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Abstract: Developing degradable bio-plastics has been considered feasible to lessen marine plastic
pollution. However, unanimity is still elusive regarding the actual degradability of bio-plastics such
as polylactide (PLA) and poly(hydroxybutyrate) (PHB). Thus, herein, we studied the degradability of
fabrics made from PLA/PHB blends in marine seawater. The dry-mass percentage of the PLA/PHB
fabrics decreased progressively from 100% to 85~90% after eight weeks of immersion. Two environ-
mental aging parameters (UV irradiation and aerating) were also confirmed to accelerate the abiotic
hydrolysis of the incubated fabrics. The variation in the molecular structure of the PLA/PHB poly-
mers after the degradation process was investigated by electrospray ionization mass spectrometry
(ESI-MS). However, the hydrolysis degradability of bulky PLA/PHB blends, which were used to
produce such PLA/PHB fabrics, was negligible under identical conditions. There was no mass loss in
these solid PLA/PHB plastics except for a decrease in their tensile strength. Finally, a deep learning
artificial neural network model was proposed to model and predict the nonlinear abiotic hydrolysis
behavior of PLA/PHB fabrics. The degradability of PLA/PHB fabrics in marine water under the
synergistic destructive effects of seawater, UV, and dissolved oxygen provides a pathway for more
sustainable textile fibers and apparel products.
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1. Introduction

Marine pollution derived from fossil-fuel-based plastics is emerging as a public hazard
to global ecosystems and human health [1]. This is mainly attributed to (a) these plas-
tics’ persistent lifetime (e.g., 600 years for fishing line, 450 years for beverage bottles) [2];
(b) their large-scale implementation in a wide range of applications including packaging
(35.9%), construction (16.0%), textiles (14.5%), and consumer goods (10.3%); and (c) their
cumulative accumulation over decades [3]. Furthermore, their manufacturing process also
produces a large amount of carbon-dioxide-equivalent (10~13%) global greenhouse gas
emissions, which exacerbates another crisis, i.e., climate change [4]. As an ever-growing
concern, microplastics (typically defined as < 5 mm in at least one dimension), which have
attracted much more attention recently, have already spread ubiquitously from the Pacific
Ocean’s Mariana Trench to the Antarctic iceberg [5]. These microplastics impose a potential
threat to marine fish, animals, and human beings via food chain transfer, causing harm-
ful toxicological and/or physiological impairments ranging from DNA damage, altered
metabolism, inflammation, decreased growth, reduced cognitive function, reproductive
harm, and mortality [6]. The principal form of microplastics is microfiber (84~85%) [7,8].
Synthetic textiles are one of the major sources of such microplastic pollution, contributing
approximately 35% of the global release of primary microplastics [9].

To mitigate marine (micro)plastic pollution, there is an urgent need to develop a series
of efficient solutions and methods. Undeniably, these common pervasive plastics are indis-
pensable in mankind’s daily life, although their disadvantages have already been studied
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systematically by pioneer researchers. To address this problem, one feasible and economical
resolution has been proposed, which is exploring bio-plastics/bio-polymers as a greener
alternative to the non-degradable fossil plastics. Generally, these bio-plastics/bio-polymers
are manufactured from renewable or recycled raw bio-based materials or from biological
processes with a low carbon footprint, enabling a more sustainable economy [10]. These
kinds of bio-plastics include poly(butylene succinate) (PBS), poly(ε-caprolactone) (PCL),
poly(butylene adipate-co-teraphthalate (PBAT), etc. Among them, PLA holds the largest
market share worldwide in 2022, accounting for 20.7% of the total bio-plastics calculated
on the production capacities [11]. Another well-known bio-plastic, poly(hydroxybutyrate)
(PHB), as the major member of polyhydroxyalkanoates (PHA), has also attracted tremen-
dous attention, accounting for 3.9% of the global production capacities [12,13]. However,
both PLA and PHB are semi-crystalline and brittle. After blending PLA with optimized
mass ratios of PHB ranging from 20% to 40%, the mechanical properties of PLA, in particu-
lar the mechanical resistance toward extension and impact, have been improved signifi-
cantly [13–15]. Thus, the PLA/PHB bio-polymers have shown great promise in applications
to textiles and clothing in sight of their good biodegradability, hydrophilicity, biocompati-
bility, and recyclability.

