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Abstract: Porous organic polymers incorporating nitrogen-rich functionalities have recently emerged
as promising materials for efficient and highly selective CO2 capture and separation. Herein, we report
synthesis and characterization of new two-dimensional (2D) benzene- and triazine-based azo-bridged
porous organic polymers. Different synthetic approaches towards the porous azo-bridged polymers
were tested, including reductive homocoupling of aromatic nitro monomers, oxidative homocoupling
of aromatic amino monomers and heterocoupling of aromatic nitro monomers and a series of aromatic
diamines of different lengths and rigidity. IR spectroscopy, 13C CP/MAS NMR spectroscopy, powder
X-ray diffraction, elemental analysis, thermogravimetric analysis, nitrogen adsorption–desorption
experiments and computational study were used to characterize structures and properties of the
resulting polymers. The synthesized azo-bridged polymers are all amorphous solids of good thermal
stability, exhibiting various surface areas (up to 351 m2 g−1). The obtained results indicated that the
synthetic methods and building units have a pronounced effect on the porosity of the final materials.
Reductive and oxidative homocoupling of aromatic nitro and amino building units, respectively,
lead to 2D azo-bridged polymers of substantially higher porosity when compared to those produced
by heterocoupling reactions. Periodic DFT calculations and Grand-canonical Monte Carlo (GCMC)
simulations suggested that, within the used approximations, linear linkers of different lengths do not
significantly affect CO2 adsorption properties of model azo-bridged polymers.

Keywords: azo linkages; CO2 adsorption; DFT calculations; nitrogen-rich; porous organic
polymers; triazine

1. Introduction

Porous organic polymers (POPs) are crystalline or amorphous materials that can be
constructed by connecting organic molecular building units through covalent bonds [1–4].
POPs are divided into several classes, including covalent organic frameworks (COFs), con-
jugated microporous polymers (CMPs), hyper-cross-linked polymers (HCPs), crystalline
triazine frameworks (CTFs), porous polymer networks (PPNs), polymers of intrinsic mi-
croporosity (PIMs), porous aromatic frameworks (PAFs), etc., which differ in structural
features and synthesis approaches. POPs have drawn great interest in recent years due to
their high specific surface area, permanent and tunable porosity, high thermal and chemical
stability and low density, which make them suitable for a range of applications, e.g., in gas
storage and separation, catalysis, optoelectronics, sensing and drug delivery [5–13]. One
of the most important potential applications of POPs is the capture of CO2, which is the
primary greenhouse gas whose elevated emissions into the atmosphere are closely related
to global warming, sea level rising and ocean acidification [14,15]. CO2 capture capacity
and selectivity could be improved by incorporating nitrogen-rich functionalities into the
building units (e.g., imine, carbazole, triazine, benzimidazole, azo, etc.) that act as CO2-
phylic sites [3,16–22]. Namely, CO2 possesses a higher quadrupole moment compared to
most other gases, including N2, rendering the moieties that contain polar functional groups
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or heteroatoms CO2-phylic. This is particularly important given that a large Brunauer–
Emmett–Teller (BET) surface area is not necessarily the dominant factor for high CO2
uptake capacity and that presence of heteroatoms can provide favorable interactions with
CO2, leading to enhanced CO2 adsorption and CO2/N2 selectivity [3,23,24]. A widely used
method of providing a nitrogen-rich environment that enhances affinity for CO2 adsorp-
tion is the introduction of triazine units within the POPs [17–21,25]. Triazine-based POPs,
besides possessing high nitrogen content, also exhibit high chemical and thermal stability,
making them one of the most promising materials for practical applications in this field. Fur-
thermore, recent studies indicated that azo groups are particularly well-suited for design of
POPs, which could be used for highly selective gas separations [24,26–31]. It was reported
that azo-bridged POPs show excellent CO2/N2 selectivity, which increases with rising
temperature [24,26]. In fact, azo groups reject N2, making the framework N2-phobic while
exhibiting high affinity towards polarizable CO2 molecules through dipole–quadrupole
interactions. Azo-bridged POPs can be synthesized by using different synthetic routes
and various building units. Commonly employed synthetic methods producing 2D or
three-dimensional (3D) porous azo-bridged polymers include Zn- or NaBH4-mediated
reductive homocoupling of aromatic nitro monomers [32,33], copper(I)-catalyzed oxidative
homocoupling of aromatic amino monomers [27,28] and heterocoupling of aromatic nitro
and amino monomers under basic conditions [24,26]. In general, the use of different syn-
thetic pathways and building units can result in azo-bridged POPs with different structural
and functional properties, such as surface area, pore size and volume and CO2 uptake
capacity and selectivity.

