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Abstract: The electrical properties of carbon-based filler-embedded polymer nanocomposites are
essential for various applications such as antistatic and electromagnetic interference (EMI) applica-
tions. In this study, the impact of additives (i.e., ethylene-co-acid-co-sodium acid copolymer-based
ionomer and cyanuric acid) on the antistatic, mechanical, thermal, and rheological properties of
extruded multiwalled carbon nanotube (MWCNT)/polyoxymethylene (POM) nanocomposites were
systematically investigated. The effects of each additive and the combination of additives were exam-
ined. Despite a slight reduction in mechanical properties, the incorporation of ionomer (coating on
CNTs) and/or cyanuric acid (π-π interaction between CNTs and cyanuric acid) into the POM/CNT
nanocomposites improved the CNT dispersity in the POM matrix, thereby enhancing electrical
properties such as the electrical conductivity (and surface resistance) and electrical conductivity
monodispersity. The optimum composition for the highest electrical properties was determined to
be POM/1.5 wt% CNT/3.0 wt% ionomer/0.5 wt% cyanuric acid. The nanocomposites with tunable
electrical properties are sought after, especially for antistatic and EMI applications such as electronic
device-fixing jigs.

Keywords: polyoxymethylene (POM); carbon nanotube (CNT); antistatic; ionomer; cyanuric acid;
electrical properties; mechanical properties; thermal properties

1. Introduction

Polyoxymethylene (POM; polyacetal; polyformaldehyde) is one of the most crucial
engineering polymers [1]. It exhibits high crystallinity (>70%), owing to the flexible main
chain comprising repeating –CH2–O– units, which results in an opaque white material and
a high density (approximately 1.41 g/cm3). It features excellent short-term mechanical
properties (tensile strength, toughness, and rigidity), a low tendency to creep and fatigue,
and a low linear coefficient of thermal expansion [1–3]. It also has excellent stability
(resistance to chemicals, organic solvents, and fuels at room temperature), low water
permeability/absorption, good tribological properties (high hardness and glossy and
smooth molded surfaces), and the tendency to maintain good electrical and mechanical
properties at temperatures between −40 and −140 ◦C. They can be maintained at 90 ◦C for
the long term and 140 ◦C for the short term [1,4–8]. Therefore, POM has been extensively
utilized in a myriad of engineering applications such as bearings, gears, conveyer belt links,
wear surfaces, creep resistant housings, gas caps, chemical sprayers, soap dispersers, paint
mixing paddles, and safety systems (seat belts) [9–11].
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Recently, POM composites with antistatic properties have been widely used in elec-
tronic applications such as antistatic and electromagnetic interference (EMI) applica-
tions [9,12,13]. For instance, POM composites were utilized for fixing jigs for electronic
devices, such as mobile phones and displays, where low electrical conductivity is required
to achieve the antistatic properties. Without the antistatic properties of the jigs, the circuits,
substrates, and semiconductors can be damaged owing to dust and impurities during
fabrication and storage. Electrically conductive POM composites can be fabricated through
the incorporation of conductive fillers such as carbon black, carbon fiber, graphite, and
metals [14–17].

Carbon nanotubes (CNTs) have been extensively utilized owing to their extraordinary
electrical and mechanical properties and large aspect ratio [18–21]. Thus, CNTs can replace
conventional fillers in the fabrication of multifunctional polymeric nanocomposites [22,23].
In particular, CNT-embedded nanocomposites are ideal candidates for fabricating elec-
trically conductive polymer nanocomposites [22,23]. However, a major drawback for
utilizing CNTs is their low dispersion in polymer matrices because of their entanglement
and aggregation into bundles [24,25]. This is chiefly caused by van der Waals and elec-
trostatic forces of CNTs [26]. Although they can be slightly dispersed using only limited
kinds of organic solvents, such as N-methylpyrrolidone (NMP), o-dichlorobenzene (ODCB),
N,N-dimethylformamide (DMF), and N,N-dimethylacetamide (DMAc), the degrees of
stability and isolation are insufficient for most applications. Moreover, POM is highly
crystalline, which makes it more difficult to achieve a uniform dispersion of nanofillers in
its matrix. Chemical functionalization, noncovalent wrapping, and blended matrix systems
have been utilized to solve the dispersion problems [27–29].

In this study, we designed noncovalent wrapping systems using cyanuric acid and
ethylene-co-acid-co-sodium acid copolymer-based ionomers to enhance the CNT dispersion
in the POM matrix with a view to improving the electrical properties (electrical conductivity,
surface resistance, and their monodispersion) of the nanocomposites.

2. Experimental
2.1. Materials

POM was supplied by BASF Co., (Augsburg, Germany, model: N2320, specific gravity:
1.410, melt flow index: 5.3 g/10 min), and multiwalled carbon nanotubes (MWCNTs) were
purchased from Kumho Petrochemical Co., (Seoul, Korea, model: 210T, diameter: 11–13 nm,
length: 40–50 µm, purity: 95 wt%, bulk density: 0.025 g/ML). Hydroxyl moieties were
primarily detected on CNT surfaces (Figure S1). Ethylene-co-acid-co-sodium acid copolymer-
based ionomer was supplied by Dow Chem Inc. (Midland, MI, USA, model: SURLYN 9910,
specific gravity: 0.97, melt flow index: 0.7 g/10 min at 190 ◦C/2.16 kg, melting point: 86 ◦C).
Cyanuric acid was purchased from Sigma–Aldrich (St. Louis, MO, USA).

