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Abstract: Turmeric oil (TO) exhibits various biological activities with limited therapeutic appli-
cations due to its instability, volatility, and poor water solubility. Here, we encapsulated TO in
chitosan/alginate nanocapsules (CS/Alg-NCs) using o/w emulsification to enhance its physico-
chemical characteristics, using poloxamer 407 as a non-ionic surfactant. TO-loaded CS/Alg-NCs
(TO-CS/Alg-NCs) were prepared with satisfactory features, encapsulation efficiency, release charac-
teristics, and cytotoxicity against breast cancer cells. The average size of the fabricated TO-CS/Alg-
NCs was around 200 nm; their distribution was homogenous, and their shapes were spherical,
with smooth surfaces. The TO-CS/Alg-NCs showed a high encapsulation efficiency, of 70%, with
a sustained release of TO at approximately 50% after 12 h at pH 7.4 and 5.5. The TO-CS/Alg-NCs
demonstrated enhanced cytotoxicity against two breast cancer cells, MDA-MB-231 and MCF-7, com-
pared to the unencapsulated TO, suggesting that CS/Alg-NCs are potential nanocarriers for TO and
can serve as prospective candidates for in vivo anticancer activity evaluation.

Keywords: ar-turmerone; polymeric nanoparticles; anticancer activity; release study;
biodegradable polymers

1. Introduction

Breast cancer (BC) is the most common type of cancer to be diagnosed and the primary
cause of cancer death among women, according to the Global Cancer Observatory 2020,
with an estimated incidence and mortality rate of 24.5% and 15.5%, respectively [1]. Gener-
ally, BC can be categorized as estrogen-receptor-positive (ER+) or -negative (ER−). Other
types, based on biomarkers such as progesterone receptor (PR) and human epidermal
growth factor receptor 2 (HER2), are further sub-categorized as luminal A and B, basal-like,
and HER2+ [2,3]. Basal-like BC or triple-negative BC (TNBC) is a unique type due to
the absence of the biomarkers ER, PR, and HER2 [4]. The development of an effective
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treatment strategy for breast cancer remains very complex due to its multifaceted behavior
against protein expression. Different types of BC respond differently to treatments, making
BA treatment almost intractable. Current therapy for BC involves a multimodal strategy
combining surgery, chemotherapy, radiotherapy, adjuvant therapy, and hormonal ther-
apy [5–7]. However, long- or short-term use could result in an economic and psychological
burden on patients and, worse, a high chance of multidrug resistance and detrimental side
effects [8]. Thus, the survival rate of patients with BC is still unsatisfactory. Currently,
researchers are leaning toward finding alternative forms of treatment for BC, whether in the
form of therapeutics, adjuvant treatments, chemopreventive agents, or effective targeting
and delivery systems [9,10]. For many years, phytochemicals have been viewed as novel
approaches to the targeting and killing of cancer cells while mitigating the harmful side
effects of conventional therapies [8].

Turmeric (Curcuma longa L.), which belongs to the family Zingiberaceae, has been
used as a traditional home remedy, dye, and food additive in Southeast Asia. One of the
major components of turmeric is turmeric oil (TO) which mainly contains ar-turmerone.
TO has been widely used in pharmaceutical applications due to its broad range of bio-
logical activities, particularly its antioxidant [11] and anticancer properties [12]. Previous
ar-turmerone studies on breast cancer showed the inhibition of enzymatic activity and the
expression of matrix metallopeptidase 9 (MMP-9) and cyclooxygenase-2 (COX-2) through
the nuclear factor kappa-light-chain-enhancer of activated-B-cells (NF-κB) pathway [13].
Furthermore, this compound was proven to stimulate peripheral blood mononuclear cell
(PBMC) proliferation and cytokine production [14]. However, despite numerous reports on
promising anti-cancer and immunomodulatory activities, TO possesses various disadvan-
tages, such as instability, volatility, and highly lipophilic properties, limiting its therapeutic
applications [15,16].

