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Abstract: The compatibility between poly(lactic acid) (PLA) and natural fibers to develop bio-sourced,
recyclable, and biodegradable composites remains a commonplace issue. This work highlights that, at
least in the case of hemp, pulping and bleaching towards delignified short fibers attained remarkable
improvements over untreated hemp strands. This approach differs from usual proposals of chemically
modifying hydroxyl groups. Soda-bleached hemp fibers (SBHFs) granted a relatively large bonding
surface area and a satisfactory quality of the interphase, even in the absence of any dispersant or
compatibilizer. To attain satisfactory dispersion, the matrix and the fibers were subjected to kinetic
mixing and to a moderately intensified extrusion process. Then, dog-bone specimens were prepared
by injection molding. Up to a fiber content of 30 wt.%, the tensile strength increased linearly with
the volume fraction of the dispersed phase. It reached a maximum value of 77.8 MPa, signifying a
relative enhancement of about 52%. In comparison, the tensile strength for PLA/hemp strands was
55.7 MPa. Thence, based on the modified rule of mixtures and the Kelly & Tyson modified equation,
we analyzed this performance at the level of the constituent materials. The interfacial shear strength
(over 28 MPa) and other micromechanical parameters were computed. Overall, this biocomposite
was found to outperform a polypropylene/sized glass fiber composite (without coupling agent) in
terms of tensile strength, while fulfilling the principles of green chemistry.

Keywords: biocomposites; cellulose; dispersion; fiber–matrix interface; micromechanics; natural
fibers; poly(lactic acid); short fiber reinforcement; tensile strength

1. Introduction

The UN Environmental Assembly of February and March of 2022 assigned top pri-
ority to a globally binding agreement on plastic pollution [1]. Far from being a mere
symbolic gesture, the legislative pressure on manufacturing industries is increasing, includ-
ing the ongoing European Strategy for Plastics in a Circular Economy [2]. In its second
chapter, the referred communication highlights the opportunities brought by “plastics
with biodegradable properties”. One of the most popular choices for such an endeavor is
poly(lactic acid) (PLA), which, besides being biodegradable (at least at high temperature),
can be recycled both chemically and mechanically [3]. Nevertheless, its usage, like that of
any other biopolymer, has severe limitations when it comes to challenging the so-called
big four—polyethylene, polypropylene (PP), polystyrene, and poly(vinyl chloride) [4]. A
promising strategy to enhance its properties without hampering its biodegradability is its
reinforcement with wood or plant fibers towards fully bio-sourced composites [5–8].

While the global market size of biocomposites is growing [9], it still entrails conven-
tional composite materials with oil-sourced matrices and energy-intensive reinforcement
fibers, namely PP/glass fiber (GF) [10,11]. Some of the most convincing natural fibers,
such as hemp, are easy to grow and harvest, and they are environmentally friendlier than
GF [12], but fall shorter in terms of performance. Even PLA has been reinforced with GF
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towards an 84% improvement in its tensile strength [13]. Limitations of hemp fibers and
other natural fibers include lower intrinsic tensile strength values, high surface polarity,
and ease of water sorption (which is detrimental to molten PLA [6]). The possibility of
overcoming them justifies further investigation.

Previous works have suggested different approaches to improve the compatibility
with wood fibers. For instance, performing chemical modifications on natural fibers, such
as silane coupling or esterification with acetic anhydride, has been proven to enhance the
dispersion of the fibers in the matrix and to avoid self-bonding [14]. In a more simple
approach, the removal of hemicelluloses and pectin from hemp, while keeping the lignin
content at 1.4 wt.%, sufficed to obtain remarkable enhancements in performance [15]. For
similar purposes, we have reinforced PLA with a bleached pulp from eucalyptus wood [16],
using diethylene glycol dimethyl ether as a dispersant. Nonetheless, the use of oil-based
additional components that are, in addition, lost by evaporation during processing, contra-
dicts at least two principles of green chemistry, namely atom economy and the choice of
renewable materials [17].

Despite their usefulness, derivatization processes, the use of compatibilizers and the
presence of excess reagents increase the environmental impact of the manufacturing process.
In addition, while the environmental performance of alkaline pulping and bleaching should
keep improving, they are feasible and traditional processes that, over the course of time,
have attained high material efficiency [18].