2.2. Extrusion and Injection Processing

POM is vulnerable to acid hydrolysis and oxidation by mineral acid and chlorine [30,31].
It is also susceptible to alkaline attack and degradation in hot water, and extreme shearing
effects at elevated temperature [32,33]. Thus, the extrusion conditions for POM/CNT
nanocomposite fabrication are of great importance. POM was dried in an oven (Ther-
moStable OF-50, Daihan Scientific Co., Wonju, Korea) at 60 ◦C for 5 h prior to extrusion.
POM, CNT, and additives (when added) were mixed in a plastic bag using a tumbler mixer.
(BNOChem Co., Cheongju, Korea) Subsequently, the mixture was fed into the main hopper
of an intermeshing corotation twin-screw extruder (STS25–44V–SF, Hankook EM Ltd.,
Gyeonggi, Korea) at a hopper temperature of 100 ◦C at a rate of approximately 4 kg/h. The
screw diameter and length/diameter (L/D) were 25 mm and 44 mm, respectively. The two
die hole sizes were 4 mm, and the die was kept at 165 ◦C. The screw was rotated at 240 rpm.
The barrel temperatures were in the range of 100–170 ◦C. The measured temperature of
the melted composite resin was 185–190 ◦C, which was slightly higher than the barrel
temperatures owing to internal friction caused by shearing effects. The residual pressure in
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the barrel was maintained at 0.09 MPa. The melted resins were cooled in a water bath at
room temperature (22–24 ◦C) and then pelletized using a strand pelletizer (HNP1, Hankook
EM Ltd., Korea) equipped with a rotary knife (a diameter of 119 mm and width of 50 mm
at 450 rpm) to produce cylinder-type composite pellets with approximately a diameter of
1 mm and length of 3 mm. The pelletized samples were then dried in an oven at 60 ◦C for
24 h. The composite pellets were inserted into the injection molding machine (LGH50N, LS
Mtron Co., Anyang, Korea) to manufacture specimens for various analysis methods such
as tensile and rheological properties and Izod impact strength. The screw diameter for the
injection molding machine was 25 mm. The maximum injection pressure and maximum
injected amount per cycle were 247 MPa and 45 g, respectively. The barrel temperatures
were set to be 190–200 ◦C. The injection pressures were 6.9 and 4.9 MPa for tensile and Izod
impact strength test specimens, respectively. The injected specimens were cooled in a mold
at room temperature.

2.3. Characterization
2.3.1. Scanning Electron Microscopy (SEM)

The morphologies of POM/CNT composites with and without additives were ob-
served using scanning electron microscopy (SEM; Apro, FEI Co., Hillsboro, OR, USA)
at an electron beam voltage of 10.0 kV and magnification of 10,000× and 25,000×. The
fractured specimens for SEM examination were obtained from the Izod impact strength
tests. The fractured surface was coated with a 5–10 nm thick gold layer using a sputter
coater (Cressington 108 Auto Sputter Coater, Ted Pella Inc., Redding, CA, USA) prior to the
SEM measurements.

2.3.2. Differential scanning calorimetry (DSC)

Differential scanning calorimetry (DSC; DSC25, TA Instruments, New Castle, DE,
USA) was carried out to determine the melting (Tm) and crystallization (Tc) temperatures
of polymers and nanocomposites. Approximately 3–5 mg of each sample was placed in
a hermetic aluminum pan and heated at a scanning rate of 10 ◦C/min under nitrogen
purging (50 mL/min). The crystallinity (χc) of POM and POM/CNT composites was
calculated based on a 100% crystalline POM melting enthalpy of 251.8 J/g [34]. The second
heating cycle was used for determining the transition temperatures by eliminating the
thermal history.

2.3.3. Thermogravimetric Analysis (TGA)

Thermogravimetric analysis (TGA; Perkin Elmer Co., Waltham, MA, USA) was per-
formed, according to ISO 11358. Samples with a mass of 1.0–2.0 mg were heated from
50 ◦C to 500 ◦C at a heating rate of 10 ◦C/min, and then held at 500 ◦C for 10 min prior to
cooling. The nitrogen purge had a flow rate of 20.0 mL/min at gas pressure of 2.2 bar. The
degradation point (Td) of nanocomposites was determined, on the basis of 1% weight loss.

2.3.4. Dynamic Mechanical Analysis (DMA)

Dynamic mechanical analysis (DMA; Discovery DMA 850, TA Instruments, New Cas-
tle, DE, USA) was conducted in the tensile mode. Rectangular specimens (approximately
35 mm long, 10 mm wide, and 4 mm thick) were prepared to measure the storage and loss
moduli and loss tangent (tan δ). The glass transition temperature (Tg) values of POM and
its nanocomposites were determined based on the peaks of tan δ. The measurements were
performed at a single frequency of 1 Hz and constant amplitude of 20 µm. The heating rate
was set at 3 ◦C/min.

2.3.5. Tensile Test

Uniaxial tensile deformation was performed using a universal testing machine (UTM;
TD-012, Testone Co., Siheung, Korea) according to ISO 527-2 1A. The specimen cross-section
had dimensions of 10 mm × 4 mm and the gauge length was 80 mm. The cell load capacity
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was 10 kN. Specimens were elongated at a constant cross head speed of 50 mm/min at
room temperature (22–24 ◦C). The mean values of each sample were determined using
five specimens.

2.3.6. Izod Impact Strength Test

Notched Izod impact strength tests (WL2200D, Withlab Co., Anyang, Korea) were
performed according to ISO 180 with rectangular dimensions of 4.0 × 10 × 80 mm. The
notch depth, radius, and angle of the specimens were 2 mm, 0.25 ± 0.5 mm, and 45◦,
respectively. The radius of the hammer knife edge was 0.8 mm, and the hammer lift angle
was 150◦. The hammer velocity at the moment of impact was 3.46 m/s. The capacity of the
tester was 60 kgf/cm. The mean values of each POM and nanocomposite were determined
using seven specimens.

2.3.7. Melt Flow Index (MFI) Test

Melt flow index (MFI) was measured by an MFI machine (WL1400SA, Withlab Co.,
Anyang, Korea) according to KS M3070 and ISO E1133. The diameter and length of the
standard die orifice (nozzle) were 2.095 and 8 mm, respectively. The piston diameter was
9.5 mm. Samples were dried at 60 ◦C for 4 h to remove moisture absorbed in POM and
nanocomposites prior to the measurements. The measurement temperature was 190 ◦C,
with a load of 2.16 kg. Pellets were inserted into the piston and preheated for 5 min.