However, the viewpoints of researchers are divided on whether the degradability of
these bio-polymers such as PLA and PHB is effective in practical fields, such as in marine
seawater. For example, Tsuji et al. reported that no degradation was found regarding PLA
films after immersion in the seawater of the Pacific Ocean at 25 ◦C for ten weeks [16]. The
degradation rate of PHB was merely 9%. Not to be outdone, Bagheri et al. also reported
that PCL and PLA did not degrade at all, and approximately 8% degradation was observed
for PHB after one year [17]. We recently reported such abiotic hydrolysis degradation
behavior of PLA/PHB in the form of a mature-end textile product scale in confined marine
seawater [18]. To promote their large-scale implementation, more controversies still require
further elucidation. For example, another key issue behind the public outcry is that there
is not yet an appropriate mathematical model to fit the degradation process in a practical
environment, assuming these bio-plastics are eventually degradable in marine seawater.
This also results from the difficult fact that the overall experimental data are still scant. The
scale of relevant scientific data is extremely limited. Beyond question, various environ-
mental parameters, except for microbes, also play a vital role in the degradation process of
these bio-plastics products, and their effects also require further clarification. Meanwhile,
the emergence of artificial intelligence (AI) technology, in particular the application of
AI algorithms, brings new opportunities to process complex data such as protein folding
prediction [19], computer vision [20], natural language processing, and so on [21]. This
technology also provides a contemporary perspective and an innovative methodology for
predicting complex tasks. Herein, an AI algorithm model has been adapted to analyze the
marine degradation process of the PLA/PHB fabrics under parallel conditions to obtain
the experimental law on the effects of environmental parameters.

In this work, both bulky PLA/PHB plastics in the form of raw materials and their
mature textile fabric products have been studied together to investigate the similarity and
differences in the degradation behaviors in parallel conditions to exclude the interference of
temporal and spatial parameters. The variation in mass loss and mechanical properties, as
well as “soft” electrospray ionization mass spectrometry (ESI-MS) spectra, has been applied
to make the comparison between degradation results as well as the molecular mechanisms
involved. Technically, the mathematical description of these so-called “degradable bio-
polymers” such as PLA and PHA is of vital significance in evaluating the degradation
process of end-products such as fabrics and clothing, particularly during the periods after
their disposal into marine ecosystems. Slower degradation means a higher risk of being
devoured by marine life such as fish, turtles, or seabirds. However, faster degradation
means less sustainability as far as a circular economy is concerned. This requires an inge-
nious balance between these two aspects [22]. The prime priority lies in the prerequisite
that we could acquire accurate degradation prediction by using experimental data. There-
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after, an advanced deep-learning methodology, i.e., an artificial neural network (ANN),
is introduced to calculate the environmental effects of selective multi-parameters and to
fit/predict the degradation process of the PLA/PHB textiles in environmental conditions
for predetermined periods as a versatile and expandable scientific model.

2. Materials and Methods
2.1. Materials and Characterization

Both PLA/PHB granules and multi-filament yarns were obtained from Ningbo Hesu
Fibers Co., Ltd. (Yuzhao City, China) [23]. The blend ratio of PLA/PHB was fixed at 70/30 for
the melt-spinning process to produce fully drawn filament yarns. The linear density of the
filament was 75D/48F, where D is Denier (mass density as gram per 9000 m) and F is the
number of filaments in an FDY yarn. The knitted fabrics were made by using a circular knitting
machine (WUXI ERVA Knitted Fashion Co. Ltd., Wuxi City, China). A gauge of 28 needles
per inch was adopted for producing single jersey-knitted fabrics from the PLA/PHB filament
yarns. The filament yarns were fed into the knitting machine directly, and the pretension
used was 2~3 cN. The initial diameter of each PLA/PHB fiber was averaged to 20 µm. The
bulky PLA/PHB plastics were made from PLA/PHB granules. The PLA/PHB granules were
melted in a PTFE mold at 190 ◦C under vacuum for 3 h and cooled naturally. These pie-shaped
PLA/PHB bulky samples featured a diameter of 55.70 mm and a thickness of 4.79 mm.

The tenacity, elongation, Young’s modulus, and extension energy of the PLA/PHB
bulky samples were obtained from an Instron 5566 universal testing machine (Norwood,
MA, USA). All the tensile tests were carried out in reference to the ASTM D638 stan-
dard. Before measurement, all PLA/PHB bulky samples were conditioned in a vacuum
oven for 48 h at 60 ◦C. Tenacity at break and percent elongation at break were calculated
automatically from tension data.

The degradation tests of the PLA/PHB yarns, fabrics, and bulky samples were carried
out in separate natural seawater baths (500 mL). The degradation tests were performed
under four unique conditions: immersion in (i) static natural seawater, (ii) aerobic natural
seawater (all the air flow rate was set to be 4.3 ± 1.0 SLPM) under a dark box, (iii) static
natural seawater under ultra-violet light (low-pressure mercury-vapor fluorescent lamps,
TL-D 18 W × 3, 370 nm, Philips Lighting, Amsterdam, Netherlands) in a specific home-
made UV chamber, and (iv) aerobic natural seawater under ultra-violet light in the same
UV chamber. All the seawater was renewed every week.