Hemp strands, both untreated and after undergoing different chemical processes, have
already been incorporated into PLA matrices [14,19,20]. Song et al.’s [19] biocomposites,
comprising PLA and degummed hemp strands, reached tensile strength improvements of
up to 39% over the initial bioplastic. We hypothesize that shorter, discontinuously dispersed
fibers, with lower contents of lignin and hemicellulose, would attain greater interfacial
shear strength after extensive blending processes. This hypothesis is hereby tested with
soda-bleached hemp fibers (SBHFs). It is expected that SBHFs offer more surface area for
intermolecular interactions [21].

All considered, this work tests the tensile strength of PLA/SBHF composites, differing
from the most usual approaches in that: (i) they contain no compatibilizer or dispersant;
(ii) etherifications, esterifications, and silane coupling reactions are avoided. To grant
good dispersion of the fibers in the matrix, blending implied moderately intensifying the
extrusion process before injection molding. First, key differences between hemp strands
and short fibers obtained thereof are exposed in terms of their dimensions and their
basic chemical composition. Then, the results are analyzed to elucidate the quality of the
interaction and the micromechanical parameters. Once the interfacial shear strength is
computed, fiber-matrix intermolecular interactions are discussed. Finally, these fully green
biocomposites are found to match PP/GF composites in terms of their tensile strength.

2. Materials and Methods
2.1. Materials

The commercial PLA referred to in this article is Ingeo ™ Biopolymer 3251D by Nature-
Works (Plymouth, MN, USA). Its density is 1.24 g cm−3, its melting point is approximately
160–170 ◦C, and its melt flow rate (190 ◦C, 2.16 kg) is 35 g/10 min.

Hemp strands were kindly provided by Agrofibra S.L. (Puigreig, Catalonia, Spain). A
soda-bleached pulp from hemp (elemental chlorine and total chlorine free), ISO brightness
89.5%, was provided by Celesa (Tortosa, Catalonia, Spain). Before blending, dry pulp
boards were fractionated by passing through a paper shredder.

All the reagents employed to characterize SBHFs and untreated hemp strands (UHSs)
were purchased from Scharlab S.L. (Sentmenat, Catalonia, Spain) and used as-is. Poly(vinyl
sulfate) and methylglycol chitosan (MGCh) were acquired from Wako Chemicals, GmbH
(Neuss, North Rhine-Westphalia, Germany).
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2.2. Characterization of Constituents

We carried out a basic chemical characterization of SBHFs and UHSs by following
common TAPPI standards [22], namely: T 264 cm-07 for sample preparation, T 204 cm-17 for
extractives, T 211 sp-11 for the ash content, T 249 cm-21 for hemicellulose, T 429 cm-10 for
cellulose, and T 222 om-15 and UM 250 for lignin. The average dimensions of fibers, along
with the percentage of fines, were computed using a MorFi Compact analyzer from Techpap
(Gières, Isère, France) and its software MorFi v9.2. The crystallinity index was estimated
from X-ray diffraction patterns and by the Segal method, as described elsewhere [23].

The surface polarity of SBHFs and PLA was assessed by a colloidal back titration. For
that, both pulp fibers and previously frozen PLA pellets were screened in the same way
(200 mesh). In short, excess MGCh was added to an aqueous suspension of fibers or PLA,
the mixture was briefly stirred (45 s), and then it was centrifuged at 2000× g for 15 min.
The supernatant was titrated with potassium poly(vinyl sulfate) as a titrating agent and
toluidine blue O as an indicator.

2.3. Processing

Biocomposites were produced by combining the PLA matrix with 10–30 wt.% of
reinforcement fibers (SBHFs). They were passed through a Gelimat ™ kinetic mixer, model
G5S, from Dusatec (Ramsey, NJ, USA). The rotor speed was 2500 rpm, the processing time
was 3 min, and the discharge temperature was 200 ◦C. To obtain as much fiber dispersion
as possible, these blends were extruded twice in a single-screw machine from Eurotecno
(Sabadell, Catalonia, Spain), model 3035 D. Screw speed was 40 rpm and the temperature
profile ranged from 180 ◦C to 205 ◦C. Then, we granulated the extrudate by grinding it in a
hammer mill and stored it at 80 ◦C for 24 h.

The procedure is schematized in Figure 1, which also refers to the biobased sourcing
of both fibers and matrix.
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Figure 1. Depiction of the experimental procedure, schematizing preparation, testing and microme-
chanical analysis.