2.3.8. Rheological Properties

Rheological measurements were carried out using a Discovery Hybrid HR-10 rheome-
ter (TA Instruments., New Castle, DE, USA) in a parallel plate (ϕ = 25 mm, gap = 1 mm)
configuration. A dynamic strain sweep was initially used to determine the linear viscoelas-
tic regions. The strain was set at 1%, and the angular frequency was scanned from 100 to
103 s−1. The test temperature was 180 ◦C.

2.3.9. Transmission Electron Microscopy (TEM)

Transmission electron microscopy (TEM, JEM-1400, JEOL, Tokyo, Japan) was per-
formed at 120 kV to investigate the morphology and dispersion of CNTs in the POM matrix.
Ultrathin sections were obtained using microtome (RMC, Leica, Wetzlar, Germany) with a
diamond knife.

2.3.10. Fourier Transform Infrared (FTIR) Spectroscopy

Fourier transform infrared (FTIR, Nicolet 6700, Thermo Fisher Scientific Co., Waltham,
MA, USA) spectroscopy was performed in the attenuated total reflection (ATR) mode to
detect chemical bonds. Each FTIR spectrum was recorded in a wavenumber region of
4000–600 cm−1 by carrying out 16 scans.

3. Results and Discussion

Electronic devices are susceptible to electrostatic discharge (ESD) produced by tri-
boelectrification (friction) during handling, packaging, and transportation processes, po-
tentially leading to significant damage [35,36]. To avoid the ESD, antistatic packaging
is required with a low electrical resistance that prevents charge accumulation, thereby
facilitating the flow of electric charges through the polymeric composites [37]. Electrically
insulating materials generally exhibit a relatively high surface resistance of >1011 Ω/sq
that impedes the electron flow through their surfaces. In contrast, materials with antistatic
and dissipative properties have moderate electrical resistance of 104–1011 Ω/sq, allowing
for the electrical conduction [38].

Pristine POM is an electrically insulating polymer with a surface resistance of >1011 Ω/sq.
MWCNTs were utilized to decrease the surface resistance of the POM/CNT nanocom-
posites. As shown in Figure 1, the incorporation of 0.5 wt% CNT into the pristine POM
substantially decreased the surface resistance of the POM/CNT composite to 108–109 Ω/sq.
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Further reduction was observed until a plateau was reached beyond 1.5 wt% CNT when the
surface resistance was saturated. Figure S2 shows the electrical conductivities of POM/CNT
nanocomposites, determined by their surface resistances. The electrical conductivities in-
creased as a function of CNT loading until 1.5 wt% CNT and then showed a saturation
point above 1.5 wt%. Figure S3 shows SEM images of pristine POM and POM/CNT
nanocomposites. Some aggregates were observed in the nanocomposites without additives.
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Figure 1. Surface resistance of POM/CNT composites as a function of CNT loading.

The thermal properties of polymer nanocomposites are routinely investigated when
nanofillers are incorporated into the polymer matrix. In this study, DSC and TGA were
employed to examine the crystallization, melting behavior, and thermal stabilities of the
nanocomposites. Figure 2a,b show the heating and cooling DSC traces, respectively. Table 1
summarizes the melting (Tm), crystallization (Tc) and degradation (Td) temperatures, melt-
ing (∆Hm) and crystallization (∆Hc) enthalpy, and crystallinity (χc) of the neat POM and
POM/CNT nanocomposites. The Tm values increased as a function of CNT concentration
owing to secondary interactions between the polymer matrix and nanofillers. The incor-
poration of CNTs also increased Tc values because the CNT particles acted as nucleating
agents up on cooling. However, the exothermic peak became broader as a function of
CNT concentration, indicating that the crystallization time increased with increasing CNT
loading. The crystallinity of POM slightly increased with increasing CNT content. Thus,
the incorporation of CNT into the POM matrix influenced the crystallization temperatures,
onset point, time, and crystallinity. TGA thermograms (Figure 2c) revealed that the thermal
stability of the nanocomposites was maintained until a CNT loading of 1.5 wt%, with
further addition of CNT reducing the thermal stability.
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Figure 2. Thermal properties of pristine POM and POM/CNT composites with different CNT
contents: (a) DSC heating; (b) DSC cooling traces; (c) TGA thermograms.

Table 1. Thermal properties of POM/CNT composites with different CNT contents.

CNT (wt%) 0 0.5 1.0 1.5 2.0

Tm (◦C) 165.4 167.0 165.7 167.8 168.6
∆Hm (J/g) 159.9 157.5 159.4 161.4 170.8

Tc (◦C) 137.2 141.0 142.8 141.1 140.9
∆Hc (J/g) 153.9 153.6 148.2 153.0 159.6
χc (%) * 63.5 62.2 62.7 63.2 66.5
Td (◦C) 287.3 287.2 287.8 267.8 266.1

* One hundred percent crystalline POM enthalpy: 251.8 J/g.

