrier Materials
4.1. Micelles

Micelles have recently become the focus of several studies, especially for the delivery
of antitumor drugs prepared by amphiphilic polymer micelles. Functionally, amphiphilic
polymers are capable of self-assembling into nanomicelles with a core–shell structure
and hence have excellent in vitro stability in aqueous solutions. In addition, amphiphilic
polymer micelles can be enriched in tumor tissues in vivo through the EPR effect (passive
targeting); thus, they can be used to target tumors owing to their ability to bind a specific
ligand. Moreover, the hydrophobic inner core of the polymer micelle can carry most
hydrophobic antitumor drugs, while the hydrophilic shell is usually helpful in avoiding
removal by the reticuloendothelial system (RES). On the other hand, water-soluble drugs
can be loaded by electrostatic adsorption or chemical modification onto the hydrophilic
shell of the micelles, thereby allowing the co-loading of multiple drugs. Although micelles
have been found to improve the selectivity of drugs to tumor cells, they also have a number
of limitations, such as low drug loading rate, poor encapsulation efficiency and in vivo
instability. Specifically, they can be easily diluted by blood if their concentration is below
the critical concentration of micelles and may also react with blood components. Therefore,
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selecting appropriate polymers is imperative for the accurate preparation of multifunctional
nanomicelles with fewer limitations.

Amphiphilic polymer micelles made with HA as a raw material can not only reduce
the phagocytosis of polymer micelles by RES but also achieve active targeting of tumor cells
and overexpression of CD44 (Table 1). Additionally, the molecular structure of HA contains
numerous reactive groups, such as carboxyl and hydroxyl groups, which are conducive to
the construction of multi-functional drug delivery systems. Moreover, a block polymer can
be formed through reductive amine reaction by coupling with a primary amine-containing
compound on the terminal group of HA [42]. Yao et al. [43] used a reductive amination
reaction to attach the amine group of distearoylphosphatidylethanolamine (DSPE) to the
aldehyde group of the reducing end HA, producing a DSPE-HA single-site coupling. This
coupling was then used as an intrinsic ligand for the CD44 receptor, and the products were
referred to as targeted glioma-associated oncogene homolog 1 (Gli1) siRNA nanoparticles.
Tests using an in vitro tumor model simulated by gastric cancer stem cells (CSCs) showed
that targeting Gli1 siRNA nanoparticles significantly reduced the expression of Gli1 protein
and effectively inhibited the formation of CSC tumor spheroids.

Table 1. Summary of HA derivatives used in the preparation of micelles.

Component Loaded Drug Average Particle Size
(nm) Cell Type Ref.

HA-NB-SC DOX 139 HeLa [44]

Galactosamine-HA-Vitamin E succinate NCTD 199.2 MCF-7, HepG2,
MCF-7/Ard [45]

Acetylated-HA-perfluorocarbon-
Pyropheophorbide a N/A 155 OM431 [46]

HA-poly(lactide)-sectorial
poly(amidoamine)-docetaxel Docetaxel N/A MCF-7 [47]

mPEG-HA-(deoxycholic
acid)-N-acetyl-L-cysteine PTX 147 MCF-7, H22 [48]

HA-ss-ibuprofen DOX 120 MCF-7, 4T1, NIH 3T3 [49]
HA-ss-curcumin C6 74.2 B. End3, G422 [50]

HA-ss-mercaptopurine 6- Mercaptopurine 264.4 B16F10 [51]
PTX/folic acid-hyaluronic acid-SS-vitamin

E succinate PTX 148.8 MCF-7, NIH3T3 [52]

HA-dopamine-Cu-mercaptopurine 6- Mercaptopurine 173.5 A549, NIH3T3 [53]
Folic acid-HA-α-tocopherol succinate PTX 135 MCF-7, H22 [54]

HA-g-polyethylene glycol methyl
ether-polymers DOX 116.65 MCF-7, CT26 [55]

HA-cystamine dihydrochloride-stearic acid DOX N/A HCT116, CT26,
HEK293 [56]

HA-deoxycholic acid-histidine -Pluronic F127 DOX 218.7 (carrier/DOX = 5/1) MCF-7, MCF-7/Adr [57]
N-Deacetylation of HA, dodecylamine, DOX DOX N/A MCF-7 [58]
HA-b- poly (d,l-lactide-co-glycolide) copolymer N/A 213.4 A549 [59]

4.2. Liposomes, Transfersomes, Niosomes and Ethosomes

Different kinds of vesicular formulations have been investigated as drug carriers:
liposomes, transfersomes, niosomes and ethosomes. To date, some liposome drugs, such
as Myocet® and Doxil®, have been approved by the FDA for marketing [60]. As drug
delivery systems, liposomes offer several advantages: (1) their lipid molecular layers and
hydrophilic inner cores can allow the loading of hydrophobic and hydrophilic drugs,
respectively; (2) they have excellent biocompatibility and biodegradability; and (3) they
have low toxicity and immunogenicity. Previous studies have reported that cationic lipids
can be combined with DNA via electrostatic action for gene therapy. Cationic nanocarriers
can induce cell necrosis, which will limit their use in clinical applications to some extent.
Qian et al. [61] prepared cationic liposomes (HALPs) modified with a mass fraction of 10%
HA. Compared to unmodified liposomes, cationic liposomes modified with HA showed low
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cytotoxicity due to the blocked surface charge and significantly reduced lung inflammation
when applied to mouse lungs. This vector is expected to be a less toxic and more efficient
gene carrier for tumor targeting. In a study by Amirreza et al. [62], a material was developed
by combining epirubicin (Epi) and nylon nanoparticles (Nios) modified with HA. This
Epi-Nio-HA nanocomplex was found to significantly reduce the volume of mammary
tumors in mice by 28% compared to Epi alone, without any adverse effects on the liver
and kidney. The functionalization of niosomes with HA modification provides a promising
nanoplatform for the targeted delivery of epirubicin. Recently, Bartheldyova et al. [63]
demonstrated the coupling of HA with liposomes via different functional groups, and
Figure 6 presents a schematic representation of the stochastic or directional selective binding
of HA to liposomes, transfersomes, niosomes and ethosomes.
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4.3. Gelatin

