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Abstract: We propose an environmentally friendly liquid exfoliation approach and subsequent freeze-
drying process for constructing a three-dimensional (3D) carbon-based network by using few-layer
graphene (FLG) and carbon nanotubes (CNTs) for electromagnetic interference (EMI) shielding appli-
cations. Systematic characterizations—such as X-ray diffraction, scanning electron microscopy, and
transmission electron microscopy—as well as Raman characterization and EMI shielding tests were
performed. The results indicated that the as-synthesized 3D-FLG/CNT composite obtained through the
freeze-drying process exhibited excellent electromagnetic interference shielding. The shielding effect
of FLG could be improved from 15 to 22 dB by introducing CNTs. The CNTs inhibited restacking of
FLG in the structure. We also compared two drying processes: oven drying and freeze-drying. The
freeze-drying technique markedly improved the shielding effect of FLG/CNTs from 22 to 36 dB. The
composition-optimized 3D-FLG/CNT composite could be a candidate material for use in EMI shielding.

Keywords: graphene; carbon nanotubes; electromagnetic interference shielding

1. Introduction

Electronic products have become increasingly widespread in daily life. Nevertheless,
electronic devices emit electromagnetic waves that are invisible and harmful to the human
body [1–8]. Being in an environment with many such devices for a long period may lead to
a concern for health. Thus, the development of electromagnetic-wave-shielding materials
to reduce or even eliminate electromagnetic waves is crucial [9–12]. In earlier days, the
widely suggested shielding material was metal [13], which has a strong electromagnetic-
wave-shielding effect (SE) due to its high electrical conductivity [14–17]. However, metal-
based materials may undergo corrosion and oxidation. Their higher density also limits
their application [18]. The most critical disadvantage is that the shielding offered by
metal originates from its reflection efficiency [19,20]. The creation of secondary reflected
electromagnetic waves does not solve the problem and can damage electronic devices and
shorten their lifetime. Carbon-based materials are promising alternatives to metal due
to their lightness, corrosion resistance, flexibility, and high conductivity [21–28]. Carbon-
based materials such as few-layer graphene (FLG) and carbon nanotubes (CNTs) have been
demonstrated to be potential electromagnetic-wave-shielding materials [29–50].

Liu et al. used chitosan to improve the microporous structure of the interface between
graphene sheets, thereby increasing the conductivity of the modified graphene/iron pen-
tacarbonyl porous membrane. The electromagnetic wave-SE was as high as 38 dB. The
SE was 6.3 times higher than that of reduced graphene oxide/epoxy (6 dB). The conduc-
tivity of the chitosan-modified material (40.2 S/m) was 1340 times higher than that of the
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unmodified material (0.03 S/m) [36]. Fu et al. reported a highly flexible single-walled
CNT (SWCNT)/graphene film. After folding 1000 times, the SWCNT/graphene film
maintained excellent mechanical and electrical stability. A structure for multiple reflec-
tions was constructed between layers of SWCNT/graphene films to produce an excellent
EMI SE of approximately 80 dB [37]. Bagotia et al. successfully synthesized a synergistic
graphene/CNT hybrid nanostructure by connecting multiwalled CNTs (MWCNTs) be-
tween graphene layers; with the construction of a polycarbonate/vinyl methyl acrylate
graphene MWCNT structure, this hybrid improved mechanical properties, electrical con-
ductivity, and EMI shielding performance. The highest conductivity of this structure was
1.91 × 10−1 S/cm. The corresponding electromagnetic SE was 34 dB [38]. Zhang et al.
developed foam comprising thermally reduced graphene oxide/CNTs (~0.65 g/cm3); this
foam had a microporous structure and exhibited excellent conductivity of 2.92 S/m and
high EMI SE of 30.4 dB [39]. Zhu et al. used graphene and oxide CNTs (OCNTs) as pre-
cursors to construct a 3D conductive framework through simple and convenient filtration
and calcination methods. For polydimethylsiloxane-coated r-OCNT/thermally-reduced
graphene composite filter cake with a thickness of approximately 1 mm, a strong EMI SE
of 67.3 dB was obtained in the frequency range of 8.2–12.4 GHz. After repeated bending
10,000 times, the SE of the composite material was still 62.7 dB [40].

In this paper, we propose a simple and facile jet cavitation process for synthesizing
FLG and FLG/carbon nanotube (FLG/CNT) suspensions. One-dimensional CNTs were
introduced into the skeleton of FLG to prevent restacking of FLG during drying processes.
We compared two drying methods: oven drying and freeze-drying. The results indicated
that freeze-dried samples had a highly porous structure and exhibited the highest EMI
shielding performance of 40 dB.