In addition to the thermal properties, the mechanical properties of nanofiller-embedded
polymer composites are crucial for a wide range of applications [39]. Although the electrical
properties of the nanocomposites were considerably enhanced, the fabricated nanofiller-
embedded composites would not see widespread applications if their mechanical properties
were poor. As evident from Figure 3a,b, the tensile strength and modulus of the POM/CNT
composites increased, while the elongation at break gradually decreased (Figure 3c) as the
CNT loading increased. However, the incorporation of nanofillers typically resulted in a
reduction in the elongation at break and toughness. In contrast, the Izod impact strength of
the composites was enhanced by the infiltration of CNTs into the POM matrix (Figure 4).
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DMA is a powerful technique for investigating the viscoelastic behaviors of polymeric
nanocomposites by observing mechanical responses as a function of temperature or fre-
quency. The strain in the composite was measured through the application of sinusoidal
stress, thereby determining the complex modulus. Figure 5 shows the DMA data of the
POM/CNT nanocomposites. The storage modulus (E’) of the nanocomposite decreased
with the incorporation of 0.5 wt% CNT, likely due to the chain scission caused by shear
effects of the nanofillers during extrusion and injection molding processes [40]. However,
the CNT-POM interactions compete with the chain scission, and the CNT-POM interactions
became dominant for CNT loadings of >1.0 wt%, enhancing the storage modulus. The
transition temperatures (Tα, Tβ, Tγ, and Tg) of polymeric materials can be measured using
various methods such as DMA, thermal mechanical analysis (TMA), DSC, and dielectric
analysis (DEA). Among these techniques, DMA is the most precise method to determine the
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transitions of the polymeric materials including composites. The transition temperatures
can be derived from the onset temperature of the reduction in the storage modulus and the
peak temperatures in the loss modulus (E”) and tan δ. As shown in Table 2, the Tα values
increased with increasing CNT loading, which can be ascribed to more CNT-POM interac-
tions than the chain scission. In addition, the increased Tα values indicate the restrictive
chain mobility at the related temperature range, owing to CNT-polymer matrix interactions.
Tβ was increased by the incorporation of CNT into the POM matrix. Especially, 0.5 wt%
CNT addition showed the highest Tβ value, whereas the Tα value gradually increased as a
function of CNT concentration.
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Figure 5. DMA data of POM/CNT nanocomposites: (a) storage modulus; (b,d) loss modulus; (c,e) 

tan δ; (d) zoomed in area of Figure 5b; (e) zoomed in area of Figure 5c. 

Figure 5. DMA data of POM/CNT nanocomposites: (a) storage modulus; (b,d) loss modulus; (c,e)
tan δ; (d) zoomed in area of Figure 5b; (e) zoomed in area of Figure 5c.
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Table 2. Transition temperatures of neat POM and POM/CNT nanocomposites as a function of CNT
concentration, based on DMA data.

CNT (wt%) 0.0 0.5 1.0 1.5 2.0

Tβ (◦C) G” −30.6 −4.3 −30.1 −22.1 −22.5
Tan δ −11.7 1.5 −9.6 −8.5 −13.2

Tα (◦C)
G” 93.3 97.8 100.5 99.9 98.3

Tan δ 114.8 120.8 123.1 125.7 125.1

The infiltration of nanofillers can significantly influence the melt flow and viscosity of
nanocomposites during composite and product processing [41–43]. The MFI method and a
rheometer were utilized to investigate the rheological properties of POM/CNT composites.
The MFI did not change with a 0.5 wt% CNT loading but decreased considerably with
loading of >0.5 wt%, plateauing at a CNT loading of 1.5 wt% as shown in Figure 6. The
complex viscosity of the POM/CNT composites increased and saturated at a 1.5 wt% CNT
loading (Figure 7a). The shear storage (G’) and shear loss (G”) moduli of the nanocomposites
both increased with increasing CNT loading. Furthermore, the slope of G’, as a function of
angular frequency, decreased as the CNT content increased, alluding to the formation of a
3D network of the nanofillers under dynamic conditions.
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Figure 7. Rheological properties of the POM/CNT nanocomposites: (a) complex viscosity; (b) shear
storage modulus (G’); (c) shear loss modulus (G”) as a function of frequency; (d) G’ vs. G”.

Figure 7d shows a plot of G’ vs. G” at a frequency associated with Cole–Cole plots
that are used in dielectric spectroscopy [44]. Modified Cole–Cole plots have previously
been utilized to infer information regarding the microstructures of nanocomposites [45,46].
For example, G’ becoming dominant over G” is related to an increased level of long-chain
branching. The dashed guideline in Figure 7d represents G’ = G”, and it is evident that
G’ became larger than G” with increasing nanofiller content, which represents that the
rheological behavior of the POM/CNT nanocomposite changed from liquid-like (viscous
characteristic) to solid-like (elastic characteristic) state. The slope decreased with increasing
CNT content because of the change in the microstructure of the POM/CNT composites.

The POM/CNT nanocomposite with 1.5 wt% CNT loading (POM/C1.5) was cho-
sen as the reference material because of its enhanced electrical, thermal, mechanical, and
rheological properties. The ethylene-co-acid-co-sodium acid copolymer-based ionomer
and cyanuric acid were utilized to adjust the surface resistance and its monodisper-
sity of the POM/C1.5 nanocomposite as shown in Figure 8. The incorporation of the
ionomer reduced the surface resistances of the composites, reaching a minimum at 3.0 wt%
loading (POM/C1.5/I3) (Figure 8a). Cyanuric acid loading only slightly influenced the
mean surface resistance of the nanocomposites (Figure 8b), with a loading of 0.5 wt%
(POM/C1.5/A0.5) having the lowest surface resistance polydispersity. The surface re-
sistance polydispersity as well as the mean surface resistance are crucial for antistatic
and dissipative properties, especially for electronic device-fixing jigs. The combination
of ionomer (3 wt%) and cyanuric acid (0.5 wt%) led to the lowest surface resistance with
monodispersed-surface resistance. Figure S4 shows the electrical conductivities of various
nanocomposites, determined by their surface resistances. The proposed mechanisms for
the microstructures of composites are illustrated in Figure 9. Covalent and noncovalent
modifications can be used for surface treatments of CNTs [47,48]. The surface oxidation-
induced carboxylic moieties and chemical reactions between CNTs and functional groups
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are common examples of covalent modifications. These covalent modifications give high
stabilities of functionalization compared to the non-covalent modifications. The effective
reinforcement of polymer composites can be achieved by a load transfer mechanism from
the polymer matrix to the CNTs through the chemical bonding [49,50]. However, the
conductivities and mechanical properties of CNTs are changed by the covalent modification
and CNTs are often severed into short tubes [51]. In contrast, non-covalent modification
provides the CNT surface treatment without deterioration in their inherent properties by
facilely mixing additives and CNTs together under shear force or sonication [52]. Non-
covalent functionalization can be achieved by two classifications of interaction mechanisms:
enthalpy- and entropy-driven interactions [52]. Enthalpy-driven interactions include π-π,
CH-π, NH-π, and cation-π between the additives and CNT surfaces, whereas entropy-
driven interactions are involved with hydrophobic interactions using surfactants such as
sodium dodecyl sulfate (SDS), sodium dodecylbenzene sulfonate (SDBS), sodium cholate
(SC), and cetyltrimethylammonium bromide (CTAB) [53–56]. One of the examples for
non-covalent functionalization, mainly related to enthalpy-driven functionalization, is
the polymer wrapping of CNTs via various interactions. The polymer wrapping method
was performed using various polymer types such as π-conjugated polymers, aromatic
polymers, nonaromatic polymers (i.e., acrylate-based polymers), cationic polymers, block
copolymers, and pendant polymers [57–60]. In this study, we employed each additive,
including cyanuric acid (π-π interaction) and ionomer (cation-π interaction), and their
combination to achieve the polymer wrapping on CNTs as shown in Figure 9.
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Figure 8. Surface resistances of neat POM/CNT (POM/C1.5), (a) POM/CNT/ionomer (POM/C1.5/I3),
(b) POM/CNT/cyanuric acid (POM/C1.5/A0.5), and (c) POM/CNT/ionomer/cyanuric acid
(POM/C1.5/I3/A0.5) composites with different additive concentrations.
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Figure 9. Schematic structures of POM/CNT/ionomer/cyanuric acid nanocomposite. The red and
blue colors indicate cyanuric acid and ionomer, respectively.

