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Abstract: Currently, polyethylene terephthalate (PET) is one of the most widely used polymeric
materials in different sectors such as medicine, engineering, and food, among others, due to its bene-
fits, including biocompatibility, mechanical resistance, and tolerance to chemicals and/or abrasion.
However, despite all these excellent characteristics, it is not capable of preventing the proliferation of
microorganisms on its surface. Therefore, providing this property to PET remains a difficult challenge.
Fortunately, different strategies can be applied to remove microorganisms from the PET surface.
In this work, the surface of the PET film was functionalized with amino groups and later with a
dicarboxylic acid, allowing a grafting reaction with chitosan chains. Finally, the chitosan coating was
loaded with silver nanoparticles with an average size of 130 ± 37 nm, presenting these materials
with an average cell viability of 80%. The characterization of these new PET-based materials showed
considerable changes in surface morphology as well as increased surface hydrophilicity without
significantly affecting their mechanical properties. In general, the implemented method can open an
alternative pathway to design new PET-based materials due to its good cell viability with possible
bacteriostatic activity due to the biocidal properties of silver nanoparticles and chitosan.

Keywords: chitosan; silver; nanoparticles; polyethylene terephthalate; graft; coating

1. Introduction

The presence and proliferation of microorganisms as biofilm [1] on polymeric materials
for medical use and food containers can cause adverse effects on healthcare as well as for
the stored food [2,3]. Therefore, polymeric materials capable of inhibiting the proliferation
of microorganisms have gained great relevance. Therefore, it is necessary to develop more
durable and efficient materials capable of inhibiting the proliferation not only of bacteria
but also of fungi and even viruses [4] that can cause infections in open wounds, as well
as avoiding the modification of the organoleptic properties of food and the production of
secondary compounds that can be harmful to health [2,5,6].

One of the most widely used materials in food and medical device packaging is
polyethylene terephthalate (PET) due to its excellent mechanical properties and chemical
stability under several conditions [7], availability, and low production cost. Therefore,
PET is an ideal candidate for its use as antibacterial surfaces [8]. Approaches to providing
antimicrobial activity can be classified into two types: the first can be achieved by incor-
porating antimicrobial agents into the polymeric matrix, and the second by modifying
the surface and coating it with antimicrobial agents [9,10]. The latter approach is one
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of the most widely used since it significantly maintains the polymeric matrix’s original
properties. This approach can be carried out through different methodologies, such as
using covalently bonded coatings, which make them more stable in different physical–
chemical environments. Antimicrobial coatings can be polymers from a natural or synthetic
origin, providing new properties to the original material such as stimulus-response [11],
bacteriostatic effects [12], biocompatibility [13], or allowing the loading and stabilization
of nanomaterials [14]. In this context, chitosan, which is a polymer of natural origin, has
shown antimicrobial activity against different pathogenic microorganisms with a high
mortality rate and low toxicity to humans in various studies, making this polymer suitable
for different applications in food [15], drug-delivery [16,17], biomedical devices [18,19],
and other chemistry fields [20]. Chitosan is also used to stabilize and load nanoparti-
cles synthesized using different methods [21,22] and to add new functional properties
to coated nanoparticles by using chitosan as a carrier, such as in magnetic drug delivery
systems [23,24]. Moreover, some nanoparticles are capable of providing antimicrobial
activity through the release of metallic ions that affect the integrity of microorganisms,
causing their death, as is the case with silver nanoparticles [25].

Chitosan has been widely modified to meet various biological and medical needs
due to its active functional groups. Chemical modification is the commonly used method
because its amino groups can participate in chemical reactions such as alkylation, quater-
nization, and condensation reactions with aldehydes and ketones. The hydroxyl group also
gives rise to hydrogen bonding and some reactions, such as o-acetylation, cross-linking,
and grafting [26,27]. Currently, the condensation reaction between the amino group and
the carboxyl group is mainly used to modify the chemical properties of chitosan, improving
its effect on metal nanoparticles, and reducing its possible toxic effects [28–30].