2.4. Injection and Characterization of Composites

Specimens for tensile tests were produced using an injection molding machine from
Arburg (Lossburg, Baden-Wurtemberg, Germany), model 220 M 350-90U. The processing
temperature increased from 170 ◦C (hopper side) to 210 ◦C (nozzle). The injection pressure
was set at 50 MPa for PLA-only samples, 60 MPa for a fiber load of 10 wt.%, 70 MPa for
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20 wt.%, and 80 MPa for 30 wt.% SBHFs. Specimens (dog-bone type I, narrow section
57 mm × 13 mm), were conditioned under standard conditions of temperature (23 ◦C) and
relative humidity (50%), according to ASTM D618 [24].

Up to ten dog-bone samples were submitted to tensile tests through a Universal Testing
Machine from Instron (Barcelona, Catalonia, Spain), model 1122, including a 5 kN load
cell and an extensometer. The test speed was 2 mm/min, following the ASTM standard
D3039 [25].

Since mechanical and heat stresses are known to impart changes in fiber morphology,
fibers were extracted from each composite sample. Briefly, dichloromethane was used for
the selective dissolution of the matrix, and the residual PLA in the remaining solid was
removed using Soxhlet extraction with decalin [26]. The dimensions of recovered fibers
were computed employing the MorFi Compact analyzer as described above.

Following tensile tests, micrographs were obtained from the fracture section of spec-
imens by means of a ZEISS DSM 960A (ZEISS Iberia, Madrid, Spain) scanning electron
microscope (SEM), coupled to a secondary electron detector. For that, samples were sub-
jected to carbon coating and the voltage was set at 5 kV.

2.5. Calculation Methodology

According to the modified rule of mixtures [27,28], the tensile strength of a fiber-
reinforced composite material (σt

c) as a function of the volume fraction of fibers (VF) is
given by:

σt
c = fc × σt

F × VF + (1 − VF) × σt
m* (1)

where σt
m* is the tensile strength of the matrix at composite fracture, σt

F is the intrinsic
tensile strength of fibers, and fc is a coupling factor. The product of the latter two parameters
corresponds to the slope of σt

c against VF. At the same time, the coupling factor can be
expressed as the product of two contributions:

fc = χ1 × χ2 (2)

In Equation (2), χ1 accounts for the orientation of the fibers within the matrix, which
depends mainly on processing. Regarding χ2, it is a function of the dimensions of the
fibers and their compatibility with the matrix. Nonetheless, not all the fibers present in the
composite have the same capacity for stress transfer. For the case of thermoplastic matrices
reinforced with imperfectly aligned discontinuous fibers, we will consider the model of
Kelly and Tyson with modifications proposed by Bowyer and Bader [29,30]:

σc
t = χ1

[
∑i

τ lFi VF
i

dF + ∑j

(
σF

t VF
j

(
1− σ

F
t dF

4 τ lFj

))]
+
(

1−VF
)
× σm∗

t (3)

where τ is the interfacial shear strength, lF is the length of the recovered fibers, and dF

is their mean diameter. It may be noted, from Equations (1) and (2), that the brackets
in the first term of Equation (3) correspond to σtF × VF × χ2. The subscript i refers to
subcritical fibers, i.e., those whose length is lower than the critical length [27], meaning that
they cannot withstand the maximum stress transferred from the matrix. The subscript j
corresponds to supercritical fibers, which are capable of maximum stress transfer (at least
in the middle of the fiber). Therefore, Equation (2) can also be expressed as:

Σt
c = χ1 (X + Y) + Z (4)

These separate contributions can be used to calculate both τ and χ1 through an iterative
procedure [30]. Two points are selected from stress–strain curves, namely, (εt,1

c,σt,1
c)
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and (εt,2
c,σt,2

c), where εt,1
c = εt

c/3 and εt,1
c = 2 × εt

c/3 Then, the value of τ that fulfills
Equation (4) is used in Equation (2) to obtain χ1.

X1 + Y1

X2 + Y2
=
σc

t,1 − Z1

σc
t,2 − Z2

(5)

As in previous works [26], the product χ1 × X will be referred to as X’ and the product
χ1 × Y will be referred to as Y’. This way, Z is the contribution of the matrix to the strength
of the composite, X’ is the contribution of subcritical fibers, and Y’ is the contribution of
supercritical fibers.