In the present study, we synthesized a series of new 2D benzene- and triazine-based
azo-bridged POPs by using different synthetic routes and a variety of aromatic nitro and
amino building units. Specifically, we used 1,3,5-tris(4-nitrophenyl)benzene (TNPB) and
2,4,6-tris(4-nitrophenyl)-1,3,5-triazine (TNPT) as the aromatic nitro monomers, and 4,4′,4′′-
(1,3,5-triazine-2,4,6-triyl)trianiline (TAPT) and several aromatic diamines differing in length
and rigidity as aromatic amino monomers for synthesis of a total of fourteen benzene-
(AZO-B-P) and triazine-based (AZO-T-P) azo-bridged polymers (Figure 1). Thorough
characterization of structures and properties of the resulting POPs was performed by IR
spectroscopy, 13C CP/MAS NMR spectroscopy, powder X-ray diffraction (PXRD), elemental
analysis, thermogravimetric analysis (TGA) and nitrogen (N2) adsorption–desorption
experiments. In addition, DFT calculations and GCMC simulations were conducted on
selected model azo-bridged polymers.
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Figure 1. Synthesis of a series of benzene-(AZO-B-P) and triazine-based (AZO-T-P) azo-bridged
polymers by (a) Zn- or NaBH4-mediated reductive homocoupling of aromatic nitro monomers (TNPB
and TNPT); (b) copper(I)-catalyzed oxidative homocoupling of aromatic amino monomer (TAPT);
(c) heterocoupling of aromatic nitro monomers (TNPB and TNPT) and various aromatic diamines
under basic conditions.

2. Materials and Methods
2.1. General Information

All chemicals were used as received from suppliers. The course of the reactions was
monitored by thin-layer chromatography (TLC) (Merck silica gel 60-F254-coated plates).
The synthesized compounds were identified by solution 1H and 13C NMR spectroscopy,
solid-state 13C CP/MAS NMR spectroscopy, IR spectroscopy, PXRD and elemental analysis.
Solution-state 1H and 13C NMR spectra were recorded on a Bruker Ascend 400 MHz NMR
spectrometer in DMSO-d6. Solid-state 13C CP/MAS NMR spectra were recorded on a
Bruker Avance Neo 400 MHz NMR spectrometer or Bruker Avance Neo 600 MHz NMR
spectrometer at spinning rates of 12 kHz and 15 kHz, respectively. IR spectra were recorded
on a PerkinElmer UATR Two spectrometer in the spectral range between 4000 cm–1 and
400 cm–1 at a resolution of 4 cm–1, averaging 10 scans per spectrum. PXRD diffractograms
were recorded on a Malvern Panalytical Aeris powder diffractometer in Bragg–Brentano
geometry with PIXcel1D detector. Thermogravimetric analysis was performed using a
simultaneous TGA-DTA analyzer Mettler-Toledo TGA/DSC 3+. Samples were placed in
alumina pans (70 µL), heated in flowing nitrogen (50 mL min−1) from 25 ◦C up to 800 ◦C
at a rate of 10 ◦C min−1 and held in isothermal conditions for 15 min at 800 ◦C. Data
collection and analysis were performed using the program package STARe Software 16.40
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MettlerToledo GmbH (Greifensee, Switzerland). The specific surface area was determined
from N2 gas adsorption–desorption data obtained with Micromeritics ASAP-2000 at 77 K.
Prior to analysis, samples were degassed at 150 ◦C under a dynamic vacuum of 7 mPa. The
adsorption data were used to calculate the surface area with the BET model, while the pore
size distribution was determined with the Barrett–Joyner–Halenda (BJH) method.