Recently, nanoparticles (NPs) have been the primary source of interest in therapeutic
formulations for amplifying stability, bioavailability, and delivery to the target site [17].
Alginate (Alg) and chitosan (CS) are interesting in pharmaceutical applications due to
their non-immunogenicity, biocompatibility, biodegradability, sustained release into the
bloodstream or cancerous tissue, and enhanced drug-encapsulating efficiency [18,19]. Var-
ious preparation techniques have been developed concerning the production methods
of chitosan/alginate nanoparticles (CS/Alg-NPs), including sonication [20], electrostatic
gelation [21], the self-assembly of polysaccharides [22], the extrusion of polymer disper-
sions [23], electrospraying [24], and microfluidic methods [25]. The ionotropic gelation
method, based on electrostatic interaction, is one of the most frequently utilized formulation
methods [26]. The ionotropic gelation method produces CS/Alg-NPs through pre-gelation
and polyelectrolyte complexation phases. While the pre-gelation phase occurs via the ionic
cross-linking of divalent cations with Alg, the polyelectrolyte complexation phase occurs
via electrostatic interactions between the negatively charged carboxylic acid groups of Alg
and the positively charged amino groups of CS [27,28]. CS/Alg-NPs have been reported as
useful nanocarriers for the encapsulation of chemotherapeutic compounds. Alternatively,
emulsification solvent diffusion/evaporation methods are developed for enhancing the
solubility of encapsulated compounds in CS/Alg-NPs through oil/water (o/w) emulsion,
using stabilizers such as poloxamers [29]. Kumar et al. [29] and Das et al. [30] revealed the
positive effect of poloxamer on the encapsulation efficiency of hydrophobic curcumin in
CS/Alg-NPs. Sorasitthiyanukarn et al. [31,32] successfully fabricated CS/Alg nanocarriers
using o/w emulsification and ionotropic gelation methods by encapsulating curcumin
diethyl diglutarate [31] and curcumin diglutaric acid [32] by improving bioavailability and
enhancing anticancer activity.

In 2008, Lertsutthiwong et al. [33] reported an approach to overcome these restrictions
by encapsulating TO in a biopolymer network, forming Alg nanocapsules (Alg-NCs). How-
ever, the TO-loaded Alg-NCs (TO-Alg-NCs) displayed low stability at room temperature
and poor drug loading capacity. To overcome these limitations, CS, a natural polysaccha-
ride consisting of β-(1→4) glycosidic linked D-glucosamine and N-acetyl-D-glucosamine,
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can be used to coat TO-Alg-NCs to obtain TO-loaded chitosan/alginate nanocapsules
(TO-CS/Alg-NCs) for physicochemical property improvement [15,16,34]. However, the
information on the biological activities of TO-CS/Alg-NCs is limited, and the CS/Alg-NC
system for the encapsulation of TO needs to be developed. Therefore, this study was
undertaken to establish TO-CS/Alg-NCs with improved physicochemical characteristics
and cytotoxicity against two invasive breast carcinoma cell lines, hormone-dependent
MCF-7 (ER+ and PR+) and basal-like MDA-MB-231 (TNBC), both of which are invasive
breast carcinoma cells.

2. Materials and Methods

Chemicals. TO was purchased from Thai–China Flavours and Fragrances Industry
(Nonthaburi, Thailand). The amount of ar-turmerone in TO was found to be about 12%.
Ar-turmerone was provided by the Department of Chemistry and Center of Excellence
for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University (Bangkok,
Thailand). CS (MW = 63 kDa, 91.74% DD) was supplied by Marine Bio-Resources (Samut
Sakorn, Thailand). Sodium Alg (medium viscosity) and poloxamer 407 were purchased
from Sigma-Chemicals (St. Louis, MO, USA). Acetonitrile was purchased from RCI Labscan
(Bangkok, Thailand). Absolute ethanol, glacial acetic acid, calcium chloride, and other
chemicals were purchased from Carlo Erba reagents (Val de Reuil, France).

Cell Culture. Human breast cancer cells (MCF-7 and MDA-MB-231) and HEK293 were
cultured in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% fetal
bovine serum and 100 units/mL penicillin/streptomycin (Gibco™ Thermo Fisher Scientific
Inc., Waltham, MA, USA) in humidified atmosphere of 5% CO2 at 37 ◦C.

2.1. Preparation of TO-CS/Alg-NCs

TO-CS/Alg-NCs were prepared by o/w emulsification of TO in the aqueous solu-
tion of Alg followed by ionotropic gelation with calcium chloride and coating with a CS
solution using the method previously described by Lertsutthiwong et al. [15], with slight
modifications. Briefly, 1% (v/v) ethanolic TO solution was added dropwise using a syringe
pump (NE 100, New Era, Pump System Inc., New York, USA), at a speed of 20 mL/h, into
the aqueous Alg solution (20 mL, 0.6 mg/mL) containing poloxamer 407 (0.65% (w/v)), and
continuously stirred at 1000 rpm for 30 min using a magnetic stirrer (Onilab LLC Scientific
Inc., MS-H380-Pro, Riverside, CA, USA). The o/w emulsion was then sonicated for 15 min,
and calcium chloride solution (4 mL, 0.67 mg/mL) was added and continuously mixed for
another 30 min. Subsequently, the CS solution (0.1 mg/mL) was added dropwise into the
mixture, followed by continuous mixing for 30 min. The TO-CS/Alg-NC suspension was
equilibrated overnight in the dark before characterization.