3. Results
3.1. Effects on Chemical Composition and Polarity

Aiming to grasp an understanding of interfacial interactions, Table 1 displays the basic
composition, structural properties, and dimensions of SBHFs, in comparison to those of
hemp strands. In any case, SBHFs were found to contain mostly cellulose with a high
degree of crystallinity (87%), while the original hemp strands were rich in inherently
amorphous macromolecules.

Table 1. Basic chemical composition and key properties of SBHFs, in comparison to the
untreated strands.

SBHF UHS

Ash (wt.%) 0.31 ± 0.04 2.68 ± 0.67
Extractives (wt.%) 0.38 ± 0.05 3.2 ± 0.2
Total lignin (wt.%) 0.43 ± 0.8 5.12 ± 0.25
Cellulose (wt.%) 91.3 ± 0.6 73.2 ± 1.9

Hemicellulose (wt.%) 7.9 ± 0.5 11.3 ± 1.2

Average dimensions Short fibers,
730 µm × 21 µm

Long bundles,
~200 µm–wide

Content of fines (% in length) 47 –
Crystallinity index (%) 87.0 78.5

Surface polarity (µeq MGCh/g) 12.8 28.7

In another context, pulped and bleached fibers displayed less MGCh adsorption
capacity and subsequently less polarity. This is due to changes not only in surface morphol-
ogy but also in the chemical composition. The hemicellulose fraction, which is larger in
UHSs, contains a small but significant proportion of negatively charged glucuronic acid
groups [31]. Furthermore, lignin, even without alkaline treatments, has a high density of
electron-rich sites that were capable of interacting with the electron-acceptor groups of
MGCh. In any case, the surface polarity of PLA was measured as 2.8 µeq MGCh/g, which
is closer to the value of SBHFs than to the value of UHSs. In other words, pulping and
bleaching helps decrease the high difference in polarity between the fibers and the matrix.

3.2. Features of Biocomposites

The tensile performance of PLA/SBHF composites is displayed in Figure 2 (stress-
strain curves) and Table 2 (strength data). Stress–strain curves identify σt

c, σt
m*, and

εt
c*. The σt,1

c and σt,2
c values that were chosen for Equation (5) are exemplified for

the case of SBHF 30 wt.%. In comparison to the PLA matrix, the tensile strength of
composites increased by up to 52% when the mass fraction of fibers was 30 wt.% (Table 2).
This corresponded to a volume fraction (VF) of 0.262. In contrast, SBHF additions as
high as 40 wt.% or higher severely hindered the melt flow and impaired the production
of specimens.
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Figure 2. Mean stress–strain curves of PLA/SBHF composites, indicating the strength of the matrix
at composite fracture in each case. Percentages are based on weight.

It is consuetudinary to regard a linear trend of σt
c with VF, as can be appreciated from

Table 2 (Pearson’s r ~0.99), as an indicator of proper interfacial interactions between the
matrix and the filler [26].

Moreover, as commonly found for fiber-reinforced thermoplastics [32], whereas the
maximum stress that the composite can withstand increased, the strain it underwent before
failure decreased. In other words, the biocomposite was, at the same time, stronger and
less plastically deformable than PLA. As a result, and as shown in Table 2, PLA/SBHF
(30 wt.%) composites are much more brittle than polypropylene (PP) reinforced with GF
and a coupling agent, maleic anhydride grafted polypropylene (MAPP). The Discussion
section deals with this comparison in more detail.

Table 2. Tensile strength and relative enhancements over the PLA matrix that were attained by
PLA/SBHF, in comparison to PLA/untreated hemp, PLA/GF, and PP/GF. The elongation and the
volume fraction are also reported.

Material Reinforcement VF σt
c (MPa) ∆σt

c (%) εt
c (%) Reference

PLA 0 wt.% 0 51.2 ± 0.1 – 3.2 ± 0.1 This work

PLA/SBHF

10 wt.% 0.085 59.9 ± 0.2 17.0 2.9 ± 0.1

This work20 wt.% 0.171 70.7 ± 0.4 38.1 2.7 ± 0.2

30 wt.% 0.262 77.8 ± 0.8 52.0 2.6 ± 0.2

PLA/hemp strands 30 wt.% 0.264 55.7 ± 0.2 8.8 2.0 This work

PLA/GF 1 30 wt.% 0.175 114 83.9 N/A [13]

PP/sized GF 30 wt.% 0.136 58.5 120 3.0 [33]

PP/MAPP/GF 30 wt.% 0.136 79.9 189 4.4 [33]
1 GF treatment unspecified in the source. Enhancement (∆σt

c) refers to their non-reinforced PLA (62 MPa).

