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Abstract: The demand for multi-functional elastomers is increasing, as they offer a range of desirable
properties such as reinforcement, mechanical stretchability, magnetic sensitivity, strain sensing, and
energy harvesting capabilities. The excellent durability of these composites is the key factor behind
their promising multi-functionality. In this study, various composites based on multi-wall carbon
nanotubes (MWCNT), clay minerals (MT-Clay), electrolyte iron particles (EIP), and their hybrids
were used to fabricate these devices using silicone rubber as the elastomeric matrix. The mechanical
performance of these composites was evaluated, with their compressive moduli, which was found to
be 1.73 MPa for the control sample, 3.9 MPa for MWCNT composites at 3 per hundred parts of rubber
(phr), 2.2 MPa for MT-Clay composites (8 phr), 3.2 MPa for EIP composites (80 phr), and 4.1 MPa
for hybrid composites (80 phr). After evaluating the mechanical performance, the composites were
assessed for industrial use based on their improved properties. The deviation from their experimental
performance was studied using various theoretical models such as the Guth–Gold Smallwood model
and the Halpin–Tsai model. Finally, a piezo-electric energy harvesting device was fabricated using
the aforementioned composites, and their output voltages were measured. The MWCNT composites
showed the highest output voltage of approximately 2 milli-volt (mV), indicating their potential for
this application. Lastly, magnetic sensitivity and stress relaxation tests were performed on the hybrid
and EIP composites, with the hybrid composite demonstrating better magnetic sensitivity and stress
relaxation. Overall, this study provides guidance on achieving promising mechanical properties
in such materials and their suitability for various applications, such as energy harvesting and
magnetic sensitivity.

Keywords: multi-wall carbon nanotube; silicone rubber; stretchability; energy harvesting; magnetic sensitivity

1. Introduction

In magneto-rheological elastomers (MREs), an important constituent is elastomers.
There are different types of elastomers used, such as natural rubber (NR) [1], styrene-
butadiene rubber (SBR) [2], nitrile butadiene rubber (NBR) [3], and silicone rubber (SR) [4].
Among them, SR is frequently used as an elastomer matrix in MREs. Various studies
have shown that SR is a fascinating matrix that is well-suited for use in MREs due to its
soft nature, low viscosity, ease of curing, and ease of processing [4,5]. There are various
possible types of silicone rubbers depending on the type of vulcanization used, with single
components, such as room-temperature silicone rubber [6], and two-component silicone
rubber or high-temperature vulcanized silicone rubber [7]. Among them, RTV-SR is more
promising due to its ease of processing and soft nature, and is thus explored in this work.

The properties of MREs are affected by the types of additives used [8]. Magnetic
fillers and reinforcing fillers are commonly used as additives in MREs [9,10]. Magnetic
fillers can be classified based on their particle size, shape, or surface area [11]. Among the
various types of magnetic fillers used in MREs, carbonyl iron particles (CIP) with different
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morphologies and sizes are most commonly used [12,13]. Studies have shown that CIP can
act as a favorable magnetic filler due to its favorable oval morphology and small particle
size [13,14]. Other types of magnetic particles include iron oxides ranging from micron-
sized to nano-sized [15]. In addition to magnetic fillers, reinforcing fillers from various
classes are also used. The most promising reinforcing fillers reported in the literature
over the last two to three decades are nanocarbon black (NCB) [16], carbon nanotubes
(CNTs) [17], graphene (GR) [18], and clay minerals [19]. Studies have shown that CNTs are
a fascinating reinforcing filler that lead to a drastic increase in mechanical and electrical
properties at loadings lower than 5 phr, especially in elastomer matrixes [20]. Several
studies have reported the use of CNTs as reinforcing additives in MREs [21,22]. In a few
studies, GR was used as a reinforcing agent in MREs [22,23]. However, the reinforcement
provided by using clay minerals in MREs is not yet fully understood and is thus explored
in the present work.

The mechanical stiffness of the composites used in MREs depends upon the formation
of the microstructure under a magnetic field [24]. The non-magnetic fillers are dispersed
randomly while the magnetic filler is oriented in the direction of the magnetic field [25,26].
The orientation of the magnetic fillers depends upon the magnitude of the magnetic field,
the time of exposure to the magnetic field, and the type of magnetic filler used in such
composites [27]. In addition to these parameters, the mechanical properties also depend
upon the type of non-magnetic filler, its morphology, its shape, size, and the aspect ratio
of the non-magnetic filler [28]. In some cases, a hybrid filler containing both magnetic
and non-magnetic fields was found to be promising [29], and is thus explored in the
present work.