Chitosan is used as a coating on different materials, such as polyethylene terephthalate
(PET), which is a slightly polar material and lacks active functional groups, making the
adhesion, coating, or covalent grafting of chitosan difficult. In this research work, the
surface of PET films was modified to perform the covalent grafting of chitosan, providing a
suitable surface for loading silver nanoparticles. Additionally, the grafted chitosan chains
possibly provide a bacteriostatic effect and a sustainable release of silver ions capable of
inhibiting the proliferation of microorganisms and increasing the cytocompatibility of the
final material.

2. Materials and Methods
2.1. Materials

Silver nitrate (99.9%), chitosan (75–85% deacetylated; 50–190 kDa), itaconic acid (99%),
acetic acid, sodium carbonate, hydrochloric acid, ethylenediamine, and polyethylene
terephthalate (PET) films (200 µm thickness; average molecular weight 18 kDa; 34.3%
crystallinity) were purchased from Aldrich Chemical Co. (St. Louis, MO, USA). Ethanol
and distilled water were acquired from Baker (Mexico City, Mexico).

2.2. Methods
2.2.1. Aminolysis Reaction (PETN)

Three previously weighed PET films were placed in 10 mL of ethylenediamine at a
temperature of 40 ◦C and reacted for different reaction times (0.5–4 h). Subsequently, the
films were sonicated for 1 h and thoroughly washed with distilled water, removing the
abraded surface of the film and residues from the reaction medium. Experiments were
carried out in triplicate. The loss percentage was calculated according to the following
equation (Equation (1)):

Weight loss (%) = 100[(WPET − WPETN)/WPET] (1)

where WPET is the weight of the unmodified PET film and WPETN is the weight of the film
once it has undergone the aminolysis reaction.
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The quantification of the amino groups present on the surface of the film was carried
out by acid-base titration. Three aminolysis reaction (PETN) films were placed in 10 mL of a
hydrochloric acid solution [0.02 M], keeping them constantly stirred for 24 h. Subsequently,
the excess of hydrochloric acid was titrated with a sodium carbonate solution [0.001 M]. The
number of amino groups was calculated according to the following equation (Equation (2)):

Ethylenediamine modification (%) = 100[6.1(VHClCHCl − 2VTCNaC)/WPETN] (2)

where VHCl and CHCl are the volume and concentration of the hydrochloric acid solution,
VT is the volume of the titration and CNaC is the concentration of the sodium carbonate
solution and WPETN is weight of the PETN film.

2.2.2. Michael Addition Reaction (PETI)

Three previously weighed PETN films were made to react at reflux for 48 h in 10 mL
of ethanol and an excess of itaconic acid (200 mg). Subsequently, the obtained films were
exhaustively washed with distilled water. The incorporated itaconic acid was calculated
according to the next equation (Equation (3))

Itaconic acid modification (%) = 100[(WPETN − WPETI)/WPETN] (3)

where WPETN is the weight of the PETN film and WPETI is the weight of the film after the
Michael addition reaction.

2.2.3. Chitosan Grafting (PETC)

Three previously weighed Michael addition reaction (PETI) films were placed in 10 mL
of an aqueous solution of chitosan 1% (w/v) and 0.5% (v/v) acetic acid for 48 h at 25 ◦C.
After this time, the films were removed from the solution and placed under vacuum at a
temperature of 90 ◦C for 6 h. Finally, the obtained films (PETC) were exhaustively washed
with distilled water and dried.

The percentage of chitosan graft on the surface of the film was calculated according to
the following equation (Equation (4)):

Chitosan graft (%) = 100[(WPETI − WPETC)/WPETI] (4)

where WPETI and WPETC are the weight of the PETI and PETC films.

2.2.4. Load of Silver Nanoparticles on PETC Film (PETCAg)

Three previously weighed PETC films were placed in 10 mL of an aqueous solution
of silver nitrate with different concentrations (500, 1000, 3000, and 5000 ppm) for 72 h
at 25 ◦C in the presence of sunlight. After the reaction time, the films were removed
from the solution and thoroughly washed with distilled water and dried. The number of
nanoparticles loaded on the PETCAg film was determined by film calcination using the
weight difference of the residues yield at 800 ◦C (Equation (5)).

Silver load (%) = CPETAg − CPETC (5)

where CPETCAg and CPETC are the residue percentage of the PETCAg and PETC films
provided by the TGA instrument.