The histogram for the asymmetrical length distribution of recovered fibers is provided
in Figure 3. While dF did not decrease significantly, lF consistently decreased with the
proportion of SBHFs in the composite, and its distribution became skewed towards the
short end (left in Figure 3), due to fibers being submitted to higher shear stress. Fiber
fracture takes place during the whole process, including mixing at high temperatures,
extruding twice, and injection molding [34]. Overall, the average length (weighted in
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length) was reduced by factors of 2.07, 2.30, and 2.47 when the fiber load was 10 wt.%,
20 wt.%, and 30 wt.%, respectively (Table 3).
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Table 3. Assessment of tensile strength at the level of constituent materials: inputs and results from
the Bowyer and Bader solution (Equation (3)) and the modified rule of mixtures (Equation (1)).

SBHF Proportion 10 wt.% 20 wt.% 30 wt.%

VF 0.085 0.171 0.262
σt

m* (MPa) 49.2 48.1 46.7
dF (µm) 20.5 20.5 20.4
lF (µm) 353 318 295

χ1 0.306 0.300 0.297
τ (MPa) 28.6 28.1 28.0

Mean σt
F (MPa) 850 ± 49

χ2 0.67 0.71 0.65
Mean σt

F (MPa) 850 ± 49
Mean fc 0.20 ± 0.1

As can be observed from Figure 4a, different PLA/SBHF specimens displayed a macro-
scopically homogeneous and identical color at the fracture section. Color did not differ
significantly from that of unreinforced PLA. The micrographs in Figure 4b,c correspond
to a 20 wt.% fiber load. We can appreciate voids across the structure of the matrix and
truncated fibers, resulting from the transfer of tensile stress from the former to the latter. In
particular, Figure 4c highlights the fiber–matrix interphase, suggesting not only mechanical
anchoring but also a well-bonded system.

3.3. Micromechanics of the Tensile Strength

Average fiber dimensions are presented in Table 3, along with key micromechanical
parameters and the inputs to calculate them. Fiber orientation (χ1~0.3) resembles the values
obtained from our previous experiments with the same machinery [26]. Indeed, during
injection, only in the skin layer are fibers consistently oriented in the flux direction.
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Regarding the mean intrinsic tensile strength of fibers (σt
F), the value displayed in

Table 3 was computed through the Kelly and Tyson model, but it can be validated by
other methods. As natural fibers tend to break by brittle fracture, undergoing little plastic
deformation, σt

F can be estimated as the product of the strain at failure of the composite
and the tensile modulus of fibers. Bowyer and Bader used a similar approach to evaluate
the contribution of the fibers at different strains [30]. Undoubtedly, this returns a value
higher than the real intrinsic tensile strength of the fiber, because such fibers will break at
lower strains than the composite. Nonetheless, the resulting value, 894.9 MPa, can be used
to establish an upper bound as a criterion of validity. Additionally, Migneault et al. [35]
have estimated the maximum value of σt

F as 2 × τ × lF⁄dF. The formula, used with our
experimental data, returned a value of 887 MPa, within the tolerance interval of Kelly and
Tyson’s estimation. All considered the value reported in Table 3 is lower than those from
the other methods, ensuring a more cautious evaluation of the transfer of stress from the
matrix to the fibers.

The values obtained for the interfacial shear strength, 28.0–28.6 MPa, lie closer to those
predicted by von Mises’ criterion (τ~σt

m/
√

3) than by Tresca’s criterion (τ~σt
m/2) [36].

4. Discussion
4.1. Insights from Micromechanics: Contribution of Fibers

According to Equation (3), if all fibers were perfectly aligned (χ1 = 1), the average
tensile strength of the composite would be 259 MPa. While composites with highly aligned
fibers can be produced by other methods [37], the injection molding process only attains
flow-oriented fibers at the outer layers. At the core, fibers tend to become transversely
oriented, as schematized in Figure 5 [38]. Hence, the orientation factor calculated (χ1~0.3)
corresponds to an average value from different parts of the specimen.