Numerous studies have been conducted on the use of hybrid fillers in MREs [30].
These hybrid fillers can be either both magnetic or a combination of one magnetic and
one reinforcing filler [31]. However, the use of triple hybrid fillers, which consist of two
reinforcing and one magnetic filler, is not fully understood in MREs, and, therefore, this
study aims to explore their properties. Additionally, the stress–strain curves of composites
containing these hybrid fillers require further investigation, which is also explored in this
study. The present work assesses the synergistic effect of these triple hybrid fillers. It
should be noted that MWCNT is a promising reinforcing filler; however, its use in high
amounts significantly reduces the stretchability of composites. Therefore, the addition of
MT-Clay is proposed to improve this mechanical property without significantly affecting
the modulus. Furthermore, EIP was added to make the composites magnetically active.
Hence, the use of these three fillers is justified and presented in this work. This study
also investigates the magneto-mechanical behavior of individual fillers and their hybrid
filler systems.

2. Materials and Methods
2.1. Materials

The RTV-Silicone rubber used in this work was obtained from Shin-Etsu Chemical
Corporation Ltd., Tokyo, Japan. It was purchased under the commercial name “KE-441-
KT” and has a transparent appearance. The vulcanizing material used was also obtained
from Shin-Etsu Chemical Corporation Ltd., Tokyo, Japan, and its commercial name is
“CAT-RM.” The MWCNT used, which has the commercial name CM-100, was purchased
from Hanwha Nanotech Corporation Ltd., Seoul, Republic of Korea. The clay minerals
used (Montmorillonite K10) have a surface area of 220–270 m2/g and were purchased
from Sigma Aldrich, St. Louis, MO, USA. The electrolyte iron particles (EIP) used, which
have the commercial name “Fe#400,” were purchased from Aometal Corporation Limited,
Gomin-si, Republic of Korea. The EIP particles were irregular in shape and had a greyish
color with micron-sized particles in the range of 10–12 µm. The elemental composition of
the EIP was 98.8% iron with traces of nitrogen, oxygen, and carbon. The mold-releasing
agent was purchased from Nabakem, Pyeongtaek-si, Republic of Korea.



Polymers 2023, 15, 2287 3 of 18

2.2. Characterizations of Fillers and Composites

The morphology of the nanofillers used in this study was investigated using a SEM
microscope (S-4800, Hitachi, Japan). Prior to imaging, the samples were sputtered with
platinum for 2 min to make their surface conductive. The dispersion of fillers in the
composite samples was evaluated using an optical micrograph (Sometech Inc., Seoul,
Republic of Korea). To study filler dispersion in the rubber matrix using SEM, the cylindrical
samples used for measuring the compressive mechanical properties were sectioned into
approximately 0.2 mm thick slices. These slices were then mounted on an SEM stub
and their surfaces were coated with platinum to make them conductive. Finally, SEM
measurements were taken. The mechanical properties under compressive and tensile
strain were evaluated using a universal testing machine (UTS, Lloyd instruments, West
Sussex, UK). The mechanical properties under compressive strain were determined using
cylindrical samples at a strain rate of 4 mm per minute from 0 to 35% strain. Similarly,
mechanical properties under tensile strain were determined using a UTS machine at a
strain rate of 200 mm per minute using a dumbbell-shaped specimen. The thickness of the
dumbbell-shaped specimen was 2 mm and the gauge length was 25 mm. These mechanical
tests were performed according to DIN 53 504 standards. Piezoelectric tests were performed
using a UTS machine under cyclic loads (Lloyd Instruments, West Sussex, UK). The output
voltage generated through the specimen was recorded using a digital multi-meter (Agilent
34401A, Santa Rosa, CA, USA). The energy harvesting sample was composed of MWCNT,
MT-Clay, EIP, and their hybrid. The magneto-mechanical properties were tested at 30%
strain using UTS under compressive strain. The procedure for magnetic sensitivity and
stress relaxation under a magnetic field involved am investigation using cylindrical samples
(10 mm thickness and 20 mm diameter) under 10% compressive strain. The strain rate was
1 mm/min for 5 s of magnetic switching to complete one cycle. Both magnetic sensitivity
and stress relaxation were studied under on–off switching of the magnetic field at 100 mT.