2. Materials and Methods
2.1. Materials and Chemicals

Graphite was purchased from Knano Graphene Technology (Xiamen, China). MWC-
NTs were purchased from Jiangsu Cnano Technology (Zhenjiang, China). Paraffin wax was
purchased from Sigma-Aldrich (Burlington, MA, USA).

2.2. Preparation of FLG/CNTs/Wax Composite

Scheme 1 displays the schema of the FLG, graphene nanotube (GNT) (FLG/CNT),
FFLG (freeze-dried FLG), and FGNT (freeze-dried FLG/CNT) composite materials. The
lower-left corner shows the FLG/CNT/wax composite. Graphite and carbon nanotubes
were added to deionized water to attain a solid content of 5 wt.%. The liquid exfoliation
process of graphite was implemented as follows. First, artificial graphite (purity > 99%,
Knano Graphene Technology, Xiamen, China) and MWCNTs (purity > 99%, Jiangsu Cnano
Technology, Zhenjiang, China) were used as feed materials for the delamination experiment.
All materials were used as supplied without further purification. Deionized water was used
for the preparation of all graphite suspensions and graphite/CNTs (5 wt.%). All delami-
nation experiments were conducted in a low-temperature ultra-high-pressure continuous
flow cell disrupter (JNBIO, JN 10C, Guangzhou, China). In this device, a graphite and
graphite/CNT suspension was prepared through high pressure forcing the sample through
a small orifice at high speed. Because of the shearing, hole, and impact, the graphite in the
sample was crushed; the substances in the sample were dispersed and emulsified. FLG
would be kept in suspension after liquid exfoliation at 14 ◦C–16 ◦C in a circulating water
bath. Deionized water was used as a solvent. Graphene production was performed in
two batch runs at 800 bar and two batch runs at 1200 bar. The as-synthesized FLG and
the FLG/CNT suspension were dried through oven drying or freeze-drying processes.
The condition for oven drying was 80 ◦C and the freeze-drying conditions were −55 ◦C
under a pressure of 20 Pa. The final samples were oven-dried (FLG, GNT10) or freeze-dried
(FFLG, FGNT10).
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Scheme 1. Schema of few-layer graphene (FLG), graphene nanotube (GNT), freeze-dried FLG (FFLG),
and freeze-dried GNT (FGNT) composite materials. Lower left corner shows the FLG/CNT/wax
composite with dimensions of 3.5 cm × 3.5 cm × 0.75 cm.

2.3. Preparation of EMI Shielding Testing Plates

FLG or FLG/CNT powder was mixed with paraffin by 15 wt.% at 180 ◦C for 2 h.
Subsequently, the mixture was poured into a mold (3.5 cm × 3.5 cm), and pressure of
17,000 pounds (1.5 × 106 N/m2) was applied for 30 min. Finally, the bulk material was
removed for electromagnetic-wave-shielding measurements.

2.4. Characterizations

The surface morphology and crystal structure of the materials were characterized
using field emission scanning electron microscopy (SEM, JEOL/JSM-7600F, Tokyo, Japan),
high-resolution scanning transmission electron microscopy (TEM, JEOL-JEM2100, Tokyo,
Japan), and X-ray diffraction (XRD, Bruker D8, Billerica, MA, USA). Raman characteri-
zation was performed using a LabRAM ARAMIS Raman confocal microscope (HORIBA
JobinYvon, Edison, NJ, USA) with 532-nm laser excitation. The lateral dimensions of FLG
and CNTs were evaluated. The specific surface area was determined using the Brunauer–
Emmett–Teller equation (Micromeritics Tristar 3000, Norcross, GA, USA). A four-point
probe tester (KeithLink LRS4-T) was used for electrical performance analysis to measure
the sheet resistance of FLG and CNTs and electrical conductivity of the nanocomposite.
The sheet resistance and electronic conductivity were measured 10 times. Atomic force
microscope (AFM) images were captured by a Bruker Dimension Icon. The samples for
AFM were prepared by dropping the dispersion directly onto freshly cleaved mica wafer
with an injector. The microwave scattering parameters (S11 and S21) of FLG and CNTs
were measured using a vector network analyzer (Keysight E5071C) in the X-band fre-
quency range of 8.2–12.4 GHz. The nanocomposites were sandwiched between the holder
(22.86 mm × 10.16 mm) within the measurement device. The SE of total EMI shielding
(SET), microwave absorption (SEA), and microwave reflection (SER) were calculated using
parameters S11 and S21 as follows: R = |S11|2, T = |S21|2 and A = 1 − R − T. The effective
absorbance (Aeff) can be expressed as Aeff = (1 − R − T)/(1 − R). The total EMI SE (SET)
is the sum of the reflection from the material surface (SER), absorption of electromagnetic
energy (SEA), and multiple internal reflections (SEM) of electromagnetic radiation. SET can
thus be described as follows:

SET = SER + SEA + SEM

When SET > 15 dB, SEM can be ignored. Therefore, SET is usually defined as follows:

SET ≈ SER + SEA
SER and SEA can be calculated as follows:
SER = −log10(1 − R)
SEA = −log10(1 − Aeff) = −log10[T/(1 − R)]
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3. Results and Discussion

Figure 1a,b shows the surface morphology of graphite and FLG, respectively. The
lateral size of the graphite was 2–5 µm. The morphology of the graphite was clearly thick
and irregular. Liquid exfoliation was performed to obtain FLG, which had a smaller lateral
size and thickness of <10 nm. This indicated that the initial graphite could be effectively
exfoliated into thin sheets through a jet cavitation device. A thickness line scan and an
atomic force microscopy image of FLG are displayed in Figure 1c,d, respectively. The
thickness of FLG was approximately 3 nm (~10 layers) [51,52].

Figure 1. Scanning electron microscopy (SEM) images of (a) graphite and (b) FLG; (c) line scan and
(d) atomic force microscopy image of FLG.

Figure 2a,b presents the SEM images of the FLG/CNT composites obtained through
conventional drying, namely FLG and GNT10, respectively. Under optimized operating
conditions, single-layer, double-layer, and multilayer chemically converted graphene may
be differentiated based on their opacity in SEM images. CNTs were used to intercalate the
graphene, and FLG combined with CNTs was coded as GNT10. After the CNTs had been
added, it was observed that the CNTs were uniformly distributed on the surface of FLG.
Figure 2c displays a TEM image of FLG, which exhibited the few-layer characteristics of
graphene sheets. The TEM of GNT10 (Figure 2d) revealed that CNTs were intercalated
between the graphene layers. This was attributed to the mechanical liquid-phase exfo-
liation method enabling the CNTs to be intercalated while expanding the few layers of
graphene [53,54]. Thus, the CNTs were evenly distributed throughout FLG.

Figure 3a–d displays the SEM and TEM images of the FLG/CNT composites obtained
through freeze-drying, namely FFLG and FGNT10, respectively. Conventional oven drying
caused restacking of FLG (Figure 2a), resulting in a poor SE. After freeze-drying, however,
surface morphology was smooth, with larger interlayer spacing, as shown in Figure 3a,c.
The TEM image also indicates that the CNTs were distributed throughout FFLG, and that
the layers were fewer (Figure 3b,d). The uniform dispersion of CNTs on FFLG, shown in
Figure 3b,d, was due to the solvent being evaporated directly during the freeze-drying process,
whereas only the solvent on the surface of FFLG was evaporated during conventional oven
drying. Thus, the graphene layers were restacked, and the SE was lower.
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Figure 2. SEM images of (a) FLG and (b) GNT10; TEM images of (c) FLG and (d) GNT10.

Figure 3. SEM images of (a) FFLG and (b) FGNT10; TEM images of (c) FFLG and (d) FGNT10.

Figure 4 displays a representative Raman spectrum of FLG (excited at 532 nm). The
spectrum included a strong graphene band at 1594 cm−1, corresponding to graphite. After
exfoliation, the spectrum of FLG had a strong graphene band at 1578 cm−1. The ID/IG ratio
for FLG slightly increased from 0.131 to 0.133 after the jet cavitation process. The position
of the peak corresponding to graphene was shifted nearly 20 cm−1 from 1594 to 1578 cm−1.
Graphite was thus successfully exfoliated into FLG [38]. Conversely, the graphene bands in
the spectra of FFLG and FGNT10 were shifted from 1557 and 1566 cm−1, respectively. The
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ID/IG ratio for FGNT10 was 0.19. This was because a Raman deviation in the low-angle
direction represents a decrease in the number of graphene layers.

Figure 4. Raman spectra of graphite, FLG, FFLG, GNT10, and FGNT10.