2.2. Physicochemical Characterization

The particle size, polydispersity index (PDI), and zeta potential of obtained TO-CS/Alg-
NCs were characterized using a Nano-ZS Zetasizer (Malvern Instruments Ltd., Worcerter-
shire, UK). The particle size and PDI were determined by dynamic light scattering and zeta
potential was measured by electrophoretic mobility of the NCs [15]. The morphology of
the obtained TO-CS/Alg-NCs was visualized using a transmission electron microscope
(JEM-2100, JEOL, Tokyo, Japan). The functional groups and interaction between TO and ex-
cipients were analyzed using a Fourier transform infrared spectrometer (FT-IR, PerkinElmer
Inc., Boston, MA, USA) at a range of 400–4000 cm−1 with a resolution of 2 cm−1 and 64 scans
per spectra.

The encapsulation efficiency (EE) and loading capacity (LC) were determined via
the indirect method and quantified using ultra-high-performance liquid chromatography
(UHPLC, Agilent 1290 Infinity II LC System, CA, USA) according to the reported method,
with some modifications [15]. The TO-CS/Alg-NC suspension was ultracentrifuged (Ul-
tracentrifuge, Hitachi CP 100NX, Ibaraki, Japan) at 4 ◦C and 45,000 rpm for 1 h. The
settled NCs were lyophilized (Lyophilizer, FreeZone, Labconco, MO, USA) for 24 h, and the
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unencapsulated TO in the supernatant was determined by UHPLC. Briefly, the collected
supernatant was diluted with ethanol and filtered through a 0.45-micrometer syringe filter
before injection into an Intersil® ODS-3 column (4.6 mm× 150 mm, i.d., 5 µm) (GL Sciences
Inc., Tokyo, Japan) maintained at 33 ◦C. The mobile phase was a mixture of water and
acetonitrile (25:75) in an isocratic elution. The injection volume was set at 20 µL with a
0.5 mL/min flow rate. A diode array detector was used to detect the analyte at a wavelength
of 254 nm. The chromatographic analysis data running time was 30 min per sample with
standard ar-turmerone eluted at a retention time of 12.8 min. The quantity of TO in the NCs
was computed as the difference between the total amount of TO initially added into the
formulation (TOformulation) and the amount of TO present in the supernatant (TOsupernatant).
The EE and LC were evaluated using Equations (1) and (2).

EE (%) =
(TO formulation − TO supernatant)

TO formulation
× 100 (1)

LC (%) =
(TO formulation − TO supernatant)

Dry mass of NCs
× 100 (2)

2.3. In Vitro Release and Kinetics Studies

The release study of TO from CS/Alg-NCs was performed using a dialysis diffusion
method based on a previous report [35], with modifications. Phosphate-buffered saline
(PBS) solution (1 mg/mL potassium dihydrogen phosphate, 2 mg/mL dipotassium hy-
drogen phosphate, 8.5 mg/mL sodium chloride in deionized water, pH 7.4) and sodium
acetate buffer (50 mg/mL sodium acetate in 1% acetic acid, with the pH adjusted with
4.2 g/L sodium hydroxide to pH 5.5) were used, with 40 % (v/v) ethanol in each medium.
A dialysis bag (SnakeSkin™, 10,000 Da MWCO, 33 mm diameter; Thermo Scientific, Illi-
nois, USA) with a molecular weight cut-off at 12,000–14,000 Da (Cellu-Sep® T4, TX, USA)
was first soaked in the respective media for 24 h before the experiment. TO-CS/Alg-NC
suspension (20 mL) was added into the dialysis bag and sealed with clips on both ends. The
dialysis bag was immersed in the release medium (500 mL) and maintained at 37 ◦C under
continuous agitation at 100 rpm. Sampling times were set between 0 and 24 h, wherein
5 mL of medium were withdrawn at specific time points. The withdrawn samples were
replaced with an equal volume of fresh medium to maintain sink conditions throughout
the experiment. The concentration of TO in the medium was quantified using UHPLC and
calculated against the calibration curve. The cumulative TO released (%) was computed
based on Equation (3):

CR (%) =
Ve ∑n–1

i=1 Cn–1 + VoCn

m
× 100 (3)

where CR is the cumulative amount of TO released (%), Ve is the sampling volume (5 mL),
Vo is the total volume of release medium (500 mL), Cn is the concentration of TO at a
particular time point (mg/mL), and m is the total amount of TO in TO-CS/Alg-NCs (mg).

The mechanisms involved in the release of TO from CS/Alg-NCs at pH 5.5 and
7.4 were analyzed using non-linear regression by fitting the release data to different kinetic
models using the add-in DDsolver software in Microsoft Excel [36]. The kinetic constant
(k) was derived using zero-order kinetics, first-order kinetics, Korsmeyer–Peppas’ power
law equation, and Hixson–Crowell’s cube root-of-time equation. The release exponent (n)
was also determined using Korsmeyer–Peppas’ power law equation. The goodness-of-fit
of the release of TO was evaluated by comparing the coefficient of determination (r2) of the
different models [37]. For the Korsmeyer–Peppas model, the release exponent (n) can be
categorized into values for n < 0.43 corresponding to a spherical matrix and a drug release
mechanism with Fickian diffusion, with 0.43 < n < 0.85 indicating anomalous transport
from spheres and n > 0.85 suggesting drug release from spheres by polymer swelling [38].
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2.4. In Vitro Biological Assay