The structural integrity of the aged PLA/PHB products was investigated by elec-
trospray ionization mass spectrometry (ESI-MS). Small pieces of aged PLA/PHB fab-
rics (~2.5 mg) were dissolved and collected in 0.7 mL chloroform (HPLC grade) solvent.
Then the samples were analyzed with high-performance liquid chromatography (HPLC,
1290 Infinity, Agilent, Santa Clara, CA, USA) coupled with liquid chromatography (LC)
electron spray ionization (ESI) source and an accurate-mass quadrupole time-of-flight
mass spectrometer (Q-TOF/MS, 6540, Agilent, Santa Clara, CA, USA). The mass spec-
trometer was operated in negative mode, with the detected mass in the range from
50 to 10,000 atomic mass units. The HPLC-grade mixed solvent of acetonitrile/chloroform
(1:1, v:v) was adopted as the mobile phase. Experimental data were processed and decon-
voluted using Agilent MassHunter 10.0 qualitative software(Santa Clara, CA, USA).

2.2. Artificial Neural Network (ANN) Model

The data-fitting and prediction of degradation behavior in terms of the mass-loss
percentage of PLA/PHB fabrics were carried out by the implementation of an artificial
neural network (ANN) model in this work. Thanks to Hornik’s theoretical work, ANNs
can act as approximate Borel measurable functions, which means these ANNs can be used
to replace sophisticated data processing functions instead of intensive labor in deriving
close expressions of formulae, which sometimes never explicitly exist at all [24–27]. All
ANN calculations were carried out on TensorFlow 2.9.1 (Google, Mountain View, CA, USA)
and Scikit-Learn 1.1 (USA) mathematical software architecture. In this study, a three-layer
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deep-learning neural network featuring rectified linear unit (ReLU) activation functions
for the first two layers and a sigmoidal activation function for the last layer was built and
designed for the ANN model training, model testing, and model implementation. The
back-propagation algorithm was used to update/finetune the weights and biases variants
present in this network. The mean square error (MSE) was selected as the loss function,
which measures the performance of the ANN network according to the following equation:

MSE =
1
n ∑n

j=1

(
yj −
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where n is the number of total data points; yj represents the actual value of the output
layer, i.e., the mass-loss percentage of PLA/PHB fabrics after j days’ immersion; ŷj is
expressed as the predicted value of the mass-loss percentage of PLA/PHB fabrics after n
days’ immersion; and j is an index of data.

Meanwhile, the mean absolute error (MAE) was selected as another monitoring metric,
as defined by the following equation:

MAE =
1
n ∑n

j=1

∣∣∣yj −

Polymers 2023, 15, x FOR PEER REVIEW 4 of 16 
 

 

The data-fitting and prediction of degradation behavior in terms of the mass-loss 

percentage of PLA/PHB fabrics were carried out by the implementation of an artificial 

neural network (ANN) model in this work. Thanks to Hornik’s theoretical work, ANNs 

can act as approximate Borel measurable functions, which means these ANNs can be 

used to replace sophisticated data processing functions instead of intensive labor in de-

riving close expressions of formulae, which sometimes never explicitly exist at all[24-27]. 

All ANN calculations were carried out on TensorFlow 2.9.1 (Google, USA) and 

Scikit-Learn 1.1 (USA) mathematical software architecture. In this study, a three-layer 

deep-learning neural network featuring rectified linear unit (ReLU) activation functions 

for the first two layers and a sigmoidal activation function for the last layer was built 

and designed for the ANN model training, model testing, and model implementation. 

The back-propagation algorithm was used to update/finetune the weights and biases 

variants present in this network. The mean square error (MSE) was selected as the loss 

function, which measures the performance of the ANN network according to the fol-

lowing equation: 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑗 − ŷ𝑗)

2𝑛
𝑗=1 , (1) 

where n is the number of total data points; yj represents the actual value of the output 

layer, i.e., the mass-loss percentage of PLA/PHB fabrics after j days’ immersion; ŷj is ex-

pressed as the predicted value of the mass-loss percentage of PLA/PHB fabrics after n 

days’ immersion; and j is an index of data. 

Meanwhile, the mean absolute error (MAE) was selected as another monitoring 

metric, as defined by the following equation: 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑗 − ŷ𝑗|𝑛

𝑗=1 , (2) 

The ANN model training and testing platform consist of a Windows 11 Pro 64-bit 

operating system, and the hardware system includes a 2.5 GHz Core i9 11900 CPU (Intel, 

Mountain View, CA, USA), 32 GB DDR4 memory, and an RTX 3060 GPU graphics card 

(Nvidia, Santa Clara, CA, USA). 