2.3. Preparation of Rubber Nanocomposites

The fabrication process of the MREs was initiated by following the optimized proce-
dure from a previous study [32]. First, a predetermined amount of liquid silicone rubber
was taken in a beaker, and then a known amount of different grades of nanofillers (Table 1)
were added to the liquid rubber. The mixture was then stirred for 10 min. After the
nanofiller–rubber mixing phase, 2 phr of the vulcanizing agent was added, and the final
rubber composite was poured into molds. The molds were manually pressed and left for
24 h for vulcanization at room temperature (25 ◦C). Finally, the samples (Scheme 1) were
removed from the molds and tested for various properties to assess their suitability for
industrial MRE applications.

Table 1. Fabrication of the different rubber composites.

Samples RTV-SR (phr) MWCNT (phr) MT-Clay (phr) EIP (phr) Vulcanizing Solution (phr)

Control 100 - - - 2

RTV-SR/MWCNT 100 1, 2, 3 - - 2

RTV-SR/MT-Clay 100 2, 4, 6, 8 2

RTV-SR/EIP 100 40, 60, 80, 100 2

RTV-SR/Hybrid * 100 1 4 35, 55, 75, 95 2

* The formulation of the filler loadings in the hybrid sample was based on their near-to-percolation value, at which
the properties are improved significantly and a dominating effect of the filler can be observed.
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3. Results and Discussion
3.1. Morphology of the Filler

It is well known that the morphology of nanofillers greatly affects the properties of
composites [33]. Fillers with small particle sizes and favorable shapes have better and more
uniform dispersion, leading to a greater impact on the composites [34]. Figure 1 illustrates
the morphology of the different nanofillers used as fillers in this study. The morphologies
range from one-dimensional (1D) MWCNT to 2D MT-Clay and 3D EIP. MWCNT has a
tube-shaped morphology, which allows for easy dispersion and formation of continuous
filler–filler contacts with a much lower MWCNT content in a rubber matrix. Furthermore,
its high surface area and small particle size provide a large interfacial area, allowing more
polymer chains to adsorb to its surface [35]. MT-Clay has a sheet-like morphology, making
it easy to disperse in the rubber matrix. It is considered a nanofiller since its particle size
is in the nanometer range. Both MWCNT and MT-Clay are ideal fillers and significantly
improve composite properties in small amounts in the rubber matrix. Lastly, EIP has an
irregular morphology and large particle size, likely in the micrometer range. Due to its
large particle size, it has relatively poor reinforcing abilities in lower amounts and is thus
used in higher amounts to achieve optimal reinforcement in a composite.
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Figure 1. SEM images of (a) MWCNT particles; (b) MT-Clay particles; (c) EIP particles.

3.2. Filler Dispersion in SR Matrix Using Optical and SEM Micrographs

The dispersion of filler in composites is known to affect their properties [36]. A
uniform filler dispersion leads to improved overall properties, while composites with
poorly dispersed filler have poorer properties [37]. Therefore, this study investigates
filler dispersion using optical microscopy and reports its correlation with mechanical
properties. The presented optical micrographs in Figure 2 show good filler dispersion for
all fillers except for MT-Clay and the hybrid filler. Figure 2a displays the micrographs of the
control sample without any filler [38], indicating the absence of filler. Figure 2b shows the
uniform dispersion of the MWCNT filler in the rubber matrix, and filler-rich zones with no
aggregation are observed, justifying the promotion of MWCNT-based composites as having
better properties. Similarly, Figure 2d shows the optical micrographs of the EIP-filled rubber
matrix, showing the uniform dispersion of EIP particles and their correlation with improved
mechanical properties such as modulus. As reported earlier, Figure 2c,d shows the optical
micrographs of the MT-Clay and hybrid composites, respectively. The images also show
improved filler dispersion, as in other filled composites, but few filler aggregates or filler-
rich zones are reported [39]. The optical micrographs alone do not provide convincing
evidence for studying filler dispersion, particularly due to the lack of high-resolution
information about the fillers. As a result, filler dispersion was further analyzed using
SEM microscopy at both lower and higher resolutions. Figure 2f–h displays SEM images
of the control sample at different resolutions, where the absence of filler particles with a
smooth surface can be seen. Figure 2i–k shows SEM images of MWCNT-filled composites,
where the low-resolution images indicate an increase in the roughness of the rubber matrix.
Moreover, at a higher resolution, the CNTs can be seen protruding out from the rubber
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matrix. Figure 2l–n displays SEM micrographs for MT-Clay-filled composites, where both
lower and higher-resolution images show the presence of filler aggregates, supporting the
conclusion that these composites have poorer mechanical properties. Next, Figure 2o–q
exhibits the dispersion of EIP particles in rubber composites, where micron-sized EIP
particles were uniformly dispersed. Furthermore, the high-resolution image shows good
adhesion between the EIP and rubber particles. Finally, the study of hybrid fillers is
presented in Figure 2r–t, where the different filler particles are uniformly dispersed in the
composite, resulting in better properties in the hybrid composites.
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3.3. Mechanical Properties of Rubber Nanocomposites under Compressive Strain