The unique chemical properties of HA have recently led to its being studied as a compo-
nent of gel systems, owing to its lack of immunogenicity, biocompatibility, biodegradability
and unique water-retaining properties. Consequently, HA-based hydrogels have attracted
considerable attention in the fields of cell therapy, regenerative medicine, wound healing,
molecular delivery, tissue engineering as well as tumor diagnosis and treatment. Common
HA gels have complex 3D cross-linked network structures, which enhance the persistent
release of drug-based or other active-molecule-loaded drugs through physical embed-
ding [65] or chemical coupling [66]. Burdick and Prestwich [67] have summarized research
advances and applications of different forms of HA gels in biomedicine. Notably, nanogels
and injectable hydrogels have unique advantages in drug delivery to tumor tissues.

Moreover, Xu et al. [68] developed an injectable hydrogel comprising interferon α2a
(IFN-α2a) loaded with HA (90 kDa) tyramine (HA-Tyr). They found that the concentration
of IFN-α2a released by the HA-Tyr hydrogel was three times higher in plasma and tumor
tissues after subcutaneous injection than with the administration of IFN-α2a solution alone,
and this effectively inhibited tumor growth as well as angiogenesis in tumor tissues. HA
gels can also be loaded with DNA and siRNAs and applied in antitumor therapy. For
instance, Segura et al. [69] prepared an HA fibrin composite hydrogel, then stably and
uniformly dispersed the DNA carrier complex in the hydrogel scaffold to avoid aggregation
and inactivation in vitro. They found that the gene vectors released by the hydrogel had
high transfection efficiency both in vivo and in vitro, and hence could be applied for the
delivery of non-viral gene vectors.
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4.4. Other Organic Carrier Materials

HA has also been used in the modification of microbubbles [70,71], electrospun
membranes [72], cationic polymers [73] and medical adhesives [74]. For instance, Cer-
roni et al. [70] used HA (700,000 g/mol) to modify polyvinyl alcohol (PVA) microbubbles
and found that the resulting air-filled cores of the PVA microbubbles could be imaged
under ultrasound. In addition, HA-based modification reduced the microbubbles’ cyto-
toxicity and increased their uptake by tumor cells. The generated microbubbles could
effectively be loaded with antitumor drugs and have potential in the construction of an
integrated tumor diagnostic and treatment platform. Previous studies have also shown
that HA modified cationic polymers can target tumors, shield part of the positive charge,
improve transfection efficiency and increase the stability of the cationic-polymer gene
carrier, while reducing its toxicity. For example, Zhang et al. [73] used PEGylated HA to
modify a gene carrier constructed using a cationic polymer and polycaprolactone (PCL)
and found that hyaluronidase could effectively degrade HA as well as reverse the charge
of the complex. This subsequently allowed DNA to escape from the lysosome and improve
the efficiency of the DNA and gene transfection. Moreover, HA can be used to modify
biological macromolecules, such as proteins, peptides and nucleotides.

5. Conclusions and Outlook

Numerous research efforts have been dedicated to exploring the potential of HA
and its derivatives as antitumor drug carriers for targeted delivery. HA has excellent
tumor-targeting ability, good biocompatibility and biodegradability, and can be chemically
modified in diverse ways. At present, most studies are still in the stage of in vitro experi-
ments, and only a few have entered the stage of clinical trials. The current advancements in
molecular biotechnology and nanotechnology are expected to significantly popularize HA
and its derivatives as excellent drug carriers and enhance their application in tumor diagno-
sis and therapy. In contrast, oHAs with MWs below ~10 kDa have been found to reduce the
adhesion, migration, invasion and proliferation of cancer cells, possibly by antagonizing
oHA receptors. oHAs can sensitize cancer cells to chemotherapeutic drugs, including DOX,
suggesting their great potential for systemic combination therapy. Notably, most research
to date has focused on HMWHA, whose function is relatively simple. Therefore, further ex-
plorations are required to unravel the underlying mechanisms of in vivo actions associated
with HAs of different molecular weights, provide a clear understanding of HA’s biological
activity and exploit its activity for the delivery of antitumor drugs. Furthermore, efforts
should be directed towards the precise design of intelligent drug carriers and integrated
carriers for effective cancer diagnosis and treatment.

While research on HA-based nanomedicine has rapidly developed, the translation of
preclinical studies into clinical efficacy has been limited. The observed differences in efficacy
may be attributed to species differences and limitations in animal disease models that fail
to fully recapitulate human malignancies, particularly in the context of cancer research,
where differences in tumor size, growth rate, and microenvironment must be considered.
Therefore, careful reevaluation of drug release and dosing regimens in animal models is
necessary to ensure successful translation to human patients. Future advancements in the
field will require a better understanding of the underlying mechanisms of HA’s biological
activity and the design of intelligent drug carriers and integrated carriers for effective
diagnosis and treatment of cancer. There is also a need to explore the potential of HAs of
different molecular weights and their in vivo actions, which may lead to new therapeutic
approaches. Knowing the different courses of action before, during and after the application
of HA-based nanomedicine is crucial for ensuring the safety and efficacy of these therapies.
This includes understanding the pharmacokinetics and pharmacodynamics of these agents,
as well as monitoring for potential adverse effects.
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