3. Results and Discussion 

The experimental seawater was collected from the surface seawater of Kowloon Bay 

(Hum Hung, Hong Kong, China), located at latitude 22°30′ N and longitude 114°18′ E, as 

shown in the geographical map in Figure 1A. Hong Kong is a coastal city adjacent to the 

South China Sea, located in the subtropical climate zone. The annual average tempera-

ture of seawater is 24.2 °C, varying between 19.0 °C and 29.0 °C in the year 2021. The 

average salinity, dissolved oxygen (mg/L), pH value, 5-day biochemical oxygen demand 

(mg/L), and number of E.coli (CFU/100 mL) was 30.9 (27.4~33.1), 5.6 (4.5~6.6), 7.9 

(7.6~8.1), 0.8 (0.3~2.0) and 490 (79~5500), respectively. The degradation experiments were 

carried out during the period from September to November. The detailed multiple 

physicochemical properties of the seawater were monitored monthly in a comprehen-

sive marine water quality monitoring system, as depicted in Figure 1B–G. The sampled 

seawater was applied directly without any further purification. The variety of the pH 

value and the temperature, as well as the microbes, was not so significant during the 

experimental period in terms of such subtropical seawater. In this work, the logic num-

bers 1 and 0 have been used to represent the cases with and without UV for simplicity, 

given that the complexity of UV levels was out of the range of this work. The average 

saturated dissolved oxygen (DO) value of the surface seawater in the sampling site of 

Hong Kong in 2021 was in the range of 7.0~7.1 mg/L. The average saturation percentage 

of DO of the sampling seawater in 2021 was 79%. Similarly, the logic numbers 1 and 0 

have been used to represent the cases with and without aeration for simplicity. In prac-

tice, various environmental parameters might contribute to accelerating/slowing the 

j

∣∣∣, (2)

The ANN model training and testing platform consist of a Windows 11 Pro 64-bit
operating system, and the hardware system includes a 2.5 GHz Core i9 11900 CPU (Intel,
Mountain View, CA, USA), 32 GB DDR4 memory, and an RTX 3060 GPU graphics card
(Nvidia, Santa Clara, CA, USA).

3. Results and Discussion

The experimental seawater was collected from the surface seawater of Kowloon Bay
(Hum Hung, Hong Kong, China), located at latitude 22◦30′ N and longitude 114◦18′ E, as
shown in the geographical map in Figure 1A. Hong Kong is a coastal city adjacent to the
South China Sea, located in the subtropical climate zone. The annual average temperature
of seawater is 24.2 ◦C, varying between 19.0 ◦C and 29.0 ◦C in the year 2021. The average
salinity, dissolved oxygen (mg/L), pH value, 5-day biochemical oxygen demand (mg/L),
and number of E. coli (CFU/100 mL) was 30.9 (27.4~33.1), 5.6 (4.5~6.6), 7.9 (7.6~8.1),
0.8 (0.3~2.0) and 490 (79~5500), respectively. The degradation experiments were carried out
during the period from September to November. The detailed multiple physicochemical
properties of the seawater were monitored monthly in a comprehensive marine water
quality monitoring system, as depicted in Figure 1B–G. The sampled seawater was applied
directly without any further purification. The variety of the pH value and the temperature,
as well as the microbes, was not so significant during the experimental period in terms
of such subtropical seawater. In this work, the logic numbers 1 and 0 have been used to
represent the cases with and without UV for simplicity, given that the complexity of UV
levels was out of the range of this work. The average saturated dissolved oxygen (DO)
value of the surface seawater in the sampling site of Hong Kong in 2021 was in the range of
7.0~7.1 mg/L. The average saturation percentage of DO of the sampling seawater in 2021
was 79%. Similarly, the logic numbers 1 and 0 have been used to represent the cases with
and without aeration for simplicity. In practice, various environmental parameters might
contribute to accelerating/slowing the degradation of PLA/PHB fabrics, which include
but are not limited to UV irradiation and dissolved oxygen.



Polymers 2023, 15, 82 5 of 15

Polymers 2023, 15, x FOR PEER REVIEW 5 of 15 
 

 

degradation of PLA/PHB fabrics, which include but are not limited to UV irradiation 
and dissolved oxygen. 

  
Figure 1. (A) The location of the subtropical seawater sampling site on the coastline of southern 
China, shown on a geographical map. The basic physicochemical properties are shown, including 
(B) the salinity, (C) the temperature, (D) the acid/base values, (E) the dissolved oxygen concentra-
tion, (F) the five-day biochemical oxygen demand (BOD5) values, and (G) the number of E.coli 
bacteria during the experimental period. 