The mechanical properties of composites depend on various parameters, such as the
type of filler, the type of polymer matrix, and the type of applied strain during testing [40,41].
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Certain mechanical properties, such as stretchability and stiffness, play an important role
in prospective applications, such as flexible electronics [42]. The stress–strain curves under
compressive strain from 0–35% are shown in Figure 3a–d. The maximum compressive
strain of 35% was chosen due to the fracture of the cylindrical sample after 35% compressive
strain. The stress–strain behavior of different composites indicates that the stress increases
linearly up to 15% and then increases exponentially. This behavior is attributed to the
increase in packing fractions of the filler and rubber particles under higher compressive
strain [43]. Additionally, the stress increases in all composites with an increase in filler
content, which is attributed to improved filler networking, filler–filler, and rubber–filler
interactions [44,45].
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of different composites under different loading conditions.

In Figure 3e, the impact of filler loading and filler type on compressive modulus is
illustrated. Firstly, the effect of different filler types on mechanical properties was examined.
It was observed that MWCNT, with its small particle size, high surface area, and high aspect
ratio, demonstrated a promising reinforcing effect on the silicone rubber matrix. These
MWCNT features, such as (a) the large aspect ratio, which helps to improve filler–filler
interconnection at a lower filler loading [46]; (b) small particle size and large surface area,
which provide a greater interfacial area for more rubber polymer chains to get adsorbed
onto the filler surface [47]; and (c) higher interfacial area, which allows improved stress
transfer at the polymer–filler interface [48]. It was also observed that MT-Clay provides a
medium level of reinforcement which is higher than EIP and much lower than MWCNT.
The poor reinforcement of EIP particles is due to their micron-sized particles and small
surface area, which translates to a lower interfacial area. All of these EIP qualities make it
an inferior source of reinforcement. Additionally, a higher amount of EIP filler is required
to obtain optimum reinforcement, which is an order of magnitude higher (40 phr) than that
of MWCNT (1 phr).
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3.4. Mechanical Properties under Tensile Strain

The effect of filler concentration and tensile strain on the mechanical properties was
investigated and is presented in Figure 4a–d. The stress–strain curves reveal that the
tensile stress increases with increasing strain until it reaches its maximum at the point
of failure. This behavior can be attributed to the re-orientation of filler–filler and filler–
polymer microstructures in the direction opposing the tensile strain, leading to an increase
in stiffness and, consequently, higher tensile stress.
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The reinforcing ability of the fillers is dependent on their type and concentration in
the rubber matrix [49,50]. Three types of fillers—MWCNT, EIP, and MT-Clay—were added
to the rubber matrix in a single and hybrid state. All three fillers and their hybrid showed
reinforcing abilities, with MWCNT being the most effective and EIP the least effective.
Notably, MT-Clay improved the tensile strength moderately but significantly improved
the fracture strain. However, due to the large particle size of EIP, a higher concentration is
required, which is much higher than that of MWCNT and MT-Clay.

Figure 4e,f demonstrates the impact of filler concentration on tensile strength and
fracture strain. MWCNT were found to be the most effective at reinforcing the rubber
matrix due to their favorable characteristics, such as their tube-shaped morphology [51]
These aspects aid in easy dispersion, a high aspect ratio that aids in forming robust filler–
filler interconnections at a lower filler content, and a high surface area that facilitates higher
interfacial interactions and leads to better properties [52–54]. Additionally, it is worth
noting that the hybrid filler exhibits more robust mechanical properties than the three fillers
used separately. Moreover, the hybrid filler displays a form of synergism in mechanical
properties, with the tensile strength and fracture strain of the filled composites being higher
in the hybrid filler than in MWCNT, MT-Clay, and EIP as single fillers. Therefore, it can be
concluded that the hybrid filler system should be preferred over the single fillers used in
this study.