2.2. General Synthetic Procedures

Azo-bridged polymers were synthesized by three different methods: (a) reductive
homocoupling of aromatic nitro compounds (TNPB and TNPT) using Zn or NaBH4 as
reducing agent (AZO-B-P1 and AZO-T-P2); (b) oxidative homocoupling of aromatic amino
compound (TAPT) with CuBr as an oxidizing agent (AZO-T-P3); (c) condensation reac-
tions of various aromatic nitro compounds and aromatic diamines under basic conditions
(AZO-B-P4–AZO-T-P14) (Figure 1). All diamines, 1,4-phenylenediamine (PPD), benzi-
dine (BZD), 4,4′-diaminodiphenylmethane, 4,4′-oxydianiline, 4,4′-ethylenedianiline, 4,4′-
diaminobenzophenone and 4,4′-diaminodiphenyl sulfide, were purchased from the suppli-
ers. 1,3,5-Tris(4-nitrophenyl)benzene (TNPB) [34], 2,4,6-tris(4-nitrophenyl)-1,3,5-triazine
(TNPT) [35] and 2,4,6-tris(4-aminophenyl)-1,3,5-triazine (TAPT) [35] were synthesized by
the procedures described in the literature.

2.2.1. Synthesis of AZO-B-P1

AZO-B-P1 was prepared by a similar procedure described in the literature [32]. TNPB
(500 mg, 1.13 mmol) was dissolved in a mixture of 7 mL tetrahydrofuran (THF) and 8 mL
N,N-dimethylformamide (DMF). NaOH solution (723 mg NaOH in 1.7 mL of de-ionized
water) and zinc powder (665 mg) were added to the reaction mixture. The reaction mixture
was heated at 65 ◦C for 36 h. After cooling to room temperature, the mixture was poured
into 100 mL of 2M HCl and stirred for 1 h. The solid was filtered off and washed with
water, acetone and THF. After drying at 140 ◦C under vacuum for 5 h, 394 mg of a red
solid product was obtained (yield 50%). Elemental analysis: 69.93%C (calc. 83.46), 10.14%N
(calc. 12.17).

2.2.2. Synthesis of AZO-T-P2

AZO-T-P2 was synthesized by a similar procedure described in the literature [33]. In
the mixture of TNPT (0.5 g, 1.13 mmol) and DMF (30 mL), a solution of NaBH4 (0.128 g,
3.39 mmol) and DMF (20 mL) was added dropwise. The reaction mixture was heated at
85 ◦C for 24 h and then filtered and washed with DMF, HCl, water and THF. After drying
at 140 ◦C under vacuum for 5 h, 295 mg of an orange solid product was obtained (yield
37%). Elemental analysis: 70.55%C (calc. 72.40), 22.95%N (calc. 24.12).

2.2.3. Synthesis of AZO-T-P3

AZO-T-P3 was synthesized by a similar procedure described in the literature [27].
TAPT (100 mg, 0.28 mmol) was dissolved in 22 mL solvent mixture of THF/toluene = 1:1.
In the reaction mixture were added CuBr (20.2 mg, 0.141 mmol) and pyridine (80.4 mg,
1.02 mmol). The mixture was stirred 24 h at room temperature, 12 h at 60 ◦C and 12 h at
80 ◦C and then filtered and washed with THF and water. The solid product was soaked
in 100 mL of 4M HCl for 24 h and then filtered and washed with water, NaOH (200 mL,
1 M), water and ethanol. After drying at 140 ◦C under vacuum for 5 h, 103 mg of a dark
brown solid was obtained (yield 52%). Elemental analysis: 60.72%C (calc. 72.40), 18.84%N
(calc. 24.12).

2.2.4. Synthesis of AZO-B-P4

AZO-B-P4 was synthesized by a similar procedure described in the literature [24].
TNPB (500 mg, 1.13 mmol), PPD (184 mg, 1.70 mmol), DMF (50 mL) and KOH (634 mg,
11.3 mmol) were added in double-necked flask and heated to reflux under N2 atmosphere.
After 24 h, the reaction mixture was cooled to room temperature, poured in 300 mL of
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distilled water and stirred for 1 h. The reaction mixture was filtered off and washed with
hot distilled water, acetone and THF. After drying at 140 ◦C under vacuum for 5 h, 396 mg
of a black solid was obtained (yield 78%). Elemental analysis: 57.84%C (calc. 80.16), 9.59%N
(calc. 15.58).