The cell viability assay was adapted from previous work with modifications [39].
Briefly, the cytotoxicities of the unencapsulated TO, TO-CS/Alg-NCs, and the nanocarrier
(CS/Alg-NCs) were evaluated using MDA-MB-231, MCF-7, and HEK293 cell lines. The
cells were seeded at a density of 3 × 104 cells per 100 µL into each well of 96-well culture
plates and incubated for 24 h. Next, the cells were treated with five serial concentrations of
pure TO and TO-CS/Alg-NCs in a serum-free medium and incubated at 37 ◦C for 24 h. The
cytotoxicity of the CS/Alg-NCs was also evaluated at a concentration range of 10 to 60%
(v/v). After 24 h of treatment, the culture medium was removed and 100 µL of an MTT
reagent (0.5 mg/mL in serum-free medium) was added to each well and further incubated
at 37 ◦C. After 4 h, the MTT medium was removed, and the insoluble formazan crystals
were dissolved by adding dimethyl sulfoxide (DMSO). After complete dissolution, the
absorbance was measured at 570 nm using a microplate reader (CLARIOstar, BMG Labtech,
Ortenau, Baden-Württemberg, Germany). The percentage of cell viability was calculated
using Equation (4):

Cell viability (%) =
(

ODSample

)
/(ODControl)× 100 (4)

2.5. Statistical Analysis

All experiments were performed in triplicate and data were expressed as mean ± standard
deviation (SD). The half-maximal inhibitory concentrations (IC50) for TO and TO-CS/Alg-
NCs were determined through a non-linear regression-curve-fit analysis. A two-way
ANOVA was then used to analyze the cell viability data and IC50 values. Tukey’s multiple
comparisons test was used as the post hoc test. All statistical analyses were performed using
GraphPad® Prism software version 9.3.0 (San Diego, CA, USA), with p < 0.05 considered
statistically significant.

3. Results and Discussion
3.1. Preparation and Characterization of TO-CS/Alg-NCs

The TO-CS/Alg-NCs were prepared by o/w emulsification followed by inotropic
gelation based on the previous method, with some modifications [33]. Concerning the
procedure of the NC preparation, the NC suspension was used for the subsequent experi-
ments without washing. Although potential impurities, including the organic solvent and
surfactant, might have been carried over to the next experiments, these impurities were
minimal due to the usage of organic solvent and surfactant at very low concentrations.
In addition, the prepared nanosuspension was ultracentrifuged at 45,000 rpm at −4 ◦C
for 1 h to separate the unencapsulated TO and surfactant before lyophilization. The NC
preparation was equilibrated overnight to complete the crosslinking process and allow
the NCs to form with a uniform size [32]. The o/w emulsification proceeded through
the dropwise addition of the ethanolic TO to the aqueous Alg solution containing polox-
amer as an emulsifier. Poloxamer is an amphiphilic block copolymer, which consists of
poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer (PEO-
PPO-PEO) [40]. The hydrophobic block in the middle interacted with the TO, while the
hydrophilic block on both ends interacted with the aqueous phase, forming micelles. Next,
the polymeric Alg micelles with a TO core underwent ionotropic gelation with calcium
chloride to form a rigid egg-box structure of oligopolyguluronic sequences, which were
presented in the ionic form of the carboxylate group of Alg crosslinking with calcium ion
in mildly acidic pH [41]. Following ionotropic gelation, a polyelectrolyte complex between
the protonated amino groups of the CS and the ionized carboxylate groups of the Alg was
formed. The strength of polyelectrolyte complexation is mainly affected by the pH [42],
and, therefore, the carboxylate groups of Alg are ionized at a pH greater than its pKa of
4.4 [43]. However, the amino groups of CS are protonated at pH less than its pKa of 6.5 [44].
In this study, we adjusted the Alg and CS solution to pH 4.9 and 6.0, respectively, to provide
sufficient protonated and ionized groups for electrostatic linkages. The magnitude of the
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electrostatic interaction between the Alg and the Ca+ ions and cationic CS polymer could
have affected the characteristics of the NCs. High interaction is represented as positive or
less negative zeta potential values due to the conservation of the free cationic groups on the
surfaces, resulting in the more rigid and compact structure of the NCs (Figure 1) [27]. The
results showed an average size of 184.8 ± 14.8 nm and a PDI of 0.192 ± 0.1, indicating the
monodispersity of the particles (Figure 2A). The relatively small particle size obtained using
poloxamer 407 as a stabilizer was attributed to its higher HLB value (HLB = 18) than Tween
80 (HLB = 15), which was used in a previous study [15]. Surfactants possessing higher HLB
values are more suitable for o/w emulsification due to their high water solubility; thus, less
aggregation occurs, resulting in more stable and smaller particles [45]. The zeta potential
was also determined to predict the stability of the NCs in the aqueous system based on
their surface charge. The NCs rendered a negative zeta potential value of about −21.8 ± 1.1
(Figure 2B). Wu et al. [46] suggested that a nanosuspension formulated using poloxamer
407 as a non-ionic surfactant is stable if the zeta potential ranges between −20 and −30 mV.
Thus, the use of poloxamer 407 in this study can improve the stability of the NCs.