3.5. Theoretical Modeling for Determining the Moduli of the MREs

The present study includes theoretical modeling to validate the experimental results
using existing theoretical models. The Guth–Gold Smallwood model [55] and Halpin–Tsai
theoretical model [56] are commonly used in literature for theoretical predictions, and their
predictions strongly depend on morphological aspects of the filler such as aspect ratio, as
well as the volume fraction of the filler [55,56]. The following equation was used for the
Guth–Gold Smallwood prediction:

E1 = Eo [(1 + 0.67 f1φ1)] (1)

E2 = Eo [(1 + 0.67 f2φ2] (2)

E3 = Eo [(1 + 0.67 f3φ3] (3)

E1+2+3 = Eo [(1 + 0.67 f1φ1) + (1 + 0.67 f2φ2) + (1 + 0.67 f3φ3)] × i (4)

E1, E2, E3, and E1+2+3 are the predicted theoretical moduli for MWCNT, MT-Clay, EIP,
and their hybrid filler system, respectively. Eo is the experimental modulus of unfilled
rubber. The f1, f2, and f3 are the aspect ratios of the fillers. The φ1, φ2, and φ3 are the volume
fractions of the fillers. Moreover, the “i” is the interactive factor among the respective fillers
in the hybrid system.

For the Halpin–Tsai theoretical model, the following equations are used—

E1 = Eo [(1 + 2 f1φ1)/(1-φ1) (5)

E2 = Eo [(1 + 2 f2φ2)/(1-φ2) (6)

E3 = Eo [(1 + 2 f3φ3)/(1-φ3) (7)

E1+2+3 = Eo [(1 + 2 f1φ1)/(1 − φ1) + (1 + 2 f2φ2)/(1 − φ2) + (1 + 2 f3φ3)/(1 − φ3)] × i (8)
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In this proposed theoretical model, the components have the same nomenclature as
described in the Guth–Gold Smallwood equation. Figure 5a–d indicates that both models
agree well with the experimental findings, further validating our results. However, in
Figure 5c, the experimental data only agree up to 60 phr of EIP and then deviate. This
behavior could be due to differences in assumptions made by the models, such as assuming
perfect interfacial bonding between the filler–polymer interface [57] and perfect filler
dispersion in the rubber matrix, which is difficult to achieve experimentally. Therefore,
there is a deviation between the experimental data and the theoretical models. Additionally,
it is worth noting that the hybrid filler system shows synergistic mechanical properties and
is therefore more advantageous than using single-filled systems in the composites.
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3.6. Experimental Deviation from Statistical Average in Hybrid Composites

The experimental behavior and its deviation from the theoretical values have been
well-studied in the literature [57,58]. In this work, we use a simple theoretical model based
on statistical averages to predict the mechanical properties of the hybrid composites [58].
The compressive behavior shown in Figure 6a can be derived from the following equation:

E1+2+3 = [0.1 × E1 + 0.4 × E2 + 1.5 × E3] × i (9)
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where “E1” is the theoretical modulus of MWCNT, “E2” is the theoretical modulus of
MT-Clay, and “E3” is the theoretical modulus of EIP-based composites. “E1+2+3” is the theo-
retical modulus for hybrid composites containing all three components. In this theoretical
model, the constants of 0.1 for 1 phr of MWCNT, 0.4 for 4 phr of MT-Clay, and 1.5 for 15
phr of EIP are related to the filler content in the sample and are used to predict mechanical
properties through statistical averages for hybrid composites [58]. The interactive factor “i”
considers the dispersion state and filler interactions in the composite. A low value of “i”
(i = 0.1) indicates poor filler dispersion and interactions, while a high value of “i” (i ≥ 0.9)
indicates good filler dispersion and interactions in the rubber matrix. For the determination
of the compressive modulus, the value of “i” was found to be in the range of 0.7 to 0.8. It
is worth noting that the literature has extensively studied experimental behavior and its
deviation from theoretical values [57,58].
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The determination of the tensile reinforcing factor can be derived from the following
equation—

R.F.1+2+3 = [0.1 × R.F.1 + 0.4 × R.F.2 + 1.5 × R.F.3] × i (10)

Here, “R.F.1+2+3” is the reinforcing factor for hybrid components. “R.F.1,” “R.F.2,” and
“R.F.3” are the reinforcing factors of the individual components. Moreover, the interacting
factor for determining theoretical R.F. was in the range of 0.5 to 0.8.