The other AZO-B-Ps and AZO-T-Ps were prepared by similar procedures
(Supplementary Materials).

2.3. Computational Methods

The initial geometries of AZO-B and AZO-T were taken from our previous study [36]
and changed in GaussView (PBC tool) and VESTA to construct other systems (AZO-B-
PPD, AZO-B-BZD, AZO-T-PPD and AZO-T-BZD) with PPD and BZD linkers [37,38]. The
space group symmetry was checked by PLATON [39]. PBE functional [40], Grimme’s D3
correction [41] and triple-zeta basis set pob-TZVP-rev2 [42] were used for periodic density
functional theory (DFT) calculations in CRYSTAL17 [43]. The input files for CRYSTAL17
were created with cif2cell package [44]. Full optimization of both atom coordinates and
unit cell parameters were performed with default convergence criteria. Total energy
convergence was set to 10−7 and truncation criteria for the calculations of Coulombs and
exchange integrals increased to (8 8 8 8 16) for SCF calculations. The reciprocal space was
sampled using 2 × 2 × 8 Pack-Monkhorst k-point mesh. The lattice parameters of the
DFT-optimized structures are given in Table S1 of the Supplementary Materials.

The net atomic charges were calculated using the REPEAT method [45] from the elec-
tron densities calculated by CRYSTAL17. The required cube files with electrostatic potential
values were generated by CRYSTAL17. The GCMC simulations were performed with the
RASPA code [46]. The site–site Lennard-Jones (LJ) potential and Coulombic interactions
were used together with Lorentz–Berthelot mixing rules for the LJ interactions between
different atoms to represent interactions between gas molecules and the framework. A
three-site model was used to represent the gas molecules, CO2 and N2, within the TraPPE
force field [47]. Other atoms from the framework were modeled using DREIDING force
field [48]. Default cut-off values suggested by RASPA code were used for LJ and the
short-range part of the Coulombic interactions, while the long-range was evaluated by
Ewald summation method with a default relative precision of 10−6. The grand canonical
Monte Carlo (GCMC) simulation was performed to obtain single-component adsorption
isotherms of N2 and CO2 at 298 K. Pressure was converted to fugacity using the Peng–
Robinson equation of state and further used to calculate the chemical potential. A total
number of unit cells, 2 × 2 × 8, was used to describe a valid GCMC simulation cell. All
the perpendicular cell lengths were larger than twice the default cut-off distance of 12 Å.
Framework atoms were frozen and four different MC moves of gas molecules (translation,
rotation, reinsertion and swap) were allowed during simulations. More than 106 cycles
were used for the equilibration and production phases.

3. Results and Discussion
3.1. Synthesis of Azo-Bridged Polymers

Benzene- and triazine-based azo-bridged polymers (AZO-B-Ps and AZO-T-Ps, re-
spectively) were prepared using different synthetic approaches adopted from previously
reported procedures for azo POPs [24,26–28,32,33]. For synthesis of AZO-B-P1 and AZO-
T-P2, the corresponding starting aromatic nitro monomers, TNPB and TNPT, were sub-
jected to Zn- and NaBH4-induced reductive homocoupling reactions [32,33], respectively
(Figure 1a). Triazine-based polymer AZO-T-P3 was synthesized by copper(I)-catalyzed
oxidative homocoupling of aromatic amino monomer, TAPT, by following the previously
reported procedure for its benzene analogue [27] (Figure 1b). To investigate the effect
of different linear linkers on the porosity properties of benzene- and triazine-based azo-
bridged polymers, we also employed metal catalyst-free direct heterocoupling of aromatic
nitro monomers, TNPB and TNPT, and various aromatic diamines [24,26], including p-
phenylenediamine (AZO-B-P4 and AZO-T-P5), benzidine (AZO-B-P6 and AZO-T-P12),
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4,4′-diaminodiphenylmethane (AZO-B-P7 and AZO-T-P13), 4,4′-oxydianiline (AZO-B-P8
and AZO-T-P14), 4,4′-ethylenedianiline (AZO-B-P9), 4,4′-diaminobenzophenone (AZO-B-
P10) and 4,4′-diaminodiphenyl sulfide (AZO-B-P11), under basic conditions (Figure 1c).
The molar ratio of TNPB and TNPT to the corresponding diamine was set to 3:2. All
reactions afforded solid products insoluble in common organic solvents, such as acetone,
THF, dichloromethane, DMF and DMSO, suggesting the formation of cross-linked poly-
mer networks.