The morphology of the TO-CS/Alg-NCs was visualized by TEM after diluting the
nanosuspension 50× in ultrapure water. The NCs were spherical and had smooth surfaces,
with a particle size of approximately 200 nm (Figure 2C,D). It was evident in the image that
a thin layer of CS was coated onto the TO-Alg-NCs, as indicated by the arrow shown in
(Figure 2D). The EE and LC were determined by the indirect method. The concentration of
the unencapsulated ar-turmerone in the TO-CS/Alg nanosuspension was determined using
the calibration curve of the standard ar-turmerone (y = 86.082x + 10.617, R2 > 0.9999). The
EE and LC of the TO-CS/Alg-NCs using poloxamer 407 were 70.3 ± 1.3% and 3.4 ± 1.3%,
respectively. The LC was similar to that in the previous report using Tween 80 as a surfac-
tant [15]. However, the EE of the TO-CS/Alg-NCs using poloxamer 407 (HLB = 18) was
higher than that of using Tween 80 (HLB = 15). Ranjith and Wijewardene [47] suggested that
a high HLB value renders more water-soluble stabilizers; hence, hydrophobic drugs such
as TO can be more stable in an aqueous phase, resulting in high encapsulation efficiency.

Further characterization was carried out by FT-IR to investigate possible interactions
on the TO-CS/Alg-NCs (Figure 3). In the empty NCs, an IR peak at 1102 cm−1 represented
–CH–OH in cyclic alcohol and C–O stretching of the CS, while the peak near 1341 cm−1

belonged to the C–H bending in poloxamer 407. The peaks at about 1605 cm−1 and
1414 cm−1 were attributed to the stretching of the –COO- groups in the Alg and the N–H
twisting vibration of the essential amine of CS, respectively. These results suggest the
interaction between the –COO- of the Alg and the –NH3

+ of the CS to form a strong
polyelectrolyte complexation and the encapsulation of the TO in the CS/Alg-NCs [48]. In
the spectrum of the TO, a peak at 1685 cm−1 could be assigned to the C=O group from
the active component, ar-turmerone. The bands between 3100 cm−1 and 2900 cm−1 were
attributed to the –OH group or the –NH and aliphatic C–H of the TO [49,50]. Additionally,
the TO peaks, 1112, 1618, and 1685 cm−1, shifted to 1108, 1576, and 1635 cm−1, respectively
in the TO-loaded CS/Alg-NCs, indicating the presence of the C=O and CH–OH functional
groups, respectively [49]. Moreover, most of the characteristic absorption bands of the
TO in the spectrum of the TO-CS/Alg-NCs broadened with the reduction in the intensity,
indicating the successful encapsulation of the TO into the CS/Alg-NCs.
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on the TO-CS/Alg-NCs (Figure 3). In the empty NCs, an IR peak at 1102 cm−1 represented 
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loaded CS/Alg-NCs, indicating the presence of the C=O and CH–OH functional groups, 
respectively [49]. Moreover, most of the characteristic absorption bands of the TO in the 
spectrum of the TO-CS/Alg-NCs broadened with the reduction in the intensity, indicating 
the successful encapsulation of the TO into the CS/Alg-NCs. 

Figure 2. Physical characteristics of TO-CS/Alg-NCs. (A): Size distribution by intensity, (B): Zeta
potential distribution, (C,D): TEM images at 50,000 and 100,000×magnification, respectively.
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3.2. In Vitro Release Study of TO

The pH-responsive behavior of the release of the TO from the TO-CS/Alg-NCs was
observed in the buffers simulating the blood/normal tissues (pH 7.4) and the acidic en-
dosome environment (pH 5.5) of the cancer cells [51]. Changes in pH changes may be
observed as NCs traverse different biological compartments in the human body. For the
characterization of the release profile of hydrophobic molecules, the release medium often
includes solubility-enhancing agents to better capture the in vivo performance of a drug
delivery system [52]. The actual release of the TO from the TO-CS/Alg-NCs was also a
function of the mild shear stress due to the constant agitation of the system while incu-
bating at 37 ◦C. This process mimicked the movement of extracellular fluids around the
particles [52]. The NCs inside the dialysis bag contained only the aqueous dispersion of the
NCs. The presence of ethanol (40% (v/v)) in the release buffers, contained in the receiver
compartment, facilitated a faster molecular diffusion of the TO throughout the aqueous
phase [53]. Thus, it served to maintain a sink condition, preventing the back diffusion of
the TO from the receiver to the donor (dialysis bag) compartment [54]. In fact, the use of
ethanol in release experiments ranges from 10 to 96%, alone or in combination with water
or buffers [35,55–60].