Thermal properties of pristine POM and various nanocomposites are shown in
Figures 10 and S5–S7 and Tables 3 and 4. The incorporation of ionomer only slightly
influenced the Tm values but increased the Tc values. The crystallinity (χc) of the compos-
ites slightly decreased with increasing loading of additives (each ionomer and cyanuric
acid), because the additives plasticized the POM composites, thereby hindering the crystal-
lization as shown in Table 3 and Figures S5 and S6. The POM/C1.5/A0.5 nanocomposite
increased the Tm value from 167.7 to 169.3 ◦C and decreased the Tc value from 141.1 to
136.6 ◦C. The infiltration of ionomer and cyanuric acid into the POM/C1.5 nanocomposites
enhanced the thermal stabilities of the nanocomposites owing to the interfacial interactions
among the POM, CNT, and additives. However, excess cyanuric acid loading decreased
the Td value of nanocomposites. The combination of ionomer and cyanuric acid for the
POM/CNT nanocomposites balanced the thermal properties of the nanocomposites. SEM
images of various nanocomposites as a function of each additive loading are shown in
Figures S8–S11.
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(POM/C1.5/I3/A0.5) composites: (a) DSC heating and (b) cooling traces; (c) TGA thermograms. 
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Figure 10. Thermal properties of pristine POM, POM/CNT (POM/C1.5), POM/CNT/ionomer
(POM/C1.5/I3), POM/CNT/cyanuric acid (POM/C1.5/A0.5), and POM/CNT/ionomer/cyanuric
acid (POM/C1.5/I3/A0.5) composites: (a) DSC heating and (b) cooling traces; (c) TGA thermograms.
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Table 3. Thermal properties of POM/C1.5, POM/C1.5/ionomer, and POM/C1.5/cyanuric acid
composites as a function of additive concentration.

Content (wt%) * 0.0 0.5 1.0 2.0 3.0 5.0

Tm (◦C)
Ionomer

167.7
166.6 168.0 167.2 166.1 166.3

Cyanuric acid 169.3 167.8 167.0 167.6 168.1

∆Hm (J/g) Ionomer
161.4

168.7 181.3 164.2 159.7 181.0
Cyanuric acid 157.4 152.1 182.2 178.7 160.5

Tc (◦C)
Ionomer

141.1
142.2 142.83 140.2 148.0 143.1

Cyanuric acid 136.6 139.3 137.2 139.7 133.6

∆Hc (J/g) Ionomer
153.0

155.9 175.5 152.6 143.5 163.4
Cyanuric acid 149.8 138.4 169.6 166.0 151,1

χc (%) * Ionomer
63.2

65.6 70.2 62.9 60.6 67.2
Cyanuric acid 61.3 58.9 69.8 67.8 59.6

Td (◦C) Ionomer
267.8

285.7 280.1 279.9 275.7 284.2
Cyanuric acid 296.9 293.7 289.7 250.7 253.6

* One hundred percent crystalline POM enthalpy: 251.8 J/g.

Table 4. Thermal properties of pristine POM, POM/CNT (POM/C1.5), POM/CNT/ionomer
(POM/C1.5/I3), POM/CNT/cyanuric acid (POM/C1.5/A0.5), and POM/CNT/ionomer/cyanuric
acid (POM/C1.5/I3/A0.5) nanocomposites.

Content
(wt%) None C1.5 C1.5

I3.0
C1.5
A0.5

C1.5
I3.0
A0.5

Tm (◦C) 165.4 167.7 166.2 169.3 170.2
∆Hm (J/g) 159.9 161.4 159.7 157.4 149.8

Tc (°C) 137.2 141.1 148.0 136.6 150.3
∆Hc (J/g) 153.9 153.0 143.5 149.8 137.4

χc (%) * 63.5 63.2 60.6 61.3 56.5
Td (◦C) 287.3 267.8 275.7 296.9 281.8

* One hundred percent crystalline POM enthalpy: 251.8 J/g.