3.2. Characterization of Azo-Bridged Polymers

Formation of azo-bridged polymers was verified by IR spectroscopy, 13C CP/MAS
NMR spectroscopy, PXRD and elemental analysis. Figure 2 shows a comparison of represen-
tative FTIR spectra of polymers AZO-B-P1, AZO-T-P2, AZO-T-P3 and AZO-B-P6, prepared
by different synthetic routes, and respective starting nitro and/or amino monomers. The
spectra of polymers revealed the presence of bands around 1450 cm–1 and 1400 cm–1,
which can be attributed to the asymmetric stretching vibrations of the azo (–N=N–) group
(Figure 2, marked with vertical lines). Similar peaks can also be observed in FTIR spectra
of other synthesized azo-bridged polymers (Figure S1). In addition, bands at 1520 cm–1

and 1350 cm−1, assigned to asymmetric and symmetric N–O stretching bands of unreacted
terminal nitro groups, could be observed in the FTIR spectra of polymers synthesized by Zn-
and NaBH4-mediated reductive homocoupling of TNPB and TNPT, and by heterocoupling
of TNPB and TNPT with various diamines (Figure 2a,b,d and Figure S1). In most polymers,
we could detect the residual signals located in the 3400–3300 cm–1 region, which probably
belong to N–H stretching vibrations and suggest the presence of terminal amino groups.
The IR spectra of triazine-based azo polymers also showed bands in the 1600–1300 cm–1

region and at 800 cm–1, which could be attributed to the stretching vibrations and the
breathing modes of the triazine units, respectively.

Although FTIR spectra of polymers indicated formation of azo linkages, this needed
further confirmation since it is difficult to identify azo group solely by IR spectroscopy.
Therefore, we acquired and compared 13C CP/MAS NMR spectra of starting compounds
and obtained polymeric products (Figures 3 and S2). Comparison between the 13C
CP/MAS NMR spectra of AZO-B-Ps and AZO-T-Ps and amino and nitro building units
(Figures 3 and S2) clearly supported successful formation of azo polymers from the cor-
responding monomers. The most prominent feature in the 13C CP/MAS NMR spectra
of the polymers was the appearance of a new signal around δ = 150 ppm (marked with
asterisk in Figure 3), belonging to the carbon directly bonded to the azo group (–C–N=N–),
which confirmed the formation of azo bonds. The additional signals in the spectra of
products could be assigned to the other carbon atoms in building units of azo polymers.
Thus, in the spectra of AZO-B-Ps and AZO-T-Ps, we could observe aromatic carbon signals
in different chemical environments mostly located in the range δ = 110–155 ppm. The
spectra of AZO-T-Ps (Figures 2b,c and S2) also displayed triazine carbon signal around
δ = 170 ppm, confirming the presence of triazine units.

Comparison of PXRD patterns of starting nitro and amino compounds and obtained
polymers additionally corroborated the results of FTIR and 13C CP/MAS NMR spec-
troscopy, suggesting the formation of new products (Figure 4 and Figure S3). In contrast to
starting compounds, which provided sharp diffraction peaks, indicating they are crystalline
solids, PXRD of all fourteen polymeric products displayed broad diffraction peaks, point-
ing to their amorphous nature with no long-range order. This agrees with the literature
data available for similar azo-bridged polymers, which are also amorphous because of the
irreversible formation of the azo bond [24,26–31].
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Figure 4. Comparison of representative PXRD patterns of (a) AZO-B-P1 polymer and starting nitro
monomer (TNPB); (b) AZO-T-P2 polymer and starting nitro monomer (TNPT); (c) AZO-T-P3 polymer
and starting amino monomer (TAPT); (d) AZO-B-P6 polymer and starting nitro and amino monomers
(TNPB and benzidine, respectively).