The intrinsic tensile strength of SBHFs (roughly 850 MPa), even though falling short of
that of GF, is significantly higher than that of lignocellulosic fibers [33]. This highlights the
relevance of chemical (or semichemical) pulping and subsequent bleaching. On one hand,
the removal of amorphous components leaves a highly crystalline network of cellulose-
cellulose interactions, attaining higher σt

F. On the other, the surface of fibers is no longer
prevented by attached lignin from H-bonding with PLA and among themselves. The latter
is generally not desirable since it is detrimental to dispersion in the matrix. Indeed, it has
been shown that coating natural fibers with a lignin layer enhances the dispersion of fibers
in the matrix, regulating the polarity of the surface of fibers and leading to high gains
in tensile strength [39]. However, that process implied additional stages and imparted,
seemingly, certain loss in stiffness.
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In any case, for PLA/SBHF, the resulting fc is approximately 0.2 in all cases, which is
indicative of proper fiber–matrix bonding in discontinuously reinforced composites [40]. It
may be suggested that extensive mechanical processing, despite exposing fibers to high
shear stresses, attained proper anchoring of them to PLA, overcoming to a certain extent
the inherent dispersion issues of cellulose in thermoplastics.

The different contributions of subcritical and supercritical fibers, along with the contri-
bution of the matrix, are displayed in Figure 6. As expected, upon loading the composite
with more SBHFs, their contribution to the tensile strength of the composite increased. In
all cases, the ratio of the importance of subcritical fibers to the total contribution of fibers
was roughly 1:4.
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4.2. Postulating Fiber–Matrix Interactions

PLA as the continuous phase, owing to their electronegative oxygen atoms, is more
likely to establish strong interactions with cellulosic fibers (in terms of bond dissociation
energy) than, e.g., PP. Once fibers are mechanically anchored in the matrix, the quality of
the interphase depends, at the level of macromolecules, on a complex sum of intermolecular
interactions at different planes. The most energetic ones are hydrogen bonds (HBs), in
which the equatorial –OH groups of cellulose on the surface of reinforcement fibers work as
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donors (in the absence of water), whereas the electronegative oxygen atoms in PLA’s > C=O
bonds act as acceptors. The latter groups are presented in-plane in Figure 7. It should be
remarked that only a relatively small part of the cellulose chains, i.e., those at the surface of
the fibers, can participate in HBs with the matrix.
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In light of the high degree of crystallinity of SBHFs, cellulose chains in each of the
dispersed fibers are mostly self-bonded. Figure 7 shows a segment of the parallel chains
of cellulose I, spaced roughly 0.25 nm. It can be noted that, in general, natural fibers used
as reinforcement for thermoplastics are mainly constituted by cellulose I, while cellulose
II is known to enhance the mechanical properties of elastomers [41]. This network of
cellulose–cellulose HBs is a known drawback of combining cellulose with PLA, since the
former’s hydrophilic chains tend to associate with each other and with bound water, rather
than with the thermoplastic matrix [6]. However, the strength of O–H . . . O=C–O HBs,
as in the case of polysaccharide–polyester interactions, should not be overlooked. Ester
groups only act as acceptors, but with bond energies above 10 kcal/mol [42].

In another context, even though HBs account for the most intense attractive interac-
tions, the additive contribution of dipole–dipole and dispersive forces should be taken into
account as well [43]. The polar character of all C–O and C=O bonds in PLA implies per-
manent dipoles. Furthermore, since every hydroxyl group of cellulose holds an equatorial
position, the axial plane of each anhydroglucose unit is available for significant dispersive
interactions (0.1–1 kcal/mol) with PLA’s methyl groups (out-of-plane in Figure 7).

Lengths of polymer segments in Figure 7 assume a rod-like conformation and C–C/
C–O–C bond angles of approximately 109◦. This way, there are approximately 5.5 HB donor
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groups per nm of cellulose and 2.2 HB acceptor groups per nm of PLA. However, only
those at the surface of SBHFs are expected to H-bond with PLA, and this is why bleached
short fibers are advantageous since they offer more surface area. All considered, Figure 3
depicts 1.1 intermolecular HBs per nm of interphase. Unlike cellulose, PLA is incapable of
H-bonding with itself, except for the carboxyl group at the end of each chain.