2.2.5. Cell Viability Study

Cell viability tests were performed using a BALB/3T3 fibroblast line (mouse). These
experiments were performed to assess the toxicity of the films in an in vitro model for
potential biomedical applications. For the experiments, 25 mg of each type of film were cut
and placed in 96-well plates containing 3000 cells (fibroblasts), with Dulbecco’s modified
Eagle’s medium (DMEM), penicillin–streptomycin, gentamicin, and Fetal Bovine Serum
(FBS); the films were in contact with the cell medium for 24 h in an incubator at 37 ◦C (5%
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CO2). Subsequently, the films were removed from the cell medium, and MTT kit reagent
(Roche, Switzerland) was added and incubated again for 4 h; later, they were solubilized
and incubated for 12 h. The 96-well plates were plated in a Multiskan FC spectrophotome-
ter, Thermo Fisher Scientific (Waltham, MA, USA); the absorbances from each film were
read at a wavelength of 620 nm. Finally, cell activity (viability) was determined, making
a comparison with control cells, using the following equation (Equation (6)), and the re-
sults obtained were statically analyzed by analysis of variance (ANOVA) using Fisher’s
comparison (Figures S1–S7, Tables S1–S4):

Cytocompatibility (%) = 100(AbsSample/AbsControl) (6)

2.3. Instrumental

Kruss DSA 100 drop shape analyzer (Matthews, NC, USA) was used to measure the
contact angle on the surface of films at time 1 min.

Fourier Transform Infrared Attenuated Total Reflection (FTIR ATR) of dry samples
was analyzed using a Perkin–Elmer Spectrum 100 spectrometer (Norwalk, CT, USA) of
16 scans.

Scanning electron microscope (SEM) images were acquired by the Zeiss Evo LS15
instrument (Jena, Germany), and small pieces of 0.5 cm in length were cut and coated with
gold and analyzed under a high vacuum.

Thermogravimetric analysis (TGA) data of the weight loss and decomposition of films
were heated at a rate of 10 ◦C min−1 and run from 20 to 800 ◦C under nitrogen flow at
100 cm3/min in a TGA instrument Q50 TA Instruments (New Castle, DE, USA).

Differential scanning calorimetry (DSC) runs were recorded under a nitrogen flow at
100 cm3/min using a DSC 2010 calorimeter (TA Instruments, New Castle, DE, USA) from
25 to 250 ◦C at a heating rate of 10 ◦C min−1.

Mechanical properties of the films were studied by applying a uniaxial tension test, as
described in ASTM D1708. All tests were carried out on an INSTRON 1125 (Instron Inc.,
Norwood, MA, USA) universal tensile testing machine at a crosshead speed of 10 mm/min,
and all experiments were carried out in triplicate.

3. Results and Discussions
3.1. Chitosan Grafting on PET Film

PET films were functionalized by aminolysis using ethylenediamine as a reagent
and solvent. This reaction was studied at different times at a temperature of 40 ◦C. The
results showed a weight loss of the PET film in the functionalization process with amino
groups (Figure 1a). The weight loss increased with the reaction time. In the IR-ATR spectra
(Figure 1b), the intensity bands of amines barely changed, where PETN-0.5 corresponds
to the sample with the shorter time of reaction (30 min), while PETN-4 corresponds to the
longer time of reaction (4 h). This result was confirmed in the acid-base titration (Table 1),
since the increment in the number of amino groups on the film surface was small. When
reaction times longer than 4 h were used, film disintegration occurred when the films
were washed.