Elemental analysis data of AZO-B-Ps and AZO-T-Ps revealed some deviations from
the theoretical values, which is commonly observed in POPs and is attributed to incomplete
polymerization and adsorption of moisture [27,28,49].

Thermal stability was investigated using TGA by heating the AZO-B-Ps and AZO-T-
Ps samples up to 800 ◦C at a heating rate of 10 ◦C min–1 in N2 atmosphere. TGA traces
showed that benzene-based azo polymers, AZO-B-Ps, are stable up to approximately
220 ◦C, at which point they begin to gradually lose mass, and, at around 250 ◦C, they
rapidly decompose (Figure S4). Azo polymers containing triazine central unit, AZO-T-Ps,
mostly showed higher thermal stability in comparison to AZO-B-Ps and remained stable
up to around 250 ◦C, when they begin to gradually lose mass (<5%) until around 350 ◦C
(AZO-T-P14) to 450 ◦C (AZO-T-P2), at which point they start to decompose more rapidly.
The highest thermal stability was observed for AZO-T-P2.

3.3. Porosity Properties of Azo-Bridged Polymers

Porosity properties of AZO-B-Ps and AZO-T-Ps were investigated by measuring the
N2 adsorption–desorption isotherms at 77 K (Figure 5a). Prior to the analysis, all samples
were degassed at 150 ◦C under vacuum. The specific surface areas were estimated by
using the BET model and ranged from 0.05 to 351 m2 g−1 (Table 1). The highest surface
area of 351 m2 g−1 was obtained for AZO-T-P2 synthesized by NaBH4-mediated reductive
homocoupling of aromatic nitro monomer, TNPT. Notably, this value is significantly higher
in comparison to the specific surface area of AZO-T-P3 (50.8 m2 g−1), which is composed
of the same building units but synthesized by copper(I)-catalyzed oxidative homocoupling
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of aromatic amino monomer, TAPT. According to the obtained pore size distribution
(Figure 5b), AZO-T-P3 could be characterized as a mesoporous material with a proportion
of pores larger than 50 nm. There is a certain amount of micropores, but not large enough to
show a significant volume of micropores. On the other hand, AZO-T-P2 showed a greater
extent of micropores (Figure 5b) but could also be characterized as a mesoporous material.
The recorded adsorption–desorption isotherms supported this observation. Both AZO-T-
P2 and AZO-T-P3 showed type IV isotherms according to the IUPAC classification [50],
which is characteristic of mesoporous materials. The observed adsorption hysteresis is
expected in type IV isotherms and is related to capillary condensation and evaporation in
the mesopores. As known from the literature, the shape of the adsorption hysteresis loop
correlates with the pore size distribution, pore geometry and its connectivity [51]. The H4
hysteresis loop present in AZO-T-P2 is commonly associated with narrow slit-shaped pores,
while the H3 hysteresis loop visible in AZO-T-P3 is observed in materials with slit-shaped
pores. An increase in nitrogen uptake at higher relative pressures (above 0.9) indicated the
presence of interparticular voids in the networks of AZO-T-P2 and AZO-T-P3 [24,29,52].
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Table 1. BET surface areas (SBET) of AZO-B-Ps and AZO-T-Ps.