4.3. Comparing PLA/SBHF to PLA/UHS, PLA/GF, and PP/GF

As schematized in the left part of Figure 7, the primary cell wall of UHSs, as in most
plant fibers, is where most of the lignin is located. In the first layer of the secondary wall
(S1), fibrils encompassing both cellulose and hemicellulose can be nearly perpendicular to
the axis of the fiber. At least in the case of hemp, the S2 layer accounts for the largest part
of the cross-sectional area, it is richer in cellulose (~80%), and fibrils are almost perfectly
coaxial to the fiber [44]. Alkaline pulping especially attacks the primary wall, removing
a large proportion of lignin and impacting the surface of the fibers. Bleaching is more
selective towards lignin, whose complete elimination enhances both cellulose–PLA and
cellulose–cellulose interactions. Moreover, the higher amorphous fraction in UHSs is tightly
related to their lower intrinsic tensile strength in comparison to delignified pulps.

As of today, GF reinforcements are generally preferred over natural fibers, due to
their better mechanical performance for most applications, including the higher intrinsic
tensile strength of GF [10]. Due to its hydrophilic nature, it is usually sized (e.g., with silane
coupling agents) or used along compatibilizers when combined with thermoplastic matrices.
Reports on PLA/GF composites are very scarce, but those from RTP Company [13] attained
tensile strength enhancements as high as 84%, from 62 to 114 MPa (Table 2). Nonetheless,
as far as we are concerned, the manufacturer provided no clarifications regarding the
manufacturing process. Likewise, although measurements from standard assays are meant
to be intercomparable, sources of systematic error when considering samples from different
laboratories should be taken into account.

PP is one of the most common thermoplastic materials for composites, GF being most
often the dispersed phase [11,45]. As reported in a previous work of ours [33], PP/30 wt.%
sized GF composites attain tensile strength values of 58.5 MPa, signifying an increase
of 120% over the matrix (Table 2). With MAPP as a compatibilizer, σt

c was as high as
79.9 MPa. Therefore, PLA/SBHF composites with the same fiber load (30 wt.%) significantly
outperformed PP/sized GF in terms of tensile strength and approached the strength of
PP/MAPP/GF. This is mainly due to the contribution of the matrix since the tensile strength
of PLA (51.2 MPa) is higher than that of PP (27.6 MPa).

However, PLA is more brittle than PP, withstanding little plastic deformation. Hence,
their range of applications is as broad as those of PP/GF materials (e.g., automotive,
home appliances, construction) [46], excluding those for which the capability to withstand
significant plastic deformation is required.

Another advantage of PP/GF composites is the possibility to further increase the fiber
load, as PP/MAPP/40 wt.% GF materials may reach tensile strength values as high as
101 MPa [13]. In any case, the ability of PLA/30 wt.% SBHF to withstand tensile stress
approaching or even surpassing that of PP/30 wt.% GF is noteworthy, and it does so
with lower environmental impact [47]. Moreover, it should be stressed that SBHF with
σt

F~850 MPa yielded enhancements of 52% on the tensile strength of the composite, while
GF with σt

F~2500 MPa [33] yielded ∆σt
c = 84% on PLA [13]. Thence we can conclude that

the reinforcement efficiency [48] of SBHF is higher than that of GF.

5. Conclusions

As the primary objective, this work explored composites with PLA and SBHFs as a
greener alternative to conventional PP/GF materials. Overall, the biocomposite with a
30 wt.% SBHF reinforcement was shown to match or even surpass conventional PP/GF
materials with the same fiber load, at least in terms of their tensile strength. Indeed,
its average value increased from 51.2 to 77.8 MPa, although the natural fiber-reinforced



Polymers 2023, 15, 146 12 of 14

composite withstood even less plastic deformation than unreinforced PLA. In comparison,
the result for UHS-reinforced PLA was 55.7 MPa. Furthermore, tensile strength followed
a linear trend with the volume fraction of natural fibers (r = 0.99), which indicates good
interaction at the fiber–matrix interphase. The intensive mechanical blending process
shortened fibers by factors of 2–2.5. At the surface of these fibers, which had less polarity
and offered more bonding area than UHSs, the hydroxyl groups of cellulose may establish
over 1.1 HBs with an adjacent PLA chain per nm of interphase.

A micromechanical analysis proved the importance of pulping and bleaching to obtain
coupling factors around 0.2. The interfacial shear strength was over 28 MPa. Thence it can
be concluded that the quality of the interphase was satisfactory. The removal of lignin is
important not only to attain proper bonding between a discontinuously dispersed phase
and a thermoplastic matrix, but also to grant intrinsic tensile strengths above 800 MPa.
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