The mechanical properties of CNT-infiltrated nanocomposites were mainly related to
the CNT type, concentration, dispersity, and surface modification. Similar to POM/CNT
nanocomposites, the. mechanical properties of pristine POM and various nanocomposites
were examined using tensile and Izod impact strength tests as shown in Figure 11 and
Figures S12–S14. The tensile strength of the nanocomposites was slightly reduced, owing
to the presence of each additive, whereas the tensile modulus of additive-embedded
nanocomposites slightly improved. The elongation at break barely changed, whereas the
Izod impact strength of nanocomposites decreased by the incorporation of additives. The
Izod impact strength of nanocomposites gradually decreased as a function of each additive
content as shown in Figure S14. The incorporation of additives typically reduced the impact
strength of the nanocomposites. Thus, thermoplastic polyurethane (TPU) was employed to
compensate for the loss in impact strength in this study. The infiltration of TPU into the
nanocomposites enhanced the Izod impact strength from 4.2 to 5.6 kJ/m2.

The variations in the thermal transition of the POM nanocomposites upon the incorpo-
ration of additives were investigated using DMA. The thermal transitions were determined
based on peaks in the E” and tan δ. The transition (Tγ) of POM at approximately –60 ◦C is
typically considered as the glass transition temperature (Tg), and it is associated with the
motion of short segments in the disordered regions of the POM chains. The broad peak at
approximately 120 ◦C (Tα in the range of 50–150 ◦C) is characteristic of highly crystalline
POM [61]. The transition is involved with translational motions of the crystalline structure
along the chains. The incorporation of CNTs and combination of CNTs and additives into
the nanocomposites barely affected the Tα values of the nanocomposites. The transition (Tβ)
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with a low intensity between –30 and 30 ◦C was ascribed to the motion of long segments
in the disordered regions of the POM chains, low crystallinity, absorbed water, or thermal
history of the composite. The Tβ value of the nanocomposites increased with increasing
each additive (i.e., ionomer and cyanuric acid). The increased transition temperatures
represent the restrictive chain mobility at high temperatures, owing to additive-induced
CNT-polymer matrix interactions. The storage (E’) and loss (E”) moduli and the tan δ
of the nanocomposites are shown in Figures 12, S15 and S16 and Tables 5 and 6. The E’
value of the nanocomposite decreased as a function of each additive. The reduction in E’
was ascribed to the increment of the polymer chain mobility through the polymer-CNT
interaction [62].
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Figure 11. Tensile properties (a–c) and Izod impact strength (d) of POM/C1.5, POM/C1.5/I, 

POM/C1.5/A, and POM/C1.5/I3/A0.5 nanocomposites: (a) tensile strength; (b) tensile modulus; (c) 

elongation at break; (d) Izod impact strength. 

The variations in the thermal transition of the POM nanocomposites upon the incor-

poration of additives were investigated using DMA. The thermal transitions were deter-

mined based on peaks in the E” and tan δ. The transition (Tγ) of POM at approximately –

60 °C is typically considered as the glass transition temperature (Tg), and it is associated 

with the motion of short segments in the disordered regions of the POM chains. The broad 

peak at approximately 120 °C (Tα in the range of 50–150 °C) is characteristic of highly 

crystalline POM [61]. The transition is involved with translational motions of the crystal-

line structure along the chains. The incorporation of CNTs and combination of CNTs and 

additives into the nanocomposites barely affected the Tα values of the nanocomposites. 

The transition (Tβ) with a low intensity between –30 and 30 °C was ascribed to the motion 

of long segments in the disordered regions of the POM chains, low crystallinity, absorbed 

water, or thermal history of the composite. The Tβ value of the nanocomposites increased 

with increasing each additive (i.e., ionomer and cyanuric acid). The increased transition 

temperatures represent the restrictive chain mobility at high temperatures, owing to ad-

ditive-induced CNT‐polymer matrix interactions. The storage (E’) and loss (E”) moduli 

Figure 11. Tensile properties (a–c) and Izod impact strength (d) of POM/C1.5, POM/C1.5/I,
POM/C1.5/A, and POM/C1.5/I3/A0.5 nanocomposites: (a) tensile strength; (b) tensile modulus;
(c) elongation at break; (d) Izod impact strength.
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Figure 12. DMA data of neat POM and various nanocomposites (POM/C1.5, POM/C1.5/I3, 

POM/C1.5/A0.5, and POM/C1.5/I3/A0.5): (a) storage modulus; (b,d) loss modulus; (c,e) tan δ; (d) 
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Figure 12. DMA data of neat POM and various nanocomposites (POM/C1.5, POM/C1.5/I3,
POM/C1.5/A0.5, and POM/C1.5/I3/A0.5): (a) storage modulus; (b,d) loss modulus; (c,e) tan
δ; (d) zoomed in area of Figure 12b; (e) zoomed in area of Figure 12c.
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Table 5. Transition temperatures of POM/C1.5, POM/C1.5/I, and POM/C1.5/A nanocomposites
with different additive concentrations, based on DMA data.

Contents (wt%) 0.0 0.5 1.0 2.0 3.0 5.0

Tβ (◦C)
G”

Ionomer −22.1 −21.3 −33.5 −10.9 −14.3 −28.5
Cyanuric acid −22.1 −24.9 −12.8 −5.6 −0.43 0.6

Tan δ
Ionomer −8.8 −8.4 −12.5 −0.1 1.2 −5.2

Cyanuric acid −8.8 −4.1 1.3 3.7 4.7 9.5

Tα (◦C)
G”

Ionomer 99.9 100.0 100.7 97.9 97.3 95.5
Cyanuric acid 99.9 99.2 99.7 97.3 97.8 96.4

Tan δ
Ionomer 125.7 120.3 123.1 123.6 121.2 122.3

Cyanuric acid 125.7 120.2 123.0 119.3 119.4 118.9

Table 6. Transition temperatures of POM, POM/C1.5, POM/C1.5/I3, POM/C1.5/A0.5, and
POM/C1.5/I3/A0.5 nanocomposites with different additive concentrations, based on DMA data.