Similarly, the tensile strength in Figure 6c can be derived theoretically from the follow-
ing equation—

T.S.1+2+3 = 0.1 × T.S.1 + 0.4 × T.S.2 + 1.5 × T.S.3 × i (11)
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where “T.S.1+2+3” is the theoretical tensile strength of the hybrid system, while “T.S.1,”
“T.S.2,” and “T.S.3” are the tensile strength of the individual components. Moreover, the
interacting factor for determining the theoretical T.S. was in the range of 0.65 to 0.7.

Finally, the fracture strain in Figure 6d can be derived from the following equation—

F.S.1+2+3 = 0.1 × F.S.1 + 0.4 × F.S.2 + 1.5 × F.S.3 × i (12)

where “F.S.1+2+3” is the theoretical fracture strain of the hybrid system, while “F.S.1,” “F.S.2,”
and “F.S.3” are the fracture strain of the individual components. Moreover, the interacting
factor for determining the theoretical F.S. was around 0.5. From Figure 6a–d, it can be
hypothesized that the theoretical models fit well with the experimental findings and are
thus useful for further considerations in the literature.

3.7. Reinforcing Factor and Reinforcing Efficiency of the Fillers in MREs

Reinforcement via particulate filler in polymer composites is well documented [59]. It
is known that fillers with small particle sizes produce higher reinforcement, so studying the
reinforcing properties in rubber composites is important for understanding their mechanical
properties, such as stiffness, stretchability, tensile strength, and modulus [60,61]. This study
analyzed four categories of fillers with different concentrations for their reinforcing effect
and efficiency, which is presented in Figure 7. The reinforcing factor of the composites can
be calculated using the following equation:

R.F. =
EF
Eo

(13)
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Here, R.F. is the reinforcing factor, EF is the modulus of the filled composites, and
Eo is the modulus of the unfilled composites. As shown in Figure 7a,b, the R.F. strongly
depends on the type of filler. For example, MWCNT, with its small particle size and
higher aspect ratio, was found to be the most promising source of reinforcement in the
silicone rubber matrix. Other fillers such as MT-Clay provide medium reinforcement, while
EIP, with its large particle size, shows poor reinforcing ability and is thus used in very
high amounts compared to MWCNT to obtain optimum reinforcement [61]. Besides R.F.,
reinforcing efficiency (R.E.) is a significant parameter that affects the mechanical properties
of the composites. It is also interesting to note that the R.E. is directly correlated with the
concentration of the filler in the composites. The equation for calculating R.E. [62] is

R.E.at compressive strain =
σ(35%)filled − σ(35%)unfilled

wt% of filler
(14)

R.E.at tensile strain =
σ(80%)filled − σ(80%)unfilled

wt% of filler
(15)

where “σ” is the stress at a particular strain. The stress values used for calculating R.E.
were 35% and 80% for compressive and tensile strain tests, respectively, as obtained from
the stress–strain curves in Figures 3 and 4. Notably, MWCNT-based composites exhibited
superior R.E. compared to MT-Clay and EIP particles, which can be attributed to their high
aspect ratio, tube-shaped morphology, and higher interfacial area with the rubber matrix.
These factors allowed for easy dispersion and stronger reinforcement, as seen in Figure 7.

4. Applications
4.1. Energy Harvesting Applications for the MREs

Energy harvesting using eco-friendly composites is a promising area of study for
society. In this study, we fabricated an energy-harvesting device comprising conductive
copper electrodes sandwiched with different substrates. The energy generated was due to
the dielectric property of the elastomer used in the substrate against mechanical compres-
sive loading, which was kept constant at 30% for all samples [63]. Although piezoelectric
materials like PZT [64] or barium titanate [65] have shown promise for high-voltage gen-
eration, their use is limited due to their poisonous effects [65,66]. Recently, eco-friendly
composite-based energy harvesting has been reported [67].