According to the results obtained at different reaction times and infrared studies, the
modified films with a reaction time of 1 h were selected to continue with the next chemical
activation step of the PET film, which presented an average amount of primary amino
groups on the surface of 0.0078 mmol quantified by acid-base titration, with a percentage
of the modification of the film with ethylenediamine by a weight of 1.25 ± 0.5%. The
next activation step was carried out through the Michael addition reaction, between the
amino groups present on the surface film and itaconic acid; this reaction was carried out in
ethanol at reflux for 48 h. The resulting films were exhaustively washed with methanol and
water, providing a weight-average surface modification of the 0.8 ± 0.2%. Subsequently,
the obtained films were placed in 10 mL water at 5% acetic acid with 1% chitosan for 48 h to
25 ◦C. Finally, the films were removed from the chitosan solution and incubated at 90 ◦C for
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6 h under vacuum, showing grafting of 1.38 ± 0.2% according to the weight of the chitosan.
Once the films were obtained, they were placed in a solution of silver nitrate (3000 ppm)
in the presence of sunlight to promote the reduction in silver ions and nucleation of silver
to nanoparticles (Figure 2), resulting in an average load of 6.3 ± 1.3% by weight of silver
nanoparticles concerning the matrix.
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3.2. Contact Angle Study

Contact angle studies showed changes in the hydrophilicity of the films. The PET films
had a contact angle of 90◦ which decreased to 78◦ when modified with ethylenediamine;
moreover, upon reaction with itaconic acid, the angle slightly increased to 88◦. These results
are in accordance with the new hydrophilic groups present on the film surface. When
grafting the chitosan chains, the contact angle increased to 110◦. Finally, the loading of the
silver nanoparticles caused a slight increase in the hydrophilicity of the film (Figure 3).
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3.3. FTIR-ATR Analysis

TIR-ATR spectra (Figure 4a) were recorded to obtain information about the chemical
groups incorporated into the PET films. The bands that evidenced the incorporation of
the amino groups on the PET film surface were found at 3356 cm−1 (Figure 4a, PETN),
which were assigned to the stretching vibration of the –NH2 and –OH groups, as well as
the corresponding bands of the ester carbonyl groups at 1713 cm−1 and the amide carbonyl
at 1676 cm−1. The spectra of the PETI film (Figure 4b, PETI) did not show the presence
of double bonds, indicating the successful Michael addiction reaction and showing an
increase in the band at 1724 cm−1, as well as a greater amplitude of the band located at
3356 cm−1 corresponding to the carboxylic groups from the addition of itaconic acid and
the secondary amino groups formed after the reaction.
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Spectra of the PETC film indicated an adequate grafting of the chitosan polymer
chains on the functionalized PET film, showing a decrease in the bands corresponding to
the carbonyl groups coming from the matrix due to the coverage of grafted chitosan and
showing an increase in the bands corresponding to the –OH and –NH2 groups from the
chitosan chains grafted at 3368 and 3299 cm−1 and amide carbonyl at 1645 cm−1, as well as
the vibrations of the C–H bonds at 2850–2920 cm−1 and C–O–C at 1098–1121 cm−1. Finally,
the load of silver nanoparticles caused a broad band at 3300 cm−1, probably due to the
interactions of the –OH and –NH2 groups with the silver nanoparticles.
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This study indicated that silver nanoparticles were obtained through a reduction in
silver nitrate using chitosan. The FTIR of PETCAg shows the presence of new bands at
1715 and 1250 cm−1 due to the carboxylic and carbonyl groups confirming the oxidation
of the hydroxyl groups of chitosan by the silver reduction. Likewise, the infrared spec-
trum shows that the carboxylic and carbonyl groups’ bands increase as the silver nitrate
concentration increases (Figure 4b) [31,32].

3.4. Thermal Analysis

The thermogravimetric analysis (Figure 5a and Table 2) shows that the films have a de-
composition temperature range of 436 to 448 ◦C. However, after 460 ◦C, PETC and PETCAg
films show a second decomposition range, which is attributed to the decomposition of the
chitosan grafted onto the film. The amount of the residue yield obtained is shown in Table 2.
DSC studies show that the melting temperature of the PET film (246 ◦C) was not affected by
the grafting process. The PET film’s glass transition (Tg) shows an increase in the grafting
process. When itaconic acid was incorporated, the Tg of PETI increased from 78.6 to 95.6 ◦C;
the addition of chitosan raised the Tg to 100.9 ◦C. Loading of silver nanoparticles elevated
the Tg of the PETCAg to 110.7 ◦C, probably due to the strong interactions of the polymer
chains with the silver nanoparticles (Figure 5b) [33].
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Table 2. Decomposition temperatures of PET films obtained in the chitosan chain grafting process.