Sample SBET (m2 g−1)

AZO-B-P1 2.40
AZO-T-P2 351
AZO-T-P3 50.8
AZO-B-P4 0.74
AZO-T-P5 0.44
AZO-B-P6 0.43
AZO-B-P7 0.42
AZO-B-P8 0.83
AZO-B-P9 0.60

AZO-B-P10 0.63
AZO-B-P11 0.41
AZO-T-P12 0.05
AZO-T-P13 0.20
AZO-T-P14 0.45

Differences in the obtained surface area values of AZO-T-P2 and AZO-T-P3 empha-
sized the important role of the synthetic route on the porosity of the final material. This is
also evident from the comparison of BET surface areas of AZO-B-P1 (2.40 m2 g−1), prepared
by Zn-induced reductive homocoupling of aromatic nitro monomer, TNPT, and ALP-4
(223 m2 g−1 to 862 m2 g−1) [27], synthesized by oxidative homocoupling of aromatic amino
monomer, TAPT, in the presence of copper(I) bromide. In an attempt to prepare AZO-B-
P1 with a higher surface area, we also tested NaBH4-mediated reductive homocoupling
of TNPB monomer. However, the reaction was unsuccessful, and we could only detect
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starting TNPB in the final reaction mixture. Azo-bridged polymers with benzene and
triazine central units (AZO-B-P4–AZO-T-P14) prepared by heterocoupling of aromatic
nitro monomers, TNPB and TNPT, and different aromatic diamines exhibited very low
BET surface area values (Table 1). Noteworthy, this is in sharp contrast to 3D azo-bridged
polymers synthesized by coupling of tetrahedral aromatic nitro monomers and aromatic
diamines, which mostly showed moderate to high porosities [24,26]. It has been reported
earlier that POPs constructed from 3D building units in general possess higher surface areas
in comparison to those produced by using only 2D building units [22,32]. Lower surface
area values observed for AZO-B-P4–AZO-T-P14 containing linear linkers in comparison
to, e.g., AZO-T-P2 and AZO-T-P3, in which triphenyltriazine units are directly connected,
could be due to an increased degree of conformational freedom in the former case, allowing
for greater interpenetration and more efficient space filling in the networks [53–55].

3.4. Computational Studies of Azo-Bridged Polymers

In our recently published paper on the computational study of structural and adsorp-
tion properties of benzene- and triazine-based polymers with azo, azoxy and azodioxy
linkages, we proposed a procedure based on three complementary methods to acquire
guidelines for the future synthesis of promising porous organic materials [36]. Aside from
the calculation of binding energies and comparison of the best interaction sites based on the
calculated electrostatic potential values, we also performed periodic DFT calculations and
GCMC simulations. These results provide us with additional information about the struc-
tural properties resulting in better adsorption of CO2 in nitrogen–nitrogen linked POPs.
First, we assumed packing of azo-, azoxy- and azodioxy-linked polymers as in similar
systems (such as those with imine bonds) for which crystal structures were determined.
Second, we studied two arrangements of 2D layers with hexagonal pores, AA and AB
stacking. AA-stacked layers were energetically more favorable but showed lower CO2
uptake compared to AB-arranged layers.

Compounds 1 and 4 from that study correspond to AZO-B-P1 and AZO-T-P2/P3,
respectively, shown in Figure 1a, b. Azo-bridged POPs investigated experimentally in this
study were amorphous solids; thus, it was difficult to predict their structures. Here, we
focused only on the geometries of six azo-bridged benzene- and triazine-based POPs. In
AZO-B and AZO-T, trigonal building units were directly connected by azo bonds, while
linear linkers (PPD and BZD) bridged the connectors in AZO-B-PPD, AZO-T-PPD, AZO-B-
BZD and AZO-T-BZD. Other systems with bent linkers were not investigated because of
greater conformational flexibility and possible interweaving of chains. The energetically
most favorable AA configurations with eclipsed 2D layers (Figures 6a and S5, Table S1)
were predicted, simply to avoid all the other unnecessary combinations, while changing
only one parameter at a time, the length of the linear linker.

For perfectly arranged AA-stacked layers, pore size diameters (between 18 and 36 Å,
Figure S6) and specific surface areas (from 1828 to 2306 m2 g−1, Table S2) increase when
going from directly connected building units in AZO-B and AZO-T to those bridged by PPD
and BZD linkers. The calculated pore size diameters indicated the uniform distribution
of micropores, while experiments also showed the presence of mesopores. The value of
specific surface area calculated for AZO-T (1828 m2 g−1) differs from the experimentally
determined BET surface areas for amorphous AZO-T-P2 (351 m2 g−1) and AZO-T-P3
(50.8 m2 g−1). However, the calculated values are comparable to those determined for the
same building (triphenyltriazine) units connected by topologically very similar imine bonds
in AA-arranged crystalline TPT-COF-6 (1535 m2 g−1) [56]. That means the computational
procedures work decently, but it is difficult to expect this type of 2D layer arrangement for
amorphous azo polymers investigated in this paper.
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(c) CO2/N2 selectivities calculated for a molar ratio of 15:85 at 298 K.