As a facile but accurate quantitative method, the gravimetric mass-loss percentage 
has been adopted to determine the degradation rate of PLA/PHB fabrics in this work 
and was defined by the following equation. Three parallel samples with different physi-
cal sizes (3 cm × 5 cm, 4 cm × 4 cm, and 5 cm × 5 cm) were weighed with a precise 
five-digit balance and the average values are reported here. The according PLA/PHB 
fabrics samples were labeled as PLAHBA15, PLAHBA16, and PLAHBA25, respectively. 𝐷𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 ሺ%ሻ  = ௠೙ି௠బ௠బ ൈ 100,  (3) 

where mn is the dry-weight value of the PLA/PHB fabrics after n weeks of immersion in 
seawater, and m0 is the initial dry-weight value of the fresh PLA/PHB fabrics before im-
mersion in seawater. 

As one of the valuable forecast tools for the handling and prediction of big data on 
a large scale, artificial neural network (ANN) modeling has been successfully imple-
mented in many fields of environmental science and engineering. Meanwhile, an ANN 
is also a powerful method for multivariate data analysis due to its reliable, robust, and 
salient capability and flexibility for capturing the non-linear relationships between vari-
ables (multi-inputs/outputs) in multivariate systems. Herein, ANN modeling has been 
introduced to fit and predict the mass-loss degradation process of PLA/PHB fabrics, in 

Figure 1. (A) The location of the subtropical seawater sampling site on the coastline of southern China,
shown on a geographical map. The basic physicochemical properties are shown, including (B) the
salinity, (C) the temperature, (D) the acid/base values, (E) the dissolved oxygen concentration, (F) the
five-day biochemical oxygen demand (BOD5) values, and (G) the number of E. coli bacteria during
the experimental period.

As a facile but accurate quantitative method, the gravimetric mass-loss percentage has
been adopted to determine the degradation rate of PLA/PHB fabrics in this work and was
defined by the following equation. Three parallel samples with different physical sizes (3
cm × 5 cm, 4 cm × 4 cm, and 5 cm × 5 cm) were weighed with a precise five-digit balance
and the average values are reported here. The according PLA/PHB fabrics samples were
labeled as PLAHBA15, PLAHBA16, and PLAHBA25, respectively.

Degradation percentage (%) =
mn −m0

m0
× 100, (3)

where mn is the dry-weight value of the PLA/PHB fabrics after n weeks of immersion
in seawater, and m0 is the initial dry-weight value of the fresh PLA/PHB fabrics before
immersion in seawater.

As one of the valuable forecast tools for the handling and prediction of big data on a
large scale, artificial neural network (ANN) modeling has been successfully implemented
in many fields of environmental science and engineering. Meanwhile, an ANN is also
a powerful method for multivariate data analysis due to its reliable, robust, and salient
capability and flexibility for capturing the non-linear relationships between variables (multi-
inputs/outputs) in multivariate systems. Herein, ANN modeling has been introduced
to fit and predict the mass-loss degradation process of PLA/PHB fabrics, in which case
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the continuity of the mass loss was much in self-evidence. As shown in Figure 2, a
neural network was built, consisting of two hidden layers with ReLU activation functions
called neurons and the last layer of one output with sigmoid transfer functions. The
mathematical strength of these interconnections was determined by the weight associated
with the neurons as well as additional bias. The ANN model was trained according to the
backpropagation algorithm, which minimized the MSE loss between the real output (y) and
the predicted output (ŷ) in the output layer. The Stochastic Gradient Descent (SGD) was
applied as the optimization algorithm. Then, the nonlinear logical regression relationships
between the multiple input variables and the output variable were set up based on such an
ANN model after hundreds of epochs of the data-training process. Herein, the multiple
input variants of the neural network were selected after data feature engineering and
the multiple input variants included the physical size of the fabrics (cm2), the immersion
duration time (weeks), the UV radiation, and the air bubbling (DO), in this case. Among
them, the physical size of the fabrics (cm2) and the immersion duration time (weeks) were
the normalized numeric variables, while the UV radiation and the air bubbling (DO) were
categorical variables. The hyperparameter architecture of the neural networks, i.e., the
number of layers of the ANN model, the number of neurons per layer, and the activation
functions, were heuristically determined based on the cross-validation algorithm, where
the whole dataset was split into the testing sub-set (one fifth) and the training sub-set
(four fifths), as shown in Figure 3.
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As shown in Figure 4, the distinct mass-loss phenomena have been identified in all
cases of PLA/PHB samples after immersion, yet the degradation rate varied under dif-
ferent environmental parameters over time. The degradation percentage after 8 weeks’
immersion was in the range of 10.25 wt.%~16.26 wt.%. Generally, the actual mass-loss rate
of the PLA/PHB fabrics was fast at the initial stage (0~2 weeks) of the whole experimental
period. Afterward, the experimental degradation rate of the PLA/PHB fabrics slowed
down gradually in the following stage (2~8 weeks). The total mass loss of the PLA/PHB
fabrics might be attributed to the diffusion of water-soluble small molecules within the
PLA/PHB fibers and/or the hydrolysis degradation effect of seawater. Such compara-
tive experimental results revealed that the degradation rates of PLA/PHB fabrics under
four different environmental conditions follow the order: case (UV + DO) > case (UV) >>
case (DO) > case (static seawater). By comparison, the difference between the sample of
(A) static seawater and the sample of (B) aerated seawater was not obvious, as was the
difference between the sample of (C) UV-lighting static seawater and the sample of (D) UV-
lighting aerated seawater. The presence of UV light accelerated the hydrolysis degradation
process of PLA/PHB fabrics, as can be seen by comparing the data of Figure 4A,C. The
mass-loss percentage of the two PLA/PHB fabrics in the presence of UV light was higher
than that of the two samples in the absence of UV light. However, the accelerating effect of
dissolved air was smaller than that of UV exposure in terms of mass-percentage values. All
the detailed raw data and predicted data are summarized in the Supplementary Materials.
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Figure 4. Evolution of weight loss percentage of degradable PLA/PHB fabrics under multiple
environmental parameters: (A) static seawater, (B) aerated seawater, (C) UV-lighting static seawater,
and (D) UV-lighting aerated seawater. Note: all the discrete scatter points represent the experimental
mass-loss percentage data of PLA/PHB fabrics under static seawater and/or UV-lighting aerated
seawater. The green line represents the predicted data of PLA/PHB fabrics under static seawater
and/or UV-lighting aerated seawater generated by the ANN model.