Nonetheless, the present study acknowledges some limitations on the conditions of the
release experiments that may have had a substantial influence on the quantification of the
release of the TO. As is evident in Figure 4A, the slow release profile of the unencapsulated
oil in both release media may suggest non-sink conditions, which may have taken the form
of the precipitation of the TO inside the dialysis chamber or the affinity of the TO with the
dialysis membrane, preventing the unhindered permeation of the TO and its translocation
to the receiver compartment [61]. This was evidenced by the apparently large variations in
the % TO released in largest number of time points and the absence of a trend showing the
immediate and complete release of the TO. However, it can be observed in Figure 4A that
the release of the TO from the CS/Alg-NCs provided a biphasic pattern that is typically
observed in polymeric NPs. This profile is characterized by a burst release effect followed
by a slow release phase [62]. Phase 1 is characterized by the rapid release of TO molecules
that are surface-bound or near the water layer. This may be attributed to the diffusion
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and migration of TO molecules during the fabrication and drying processes, leading to
burst release effects as water molecules move to the gel surface, carrying TO molecules
via convection and leading to higher TO concentrations at the surface of the carrier. Phase
2, characterized by a slow release, results in a few TO molecules diffusing from the core
to maintain a slow and sustained release [63]. This effect can be governed by slow TO
diffusion through the polymer matrix or existing pores and is simultaneous with polymer
hydrolysis and degradation [62]. Moreover, the diffusion of water would hydrolytically
break the bonds of the polyelectrolyte complex [62].
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The lower standard deviations in the release of the TO from the TO-CS/Alg-NCs in
both release media may imply the efficiency of the CS/Alg-NCs at entrapping, releasing,
and dispersing the hydrophobic TO within the dialysis chamber. The efficient release from
the NCs could maintain the sink conditions by ensuring that the TO concentration in the re-
ceiver compartment was low compared to the TO concentration within the dialysis chamber
throughout the entire release study. These reasons are based on a number of assumptions,
such as the improved dispersion of the hydrophobic TO due to its encapsulation in the
CS/Alg-NCs. In fact, the amount of compound in the receiver compartment should not
exceed more than 80% of the total amount of compound used in the experiment [54]. This
requirement was achieved, since less than 80% of the TO was translocated to the receiver
compartment. This result was important to overcome the effect of the receiver compartment
in driving osmosis across the dialysis membrane [64].

In addition, the swelling of polymers and the penetration of fluids into the particles
may well take a finite amount of time. This argument may implicate the overall release
study and potentially underestimate the release profile of the TO when the release experi-
ment was halted before reaching 100% TO. However, the 24-h dynamic dialysis method
to determine the release profile was used in conjunction with the duration of the cell ex-
periment, which was also set to 24 h. With reference to Section 3.3, the slow liberation of
the TO from the CS/Alg-NCs may have been responsible for maintaining a therapeutic
intracellular concentration of TO, resulting in the reasonable cytotoxicity of the TO in the
breast cancer cells. This was the case when CS-NPs encapsulated TO in a previous report,
with <30% of the TO released within 24 h in both neutral and acidic media [65]. The same
study revealed that extending the release study even for up to 20 days only released the
TO by 52%. Our previous study utilized CS/Alg NPs to encapsulate TO, but the in vitro
release profile and kinetics were not characterized [65].

Based on the zeta potential of the TO-CS/Alg-NCs (−21.8 mV), it was evident that the
negative charge was due to the higher charge density of the carboxyl groups of the Alg,
resulting in a higher cross-linking with the CS, a stronger polyelectrolyte membrane, and
smaller pores. This was desirable, as an excess of CS results in a positively-charged value
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for zeta potential, producing increased hypertonicity, which, in turn, increases the osmotic
pressure on the polyelectrolyte membrane and leads to a premature bursting effect [37].
A previous study demonstrated that the swelling of the polyelectrolyte complex (PEC) of
CS and Alg was higher in acidic than in neutral conditions. At pH 5.5, a stronger PEC
membrane is expected, since the CS and Alg are still completely ionized, increasing their
counterion charge density [37]. However, the presence of counterions in the buffer solutions
results in the charge neutralization of the particles, bringing the apparently negatively
charged functional groups of the TO-CS/Alg-NCs close to the isoelectric point [66,67].