The effect of different synthetic procedures on the sizes of pores and CO2 uptake
is more than obvious in AZO-B. The experimentally determined BET surface area of
2.4 m2 g−1 in AZO-B-P1 differs from the previously found values for a similar system
ALP-4 (from 223 to 862 m2 g−1), where they depend on stepwise increase in temperature
during synthesis [28]. These values are still lower than those calculated for AZO-B (1957 m2

g−1). The reported CO2 uptake of 81 mg g−1 at 1 bar and 298 K and CO2/N2 selectivity of
26 at molar ratio 15:85 [28] differ from the values calculated for eclipsed 2D layers in AZO-B
(20 m2 g−1, Figure 6b,c). However, introduction of more polar linkages, such as azodioxy, in
place of azo bonds increases CO2 uptake from 20 to 30 m2 g−1 in AZO-B, respectively [36].
Our previous study also showed that staggered configurations (staggered AB), although
energetically less favorable, can promote higher CO2 uptakes and selectivities [36]. Different
arrangements of 2D layers (e.g., eclipsed, staggered, serrated or inclined) can affect the
targeted properties of material and should be considered in future studies [57,58].

Although higher values of CO2 uptake (for about 5 m2 g−1) are found in AZO-B com-
pared to AZO-T, introduction of linear linkers (such as PPD and BZD) does not have a great
impact on adsorption. However, CO2/N2 selectivity is slightly increased in compounds
with directly attached building units (AZO-B and AZO-T). This computational analysis
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was focused only on linear linkers to keep it simple. The effect of other less conformation-
ally rigid linkers should be tested in the future, especially in systems showing a greater
tendency to be crystalline and thus more easily compared to experimental data.

4. Conclusions

We have synthesized fourteen new 2D azo-bridged polymers based on benzene and
triazine building units by using different synthetic approaches and investigated their
structural, thermal and porosity features. The prepared polymers are all amorphous solids
of good thermal stability, with the highest thermal stability observed for triazine-based
polymer AZO-T-P2. The obtained results indicated that the synthetic methods and building
units have a significant effect on the porosity of the final materials. Specifically, the highest
BET surface areas of 351 and 50.8 m2 g−1 were observed for the azo-bridged polymers with
triazine central units, AZO-T-P2 and AZO-T-P3, prepared by NaBH4-mediated reductive
homocoupling of nitro monomer and copper(I)-catalyzed oxidative homocoupling of amino
monomer, respectively. Introduction of linear linkers utilizing heterocoupling reactions of
aromatic nitro monomers containing benzene or triazine central units and different aromatic
diamines resulted in azo polymers exhibiting very low BET surface areas, which is in
contrast to previously reported azo porous systems prepared using 3D nitro building units.
Although all the azo-bridged polymers synthesized here were characterized as amorphous
solids, periodic DFT calculations and GCMC simulations on model systems can guide us
in design of new functional materials for selective adsorption of CO2 by examination of
the effect of different nitrogen–nitrogen linkages (e.g., azo, azoxy and azodioxy), various
linkers and 2D layer stacking modes on the materials’ structural and adsorption properties.
According to this computational study, introduction of linear linkers of different lengths
does not significantly affect adsorption properties within the used approximations.

Overall, in this work, we identified new triazine-based azo-bridged POPs, AZO-
T-P2 and AZO-T-P3, which could be promising candidates for selective CO2 capture.
Further experimental investigations, including their CO2 adsorption capacities and CO2/N2
selectivities, are underway in our laboratory.
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AZO-T, AZO-T-PPD and AZO-T-BZD with eclipsed (AA-stacked) geometries of 2D layers shown
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