The MSE value after 1000 epochs was decreased to a minimum of 0.000343, which
is close to zero, when seven neurons were optimized and implemented within the ANN
model. The MSE value gradually became steady after 159 epochs, as shown in Figure 5. At
the same time, the other monitoring index, the MAE value, was also reduced to a minimum
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of 0.0143 after 1000 epochs. The decrease in the MAE value gradually became steady after
164 epochs. More importantly, no obvious overfitting phenomena were found during the
data-training process. Meanwhile, the contribution of surface size was negligible among
the four input variables explored and discovered by the ANN model after the data training
process. There was no difference in the degradation of PLA/PHB fabrics with different
physical sizes.
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Figure 6 shows the apparent geometry of the sustainable PLA/PHB fabrics before
and after different conditions. The fresh PLA/PHB fabrics exhibited a tight structure
before the aging experiments. After eight weeks of aging, the integrity of the three cases
(static seawater, UV, or DO) remained basically intact, although the structure seemed loose.
However, in the presence of both UV and DO aging, the status of such a case was the most
serious among these cases. The fabric integrity deteriorated and a visible hole through
the center of the PLA/PHB fabrics was found after eight weeks of aging. Microscopy
observation showed the time evolution process on the fine internal structure of such
PLA/PHB fabrics during the experimental periods. As seen in Figure 7, the enlarged optical
microscope image of the virgin PLA/PHB textile displayed an open-knitted structure with
loose loops. It can be clearly seen that the weave structure of the PLA/PHB fabrics was
greige-type, which was made by the single jersey-knitting manufacturing processes. Such a
knitting structure benefits from being lightweight with a high surface area and is commonly
applied for producing sportswear and T-shirts in the textile industry. The PLA/PHB
fabrics were made by knitting multi-filament yarns. The yarns were made from multiple
long fibers, which were the smallest and fundamental structural unit of the PLA/PHB
fabrics. After four weeks of aging, some pitting and erosion were first evidenced at the
stress-concentrated region, yet the whole integrity of the fabrics/yarns was not lost. After
a longer aging time (eight weeks), the whole integrity of the PLA/PHB yarns was broken
completely, and the internal interlacing connection was destroyed to a large degree. The
release of (micro)fibers might have occurred from then on. The microscope image of the
PLA/PHB multi-filament yarns illustrates the PLA/PHB yarns consisting of multiple long
fibers, which were held together without any adhesive in a twistless process. The initial
diameter of the fresh yarns was measured in the range of 190 µm to 210 µm. The diameter
of fibers was averaged to be 20 µm. After seawater accessed and attracted these PLA/PHB
fibers in the filament form, some fibers split from the initial yarn, whose structure became
loose. Some coarse cross-sections were found at the ends of the broken PLA/PHB fibers
and the diameter of these fibers was also reduced to 18 µm, as measured in Figure 8.
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Figure 6. Digital images of (A) fresh multi-filament PLA/PHB fabrics, and multi-filament PLA/PHB
fabrics after eight weeks of immersion in (B) static seawater, (C) aerated seawater, (D) UV-lighting
static seawater, and (E) UV-lighting aerated seawater. Note: the red arrow indicated the broken point
in the fabrics.
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However, the actual mass of the bulky PLA/PHB plastics remained the same without 
any changes after immersion for four weeks. The results are shown in Table 1. Such 
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Figure 8. Typical microscopic images of (A) the initial PLA/PHB yarns and the PLA/PHB yarns after
(B) two weeks, (C) four weeks, and (D) eight weeks immersed in both UV lighting and aerated seawater.