Contents (wt%) None C1.5 C1.5
I3.0

C1.5
A0.5

C1.5
I3.0
A0.5

Tβ (◦C) G” −30.6 −22.1 −14.3 −24.9 −7.4
Tan δ −11.7 −8.5 1.2 −4.1 −11.7

Tα (◦C)
G” 93.3 99.9 98.0 100.0 97.5

Tan δ 114.8 125.7 123.1 125.7 122.0

Understanding the rheology of a polymer composite is crucial for fabrication and
processing including its extrusion and injection molding. The MFI measurement offers
information regarding flowability (viscosity) in the medium shear rate region. The incor-
poration of CNTs substantially reduced the MFI, representing the increased viscosity, as
shown in Figure 13. The ionomer-embedded POM/CNT nanocomposites increased as a
function of ionomer concentration owing to slippage between the ionomer-coated CNTs
and melted POM polymer chains. The MFI increased for a 0.5 wt% cyanuric acid loading
compared to the POM/C1.5 nanocomposite without cyanuric acid because of the high dis-
persity of cyanuric acid-attached CNT through the POM matrix, which was demonstrated
by the electrical properties. By contrast, the MFI of the cyanuric acid-embedded POM/CNT
nanocomposites over 1.0 wt% decreased with increasing cyanuric acid loading, probably
due to the strong physical interactions between melted POM chains and cyanuric acid-
attached CNTs caused by the π–π interaction between CNT and cyanuric acid [63]. This
indicates that the interaction factor was dominant over dispersion factors above a 1.0 wt%
cyanuric acid loading. The combination of ionomer and cyanuric acid somewhat increased
the MFI value. Storage and loss moduli and the complex viscosity of the nanocomposites
were also examined using a rheometer as shown in Figures 14, S17 and S18. The complex
viscosity, G’ and G”, of POM/C1.5/I nanocomposites decreased as a function of ionomer
content (Figure S17), which is analogous to the trend observed for the MFI results. Figure
S17d shows that G’ became smaller than G” with increasing ionomer content. This indicates
that the rheological behavior of the nanocomposite changed from a solid-like to liquid-like
state. The complex viscosity and G’ decreased upon the incorporation of 0.5 wt% cyanuric
acid but increased with greater cyanuric acid loadings as shown in Figure S18. These
findings were also similar to the MFI results. G’ became larger than G” with increasing
cyanuric acid concentration, which indicates the increased elastic behavior. The complex
viscosity, G’, and G” of the nanocomposites all decreased by the combined incorporation of
both ionomer and cyanuric acid into POMC1.5 as shown in Figure 14.
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with different additive concentrations: (a) POM/C1.5; POM/C1.5/I; POM/C1.5/A; (b) pristine POM 

and POM/C1.5/I/A. 
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Figure 14. Rheological properties of POM, POM/C1.5, POM/C1.5/I3, POM/C1.5/A0.5, and 

POM/C1.5/I3/A0.5 nanocomposites: (a) complex viscosity; (b) shear storage modulus (G’); (c) shear 

loss modulus (G”) as a function of frequency; (d) G’ vs. G”. 

Figure S19 shows SEM micrographs of POM and various POM/CNT nanocompo-

sites. The CNTs of the POM/C1.5 nanocomposite without additives aggregated (Figure 

S19b), whereas the incorporation of additives improved the CNT dispersity in the POM 

matrix. In addition to SEM, visual observation of CNTs in polymer matrices was routinely 

investigated by TEM. Figure 15 shows the morphologies of POM/C1.5 and 

POM/C1.5/I3/A0.5 nanocomposites. Compared to the POM/C1.5 nanocomposite, a rela-

tively homogeneous CNT dispersion in the POM matrix was achieved for the 

Figure 13. MFI of POM, POM/C1.5, POM/C1.5/I, POM/C1.5/A, and POM/C1.5/I/A nanocompos-
ites with different additive concentrations: (a) POM/C1.5; POM/C1.5/I; POM/C1.5/A; (b) pristine
POM and POM/C1.5/I/A.
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Figure 14. Rheological properties of POM, POM/C1.5, POM/C1.5/I3, POM/C1.5/A0.5, and
POM/C1.5/I3/A0.5 nanocomposites: (a) complex viscosity; (b) shear storage modulus (G’);
(c) shear loss modulus (G”) as a function of frequency; (d) G’ vs. G”.

Figure S19 shows SEM micrographs of POM and various POM/CNT nanocomposites.
The CNTs of the POM/C1.5 nanocomposite without additives aggregated (Figure S19b),
whereas the incorporation of additives improved the CNT dispersity in the POM matrix.
In addition to SEM, visual observation of CNTs in polymer matrices was routinely investi-
gated by TEM. Figure 15 shows the morphologies of POM/C1.5 and POM/C1.5/I3/A0.5
nanocomposites. Compared to the POM/C1.5 nanocomposite, a relatively homogeneous
CNT dispersion in the POM matrix was achieved for the POM/C1.5/I3/A0.5 nanocom-
posite. This indicates that the combination of ionomer and cyanuric acid enhanced the
MWCNT dispersity in the POM matrix, thereby increasing the electrical properties, such as
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the electrical conductivity and its monodispersity, despite a slight reduction in the mechani-
cal properties caused by plasticization effects. The interfacial interactions between the CNTs
and the POM matrix decreased, and the surface-to-surface interparticle distance decreased
with increasing number of clusters (agglomerates), thereby reducing the dispersity of CNTs
in the POM matrix. The FTIR spectra of POM/C1.5/I3/A0.5 nanocomposite and each
component are given in Figure S20. The peaks indicate that the nanocomposite indeed
comprised POM, CNT, ionomer, and cyanuric acid after extrusion processing.
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4. Conclusions