Sample Glass Transition
Temperature (◦C)

Decomposition
Temperature (◦C)

Residue Yield
(800 ◦C, w.%)

PET 78.6 437.11 24.33
PETN 75.3 436.46 2.03
PETI 95.7 436.42 15.41
PETC 100.9 447.1, 653.21 7.33

PETCAg 110.7 448.75, 657.85 13.13

Silver quantification in PETC films was carried out by residual weight at 800 ◦C. PETC
films not exposed to a silver nitrate solution presented carbonization with an average
residue of 7.33%. Therefore, the residual weight difference of the total mass of the films
incubated in the silver solutions (500, 1000, 3000, and 5000 ppm) can be attributed to the
silver nanoparticles loaded on films, resulting in a residual weight difference of 1.2 ± 0.4,
2.1 ± 0.6, 6.3 ± 1.3, and 7.1 ± 1.4%, respectively (Figure 6). As a result, a clear correlation
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was observed between the amount of silver nanoparticles and the concentration of silver
nitrate used in the reaction medium [34].
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3.5. Study of Mechanical Properties

The mechanical properties of the films were not significantly affected when grafting
the chitosan polymer chains (Table 3), indicating that these were only grafted on the surface
of the material, findings which were confirmed by the SEM studies, and the differences
are possibly attributed to the wear of the material in the surface modification process,
increasing the deformation for the PETN and PETI films, decreasing again, and becoming
very similar to the original matrix for the films of PETC, with this finding being attributed
to the grafting of the chitosan polymeric chains (Figure 7).

Table 3. Mechanical properties of PET films in the grafting process.

Sample Elastic Modulus (MPa) Stress Rupture (MPa)

PET 1144.762 ± 216.627 122.163 ± 20.3536
PETN 990.817 ± 104.047 136.780 ± 7.45101
PETI 1247.815 ± 188.311 140.172 ± 13.7654
PETC 1188.304 ± 122.115 103.506 ± 17.6539
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3.6. SEM Study

SEM studies of the modified films showed relevant changes with respect to the PET
films (Figure 8). The magnification showed that the film modification process caused the
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formation of elongated structures in the form of layers across the surface. The formation of
the layers and their thickness increased with the grafting process of the chitosan chains.
Finally, the SEM images also showed the presence of silver nanoparticles on the formed
chitosan layer with a mean size of 130 ± 37 nm.
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3.7. Cell Viability Study

Cell viability was evaluated against 3T3 fibroblasts (Figure 9). The cell viability of the
films decreased by 15–25% compared to the control, showing no differences among these
samples, as indicated by statistical analysis (Figures S1–S7, Tables S1–S4). The exception
was the PETCAg-1000 film, for which viability was 59 ± 9.2%. This finding indicates
that the films, except for the PETC-1000 film, have good compatibility regardless of the
modification and percentage of the silver loaded.
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Figure 9. Cell viability along the grafting process (PET, PETN, PETI, and PETC) and silver-
loaded PETC with different silver nanoparticles percentages (PETAg-500 (1.2 ± 0.4%), PETAg-1000
(2.1 ± 0.6%), PETAg-3000 (6.3 ± 1.3%), and PETAg-5000 (7.1 ± 1.4%)).
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4. Conclusions

The grafting of chitosan polymer chains was successfully carried out by employing
adequate surface functionalization of the PET films. The grafted chitosan allowed the
nucleation and loading of silver nanoparticles with different percentages (1.2–7.1% with
respect to the matrix) without using other reducing agents. Silver nanoparticles with an
average size of 130 ± 37 nm were obtained. The films with a silver-coated surface obtained
in this work are a good candidate for use as part of antimicrobial biomedical devices and
disposable medical devices

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/polym15010125/s1, Table S1: Analysis of Variance; Table S2: Model
Summary; Table S3: Means; Table S4: Grouping Information Using the Fisher LSD Method and 95%
Confidence; Figure S1: Fisher individual 95%; Figure S2: Interval plot of control PET; Figure S3:
Individual value plot of control PET; Figure S4: Boxplot of control PET; Figure S5: Normal Probability
Plot; Figure S6: Versus fits; Figure S7: Histogram of residual values.
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