For comparison, the bulky PLA/PHB plastics, rather than the PLA/PHB fabrics/fibers/yarns,
were also tested for their hydrolysis degradability. The chemical composition of these bulky
PLA/PHB plastics was the same as that of PLA/PHB fabrics/fibers/yarns. The optical pho-
tographs of the PLA/PHB fabrics before and after immersion in seawater under different condi-
tions for four weeks are shown in Figure 9. No visible hole or crack on the surface was identified
after immersion for four weeks, and their structural integrity was well-maintained during the
aging experiments. Only the surface color of the immersed samples appeared a little whiter than
that of the sample without immersion. This resulted from the UV light’s bleaching effect. This
result is consistent with Yu et al.’s report on the degradation behavior of transparent PLA films [28].
However, the actual mass of the bulky PLA/PHB plastics remained the same without any changes
after immersion for four weeks. The results are shown in Table 1. Such phenomena were in good
agreement with most previous reports questioning the practical degradability of PLA or PHB
sample [16,17]. In this regard, the statement on the degradability of PLA/PHB without referring to
the physical shape and dimensions was not tenable.
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Table 1. Results of the mass weights of PLA/PHB plastics before and after four weeks’ immersion
under various environmental conditions.

PLA/PHB Samples Fresh Net Weight (g) Net Weight after 4 Weeks (g)

Natural seawater 14.9461 ± 0.0038 14.9449 ± 0.0056
Air 14.9985 ± 0.0542 14.9942 ± 0.0552

UV light 13.6431 ± 1.8326 13.6426 ± 1.8376
Air + UV light 14.9460 ± 0.0023 14.9569 ± 0.0131

Note: no distinct weight loss was found in the bulky PLA/PHB samples.

To further determine the effects of environmental aging factors on the mechanical be-
havior of bulky PLA/PHB plastics, the PLA/PHB plastics were cut into standard dogbone-
like samples. As shown in Figure 10, the typical tactile curves of the PLA/PHB plastics
after aging and immersion under continuous tensile loads show that the applied force
initially increases linearly up to a certain extension, after which further extension requires
a smaller increment in the applied force. Such behaviors were different from that of fresh
and blank PLA/PHB plastics. In the latter case, there was an extra-prolonged region after
the plastics region. The experimental results have also been derived from the experimental
curves and summarized in Table 2. The Young’s modulus was calculated according to the
slope of the initial linear portion of experimental curves and the Young’s modulus of the
fresh PLA/PHB plastics was 123.74 MPa. After four weeks of immersion, all the PLA/PHB
plastics showed similar rigidity, but the Young’s modulus was reduced by ~20% of the
fresh PLA/PHB plastics. These behaviors revealed that the abiotic hydrolysis had a signifi-
cant deteriorative effect on the mechanical properties, including both the elastic property
and the plastic property, in the degradation process. Both the tensile strain and tensile
strength of PLA/PHB plastics were also reduced significantly after immersion and aging.
Generally, the crystalline phase plays a vital role in elasticity, whereas the non-crystalline,
highly deformable amorphous phase of PLA/PHB blends affects their ductility. Thus, the
hydrolysis degradation deteriorated the mechanical properties regardless of the crystalline
phase or the amorphous phase of the PLA/PHB blends. Even the higher crystalline region,
coupled with the lower mobility of long polymer chains, could not hinder water from
diffusing into the gaps between the polymer chains. Thus, the Young’s modulus values
were weakened after aging. This result was extremely different from that of PLA/PHB
yarns, as described in our previous report [18]. The difference in mechanical properties
resulted from the difference in the physical dimensions and/or the thermal manufacturing
process of the bulky plastics and the melt-spun fibers/yarns.
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Figure 10. (A) Stress–strain curves of dogbone-like PLA/PHB plastics before and after immersion for
four weeks in static seawater (Natural), aerated seawater (Air), UV-lighting static seawater (UV), and
UV-lighting aerated seawater (UV + Air). (B) The dogbone-shaped specimens and their standard physical
dimensions (ASTM D638 Standard Test Methods Type IV) for each PLA/PHB plastic were tested.
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Table 2. Results of the mechanical properties of the PLA/PHB samples obtained from tensile tests.