Furthermore, the TO release at pH 5.5 was higher than that at pH 7.4. The favored
release at pH 5.5 can be explained by the protonation of the NH2 groups of CS (up to
pH 6.8), which were randomly distributed along with the PEC, resulting in the swelling of
CS and promoting the release of the TO through the porous CS/Alg-NCs into the release
media [63]. By contrast, the TO from the NCs was slowly released at pH 7.4 because of the
decreased solubility and shrinkage of the CS, which prevented the release of the TO from the
CS/Alg-NCs [32,37]. At higher pH, the solubility of CS decreases. These observed effects
are desirable, since TO should be preferentially released within the acidic intracellular
environments of cancer cells [63]. These results demonstrate the pH-responsiveness of the
TO-CS/Alg-NCs, which can be regarded as useful in the delivery of compounds due to the
differential pH that can be observed in cancerous and normal tissues [68]. Therefore, the
CS/Alg-NC carrier is suitable to deliver TO by relying on pH, an internal stimulus that is
practical, convenient, and non-invasive in the human body [69].

Comparing the r2 among the release kinetic models in Table 1, the highest value
was attained for the Korsmeyer–Peppas model. This implies that the Korsmeyer–Peppas’
power-law release kinetics was the best-fit model for describing the release behavior of the
TO from the CS/Alg-NCs in both release media (Figure 4B,C). The release exponent (n)
of the Korsmeyer–Peppas model can be used as a parameter to analyze the configuration
of the nanoparticle and the release mechanism involved. Drug release mechanisms from
polymeric NPs can be classified into diffusion through water-filled pores, diffusion through
the polymer matrix, osmotic pumping, and erosion [62]. It was apparent that the zero-order
release profile did not appropriately represent the release of the TO from the CS/Alg-NCs.
The values of n at pH 5.5 and 7.4 were 0.356 and 0.455, respectively. Since the n value at
pH 5.5 is less than 0.43, TO-CS/Alg-NCs can correspond to a spherical matrix and a drug
release mechanism with Fickian diffusion. In this type of observed behavior, the rate of
solvent diffusion is much greater than the process of polymeric chain relaxation, promoting
the rapid equilibration of solvent on the surface exposure of the polymeric system. On the
other hand, a value between 0.43 and 0.85 can be associated with non-Fickian diffusion,
specifically an anomalous transport from the spheres. In this case, the release of TO from the
polymeric matrix was governed by the diffusion or swelling of the matrix. Moreover, the
velocity of the solvent diffusion and the polymeric relaxation possessed similar magnitudes.
These observations may be attributed to the differences in solubility in different media [70].
Additional in vitro release studies would be valuable to assess time points beyond 24 h to
better capture more predictive results for in vivo studies.

Table 1. Comparison of release kinetics model of TO from CS/Alg-NCs in different media.

Medium
Zero-Order First-Order Korsmeyer–Peppas Hixson–Crowell

k0 r2
0 k1 r2

1 n kk r2
k kH r2

H

pH 5.5 3.705 −0.5653 0.078 0.4225 0.356 20.650 0.8352 0.018 0.1962
pH 7.4 2.813 0.1404 0.0654 0.6207 0.455 11.442 0.8390 0.013 0.4935

3.3. In Vitro Cytotoxicity Assay

The cytotoxic effects of the unencapsulated TO and TO-CS/Alg-NCs (with equivalent
TO concentrations ranging from 20 to 120 µg/mL) were evaluated against the MDA-MB-231
and MCF-7 breast cancer cells using the MTT reduction assay (Figure 5A,B). The two breast
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cancer cell lines were chosen for comparative purposes and to differentiate the responses
of the cancer cell lines to the treatments. The MDA-MB-231 and MCF-7 cells are commonly
used because they differ in origin, survival, and recurrence rates. The MCF-7 cell line, which
originates from human breast adenocarcinoma, is non-metastatic and positive for estrogen
receptor (ER+) and progesterone receptor (PR+). The MDA-MB-231 cells belong to the
triple-negative breast cancer subtype, which lacks the estrogen receptor (ER), progesterone
receptor (PR−), and human epidermal growth factor receptor (HER2−). MDA-MB-231 cells
are highly invasive and commonly represent late-stage breast cancer [71,72]. The possible
off-target effects of the unencapsulated TO and TO-CS/Alg-NCs were evaluated using
HEK293 cells (Figure 5C). The HEK293 is the human embryonic kidney epithelial cell line
commonly used to study the toxic effects of nanoparticles [73]. It is an appropriate model
as a non-breast-cancer cell line since it demonstrates no tissue-specific gene expression
signature, and differentiation markers of several tissues are highly expressed [74].
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ments in the cancer cells and HEK293 cell line at 20 μg/mL of TO. Evaluating the safety of 
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Figure 5. The viability of (A) MDA-MB-213, (B) MCF-7, and (C) HEK293 cells treated with TO and
TO-CS/Alg-NCs (equivalent to 20 to 120 µg/mL TO), and (D) MDA-MB-231, MCF-7, and HEK293
cells treated with 10 to 60% (v/v) of CS/Alg-NCs.