The adsorption–desorption isotherms and corresponding pore size distributions of
a series of FLG-based materials are presented in Figure 5. According to Figure 5a,c, the
specific surface area of FFLG (30.6 m2/g) was higher than that of FLG (29.7 m2/g). As
shown in Figure 5b, the distribution contained two peaks at approximately 4 and 50 nm.
Figure 5d shows a narrow peak at approximately 3 nm and a broad peak at approximately
100 nm. The volume of the freeze-dried macropores was lower for the freeze-dried sam-
ples than for the oven-dried samples. The specific surface areas of GNT10 and FGNT10,
shown in Figure 5e,g, were measured to be 49.8 and 51.0 m2/g, respectively. The greater
specific surface area may be due to the introduction of CNTs to prevent restacking of FLG.
Figure 5f,h reveals no difference in the pore size distributions of GNT10 and FGNT10. To
determine the percentages of micropores, mesopores, and macropores for these samples,
we obtained the three corresponding pore distributions by using the BJH method, which are
displayed in Figure 5i. Based on the pore size distributions of these FLG-based materials,
these materials mainly contained macropores and mesopores. The specific surface area of
FLG increased from 29.7 to 30.6 m2/g (an increase of 1.54%) through freeze-drying and
could be markedly enhanced to 49.8 m2/g (an increase of 67.54%). The FGNT10 sample
had 51% macropores, 49% mesopores, and 0% micropores. The composition of the material
(FLG or FLG/CNTs) and the drying process (oven drying or freeze-drying) thus have
critical effects on both the specific surface area and pore size distribution.

The EMI SE of FLG is shown in Figure 6a. FFLG and FGNT10 exhibited favorable
absorption. Comparing GNT10 with FLG, the CNT-intercalated material exhibited higher
absorption efficiency—22 versus 15 dB. Figure 6b shows the shielding benefit provided by
reflection. The material we used, graphene, did not contribute considerably to the reflection
benefit. Figure 6c illustrates the total SE, which is a combination of the results shown
in Figure 6a,b. Figure 6d displays a histogram revealing the contributions made to EMI
shielding in terms of absorption versus reflection for the graphite, FLG, FFLG, GNT10, and
FGNT10 samples. FGNT10 provided an SE of nearly 36 dB. Moreover, the addition of CNTs
to FLG to obtain GNT10 increased the SE from 15 to 22 dB. For few-layer graphene, most of
the contribution to EMI shielding was from absorption. Graphite became restacked during
oven drying; thus, the SE decreased from 17 to 15 dB. The EMI SE was improved to as high
as 35 dB by the freeze-drying process.
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Figure 5. Adsorption–desorption isotherms (a,c,e,g), corresponding pore size distributions (b,d,f,h) and
(i) micropores/mesopores/macropores distribution of graphite, FLG, FFLG, GNT10, and FGNT10.

Figure 6. Electromagnetic shielding effect (SE) of G (graphene), FLG, FFLG, GNT10, and FGNT10
samples: (a) SEA, (b) SER, and (c) SET in the X-band (8.2–12.4 GHz). (d) Electromagnetic-wave-
shielding histogram of total SE.

A schema of electromagnetic wave shielding using GNT10 is presented in Figure 7a.
Oven drying causes restacking of graphene layers during the drying process. Figure 7b
displays a schema of the shielding achieved using FGNT10. EMI is attenuated through
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three major mechanisms: reflection, absorption, and multiple reflections. In cases where
the shielding effect through absorption (i.e., absorption loss) is higher than 10 dB, most of
the re-reflected waves are absorbed within the shield.

Figure 7. Schema of electromagnetic wave shielding by (a) GNT10 and (b) FGNT10.

Figure 8 shows the four-point probe measurement results for FLG, FFLG, GNT10,
and FGNT10. CNT addition and freeze-drying improved the sheet resistance of material
flakes. Furthermore, the addition of CNTs increased interlayer spacing and sheet resistance.
Freeze drying did not cause the restacking of graphene layers; thus, the sheet resistance of
the FGNT10 sample was 1.25 × 10−1 Ω/�.

Figure 8. Sheet resistances of the FLG, FFLG, GNT10, and FGNT10 samples.

4. Conclusions

In summary, we proposed a liquid exfoliation method for preparing high-quality FLG.
By introducing CNTs into FLG, the phenomenon of graphene restacking caused by oven
drying can be avoided. The freeze-drying process increases the material’s porosity and
solves the problem of graphene restacking. The EMI shielding of FGNT10 was as high as
36 dB. By combining FLG, CNTs, and the freeze-drying approach, we obtained a sample,
GNT10, with potential for EMI shielding in the range of 8–12 GHz.
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