Samples Young’s Modulus
(MPa)

Tensile Strain @
Maximum Load

(%)

Maximum Tensile
Stress
(MPa)

True Strain @ Break
(Standard)
(mm/mm)

True Stress @ Break
(Standard)

(MPa)

Blank 123.74 33.86 21.66 0.29 27.72
Natural 85.74 24.99 13.36 0.22 16.69

Air 88.32 23.03 16.46 0.21 20.25
UV 105.26 21.91 11.83 0.20 14.42

Air + UV 86.58 19.71 14.08 0.18 16.72

The ESI-Q-TOF MS spectroscopy was applied to evaluate the distribution of various
oligomeric fractions of PLA/PHB fabrics after the degradation process. These fragmen-
tation patterns were identified through the analysis of the accurate mass-to-charge (m/z)
value of fragment ions obtained from ESI-Q-TOF MS spectroscopy. As shown in Figure 11,
the ESI-MS of PLA/PHB fabrics shows a series of regular signals with a peak-to-peak m/z
increment of 72.00 ± 1.00 between two adjacent signals in the high m/z region of this
spectrum, ranging from 2717.80 to 4591.40, which is attributed to homo-oligomer fractions
generated by the successive cleavage of the ester bonds of PLA molecules. The theoretical
mass of the repeating lactyl unit was calculated to be 72.02 atomic mass units. In the low
m/z regions, the homo-oligomeric fractions with a characteristic repeating ∆m/z unit of
86.00 ± 1.00 between two adjacent signals could be assigned to that of PHB polymers after
similar cleavage of the ester bond occurring in the following manner, as shown in Figure 11.
The most intense peak in terms of relative abundance in the ESI-MS spectrum refers to
blank PLA oligomers before immersion in seawater, located at m/z 3510.08. The other
intense peak of PLA after four weeks of immersion and aging in static seawater, aerated
seawater, UV-lighting static seawater, and UV-lighting aerated seawater was located at m/z
3294.02, m/z 3223.00, m/z 2933.91, and m/z 2861.89, respectively. Meanwhile, the maximum
m/z value of the characteristic product ion peak on the ESI-MS spectrum of PLA before
and after immersion in static seawater, aerated seawater, UV-lighting static seawater, and
UV-lighting aerated seawater was located at m/z 4591.40, m/z 4447.35, m/z 4087.24, m/z
4015.23, and m/z 3943.21, respectively. Thus, the results revealed that the average degree of
the polymerization of PLA decreases approximately from 63~64 to 54~55 after immersion
and aging by assuming the polymer was detected with a single-charged molecular fraction.
This illustrates that the degradability of both PLA and PHB is mainly induced by abiotic
hydrolysis in South China Seawater. Therefore, the hypothesized degradation generated a
wide range of homo-oligomeric fractions of PLA/PHB with smaller molecular weights, as
confirmed by MSI-QTOF MS. This reduction in the molecular weights of PLA and PHB
polymers gives a reasonable explanation for the adverse effects of the hydrolysis process on
the mechanical properties of PLA/PHB samples in either bulky-plastics form or in the form
of fibers/yarns, as mentioned previously. More importantly, another deteriorating effect
derived from the variation in the crystalline degree of PLA polymers within the PLA/PHB
fibers/yarns was due to their hydrophilicity. However, the change in the crystalline degree
of PHB was not significant under parallel conditions because of its hydrophobicity.
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Figure 11. Electrospray ionization mass spectra (ESI-MS) of (A) fresh, blank PLA/PHB fabrics
and PLA/PHB fabrics under multiple environmental parameters, including (B) static seawater,
(C) aerated seawater, (D) UV-lighting static seawater, and (E) UV-lighting aerated seawater. (F) The
MS fragmentation analysis of PLA polymer and (G) the MS fragmentation analysis of PHB polymer.

4. Conclusions

In summary, the hydrolysis degradability of PLA/PHB products in the form of fabrics
after immersion in South China Seawater was confirmed based on the mass loss of dried
PLA/PHB fabrics. The degradation rate in terms of dry mass loss was applied to monitor
the abiotic hydrolysis process of PLA/PHB fabrics during immersion in seawater. The
effects of multiple environmental parameters involved UV irradiation and/or dissolved
oxygen present in the marine environment accelerating the degradation of the PLA/PHB
fabrics. Due to that the degradation rate under the four parallel conditions differed, and
follows the order: (UV + Air) > (UV) >> (Air) > (static seawater). Conversely, the mass loss
of bulky PLA/PHB plastics within four weeks was not detected at all, yet the variation in
their mechanical properties was significant. Thus, the hydrolysis degradation of PLA/PHB
was highly dependent on their physical dimensions. Such hydrolysis degradation of
PLA/PHB in South China Seawater was successfully simulated and predicted by an
artificial intelligence (AI) algorithm model based on a three-layered, eight-neuron topology.
The results confirmed that artificial neural network modeling could not only effectively fit
the experimental data but also predict the behavior of the hydrolysis degradation process
under various conditions within the experimental period. Thereafter, such an AI algorithm
model provides a feasible solution for the data-fitting and prediction of the degradation
behavior of polymers under various marine seawater aqua environments, not limited to
PLA/PHB bio-polymers.
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