Figure 8 shows the different energy harvesting output voltages for the different sub-
strates. From these measurements, we found that MWCNT-based substrates showed
the highest output voltage while EIP-based substrates showed the lowest among all the
substrates studied. However, the voltage stability was found to be less efficient in MWCNT-
based substrates than in all other materials studied. Therefore, in conclusion, MWCNT-
based substrates have higher voltage generation capabilities but the disadvantage of lower
voltage stability. In addition to the type of substrate, electrode area is a critical factor
affecting the output voltage. For instance, energy harvesting devices with larger electrode
surface areas produce higher output voltages than those with smaller ones. We will explore
this effect in our future work.

4.2. Magnetic Effect and Stress Relaxation Applications for the MREs

To magnetic sensitivity measured in this work has been optimized in our previous
studies [5]. Figure 9a displays the magneto-mechanical response of the composites during
the magnetic switching task. The measurements demonstrate that the compressive load
increases when a magnetic field of 100 mT is applied and returns to normal when the
magnetic field is turned off. This could be attributed to the orientation of EIP particles in the
direction of the applied magnetic field, thereby enhancing the stiffness of the composites [5].
The increase in stiffness is correlated with a rise in compressive load, as shown in Figure 9a.
These measurements establish that the composites containing magnetic fillers are sensitive
to exposure to a magnetic field, as claimed in the objective of this research. Additionally, it
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is worth noting that a hybrid-filled composite provides higher sensitivity than using EIP as
the only filler. Figure 9b shows the magnetic effect on the moduli of different composites.
The magnetic effect was found to be higher for the hybrid composite than for EIP as the only
filler. The higher magnetic sensitivity for the hybrid-filled composite could be attributed
to the synergistic effect [5] between the MWCNT–EIP fillers, leading to greater sensitivity.
Rubber composites reinforced with fillers often exhibit viscoelastic properties that affect
their stress relaxation behavior [68]. The effect of magnetic switching and the type of
mechanical reinforcement on stress relaxation in rubber composites is shown in Figure 9c.
The results indicate that stress relaxation is higher when the magnetic field is on and is
higher for hybrid composites than EIP-only-filled rubber composites. Additionally, the
stress relaxation rate, as shown in Figure 9d, is influenced by the type of filler and magnetic
switching. The stress relaxation rate is higher when the magnetic field is off and lower
when it is on for both EIP-only-filled and hybrid-filled composites. The poor reinforcing
and magnetic effect of EIP even at 60 phr filler content leads to a small change in magnetic
effect and stress relaxation in composites. Moreover, these experiments were performed
multiple times to make sure that the conclusions are convincing. Furthermore, hybrid-
filled composites exhibit higher stress relaxation rates than EIP-only-filled composites.
These results are consistent with the magnetic sensitivity tests shown in Figure 9a,b. The
addition of reinforcing fillers, such as MWCNT, improves damping properties in MREs [69].
Therefore, the hybrid filler is the best candidate for achieving improved magnetic sensitivity
and good damping in MREs.
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5. Conclusions

This study demonstrates that incorporating a triple-filler system into silicone rubber
has the potential to yield superior mechanical performance, magnetic sensitivity, and energy
generation. To this end, composite materials were prepared via solution mixing of MWCNT,
MT-Clay, and EIP fillers in both single and hybrid states into the silicone rubber matrix.
The improved mechanical performance of the resulting composites was then investigated
and reported in this study. Specifically, mechanical stretchability was measured and found
to be 91% (control), 102% (MWCNT composites, 3 phr), 116% (MT-Clay composites, 8 phr),
110% (EIP composites, 40 phr), and 113% (hybrid composites, 40 phr). The tensile strength
was also analyzed and found to be 0.51 MPa (control), 0.81 MPa (MWCNT composites,
3 phr), 0.64 MPa (MT-Clay composites, 8 phr), 0.63 MPa (EIP composites, 80 phr), and
0.95 MPa (hybrid composites, 80 phr). Furthermore, the effect of the mechanical properties
on magnetic sensitivity was explored, and it was found that EIP composites exhibited
higher magnetic sensitivity than hybrid composites. However, the latter was identified
as the most promising filler system due to its good reinforcement, optimum stiffness, and
reasonable magnetic sensitivity. The key takeaway from this study is that selecting a
hybrid filler system can result in balanced overall properties that are useful for different
applications such as magnetic sensitivity or energy harvesting. For example, the triple-filler
system was found to offer good reinforcement from MWCNT, stretchability from MT-Clay,
and magnetic sensitivity from EIP in the composite material.
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