To improve the electrical conductivity of POM, we investigated the incorporation
of MWCNTs. However, the POM/CNT composites suffered from low dispersion in the
polymer matrix, thereby leading to high electrical conductivity and its poor monodispersity.
To address this issue, we incorporated the additives of ionomer and/or cyanuric acid into
the POM/CNT nanocomposites using a twin-screw extruder. The mechanical, thermal, and
rheological properties of the POM/CNT nanocomposites were examined, in particular their
surface resistance for the potential application as an electronic device-fixing jig. The effect
of the ionomer was to enhance the electrical conductivity, whereas that of the ethylene-co-
acid-co-sodium acid copolymer-based ionomer was to stabilize the electrical conductivity
value (electrical conductivity monodispersity). The influences of not only each additive
but also additive combinations were investigated. The tensile elongation at break and
Izod impact strength of the nanocomposites were slightly reduced by the infiltration of
additives into the POM/CNT nanocomposites, whereas their strength and modulus barely
changed. The tensile strength of ionomer-embedded nanocomposites gradually decreased
as a function of ionomer content. The incorporation of ionomer (forming a coating on
CNTs) and/or cyanuric acid (stabilizing π-π interaction between CNTs and cyanuric acid)
additives into the POM/CNT nanocomposites enhanced the CNT dispersion in the POM
matrix, thereby improving the electrical properties such as the electrical conductivity
and electrical conductivity monodispersity. The POM/C1.5/I3/A0.5 nanocomposite was
determined to have the optimum composition. Nanocomposites with tunable electrical
properties can be used, especially for antistatic and EMI applications such as electronic
device-fixing jigs.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/polym14091849/s1, Figure S1: FTIR spectra of CNTs: (A)
upper and (b) bottom parts of 1 kg CNT package.; Figure S2: Electrical conductivities of POM/CNT
nanocomposites as a function of CNT loading.; Figure S3: SEM images of neat POM and POM/CNT
nanocomposites with a magnification of ×10,000: (a) pristine POM, (b) POM/C0.5, (c) POM/C1, (d)
POM/C1.5, and (e) POM/C2.; Figure S4: DSC heating scans of pristine POM/C, POM/C/I, and
POM/C/A nanocomposites with different additive contents: (a) Ionomer, and (b) Cyanuric acid.;
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Figure S5: DSC cooling scans of pristine POM/C, POM/C/I, and POM/C/A nanocomposites with
different additive contents: (a) Ionomer and (b) Cyanuric acid.; Figure S6: TGA curves of pristine
POM/C, POM/C/I, and POM/C/A nanocomposites with different additive contents: (a) Ionomer
and (b) Cyanuric acid.; Figure S7: SEM images of POM/CNT (POM/C1.5) and POM/CNT/ionomer
(POM/C1.5/I) nanocomposites as a function of ionomer with a magnification of ×25,000: (a) I0,
(b) I0.5, (c) I1, (d) I2, (e) I3, and (f) I5.; Figure S8: SEM images of POM/CNT (POM/C1.5) and
POM/CNT/cyanuric acid (POM/C1.5/A) nanocomposites as a function of cyanuric acid with a
magnification of ×25,000: (a) A0, (b) A0.5, (c) A1, (d) A2, (e) A3, and (f) A5.; Figure S9: SEM images
of POM/CNT (POM/C1.5) and POM/CNT/ionomer (POM/C1.5/I) nanocomposites as a function
of ionomer with a magnification of ×10,000: (a) I0, (b) I0.5, (c) I1, (d) I2, (e) I3, and (f) I5.; Figure S10:
SEM images of POM/CNT (POM/C1.5) and POM/CNT/cyanuric acid (POM/C1.5/M) nanocom-
posites as a function of cyanuric acid with a magnification of ×10,000: (a) A0, (b) A0.5, (c) A1, (d) A2,
(e) A3, and (f) A5.; Figure S11: Electrical conductivities of POM/C1.5/I, POM/C1.5/A and various
nanocomposites (POM/C1.5, POM/C1.5/I3, POM/C1.5/A0.5, and POM/C1.5/I3/A0.5) nanocom-
posites: (a) POM/C1.5/I, (b) POM/C1.5/A, (c) POM/C1.5, POM/C1.5/I3, POM/C1.5/A0.5, and
POM/C1.5/I3/A0.5.; Figure S12: Tensile properties of POM/C, POM/C/I, and POM/C/A nanocom-
posites: (a) tensile strength, (b) tensile modulus, and (c) elongation at break.; Figure S13: Tensile
stress-strain of POM/C, POM/C/I, and POM/C/A nanocomposites with different additive concen-
trations: (a) Ionomer, (b) Cyanuric acid, and (c) combination of ionomer/cyanuric acid.; Figure S14:
Izod impact strengths of POM/C1.5, POM/C1.5/I, POM/C1.5/A, and POM/C1.5/I3/A0.5/TPU
nanocomposites as a function of additive loading (a) POM/C1.5, POM/C1.5/I, and POM/C1.5/A
and (b) POM/C1.5/I3/A0.5/TPU.; Figure S15: DMA data of POM/C1.5 and POM/C1.5/I nanocom-
posites with different ionomer concentrations: (a) Storage modulus, (b) loss modulus, and (c) tan
δ.; Figure S16: DMA data of POM/C1.5 and POM/C1.5/A nanocomposites with different cya-
nuric acid concentrations: (a) Storage modulus, (b,d) loss modulus, and (c,e) tan δ.; Figure S17:
Rheological properties of the POM/C1.5 and POM/C1.5/I nanocomposites: (a) Complex viscosity,
(b) shear storage modulus (G’), (c) shear loss modulus (G”) vs. frequency, and (d) G’ vs. G”.;
Figure S18: Rheological properties of the POM/C1.5 and POM/C1.5/A nanocomposites: (a) Com-
plex viscosity, (b) shear storage modulus (G’), (c) shear loss modulus (G”) vs. frequency, and (d) G’
vs. G”.; Figure S19: SEM images of pristine POM, POM/CNT, POM/C1.5/I3, POM/C1.5/A0.5, and
POM/C1.5/I3/A0.5 nanocomposites with a magnification of ×10,000: (a) None, (b) C 1.5, (c) C 1.5/I
3.0, (d) C 1.5/A 0.5, and (e) C 1.5/I 3.0/A 0.5.; Figure S20: FT-IR spectra of POM, CNT, ionomer,
cyanuric acid, and nanocomposite (POM/C1.5/I3/A0.5).
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