ANOVA was applied to the cell viability data to determine if there was a significance
in the mean difference among the unencapsulated TO and TO-CS/Alg-NCs across the
cell lines. The results indicate no significant differences in the cell viability across all the
treatments in the cancer cells and HEK293 cell line at 20 µg/mL of TO. Evaluating the
safety of the nanocarrier system in a normal cellular environment is an essential tool to
ascertain the suitability of the biomaterial for administration to the human body. Therefore,
the biocompatibility of the nanocarrier (CS/Alg-NCs) was evaluated using the HEK293
cells (Figure 5D). The present study highlights pronounced toxicity toward HEK293 cells
of at least 50% (v/v) in the CS/Alg-NCs, with the HEK293 cells showing the viability
of less than 70%. Figure 5D also shows that up to 40% (v/v) of the CS/Alg-NCs were
considered non-toxic (>70% viability) toward HEK293 and the two breast cancer cell lines,
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demonstrating the most relevant concentration of the nanocarrier to be considered for
subsequent studies. The TO alone did not induce significant cell death in the MDA-MB-231
and MCF-7 cells, even up to 80 µg/mL. The cytotoxic response was augmented when the
TO was encapsulated in the CS/Alg-NCs. At 40% (v/v) of CS/Alg-NCs, equivalent to
80 µg/mL of TO in the TO-CS/Alg-NCs, significant percentages of the MDA-MB-231 (28%)
and MCF-7 (40%) were inhibited. Furthermore, both the MDA-MB-231 and the MCF-7
had at least a 60% reduction in cell viability at 100 µg/mL. At 120 µg/mL, at least 80%
of the cells were not viable, demonstrating that the CS/Alg-NCs enhanced the toxicity of
the TO against the MDA-MB-231 and MCF-7. This demonstrates the TO-concentration-
dependent cytotoxicity of the MDA-MB-231 and MCF-7. Overall, the sensitivity of both
the MDA-MB-231 and the MCF-7 to the TO-CS/Alg-NCs was prominent between 80 to
120 µg/mL, confirming the cytotoxicity of the TO nanocapsules in different subtypes of
breast cancer cells. This implies that the internalization of TO can be enhanced through
its encapsulation in CS/Alg-NCs and the endocytosis of TO-CS/Alg-NCs. The factors
that may have contributed to the enhanced activity of the TO-CS/Alg-NCs toward the
breast cancer cells include their size <200 nm, negative zeta potential, and spherical shape.
The negative zeta potential (−21.8 mV) implies that the primary amine groups of the
chitosan may have electrostatically interacted with the carboxyl groups of the alginate.
On the other hand, this result also indicates that there is an increased association among
the hydrophobic acetyl groups of chitosan, promoting stronger hydrophobic interactions
with cancer cell membranes [75]. Moreover, the TO-CS/Alg-NCs, which have a negative
surface charge, may act as proton sponges, increasing the osmotic pressure within the
endosome to release the TO within the cytosol [76]. The significantly higher cytotoxic effect
of the TO-CS/Alg-NCs compared to the unencapsulated TO may also be attributed to the
sustained release of the TO from the CS/Alg-NCs in the acidic intracellular pH. Concerning
the release of the TO from the CS/Alg-NCs, the observed release profile could suggest
that a sufficient amount of TO might not have been liberated within the duration of the
release study. Nevertheless, the cell viability results imply that the TO encapsulated in the
CS/Alg-NCs showed enhanced cytotoxic activity compared to the TO alone, providing
evidence that a sufficient concentration of TO was released in the cytosol. The chitosan–
alginate polyelectrolyte (PEC) complex was needed to protect the TO and release most
of it intracellularly. The PEC may be responsible for the higher mechanical strength of
the nanocarrier against possible degradation from chitosanases and lysozymes than either
polymer alone [76]. Another possible mechanism underlying the enhanced cytotoxicity
of the TO-CS/Alg-NCs includes the presence of the CD44 receptor, a transmembrane
glycoprotein, in the MDA-MB-231 and the MCF-7. Although this mechanism may be more
relevant for hyaluronic acid, the natural ligand of CD44, its structural similarity to chitosan
through the functional group N-acetyl glucosamine could have led to the binding and
endocytosis of the nanocapsules. Studies have shown that the level of CD44 in MDA-
MB-231 was four times as high as that in MCF-7 cells [73,77]. Considering this plausible
mechanism, this study partly demonstrates the prominent differential susceptibility of
the luminal subtype MCF-7 and the basal subtype MDA-MB-231 to cytotoxic compounds,
confirming the documented resistance of MDA-MB-231 to most of the chemotherapeutic
drugs, including TO, in the present study [72].

The IC50 values of the TO and TO-CS/Alg-NCs’ activity against the MDA-MB-231,
MCF-7, and HEK293 cells are presented in Table 2. The IC50 values of the TO-CS/Alg-NCs
differed significantly from the IC50 values of the unencapsulated TO against the MDA-MB-
231 and MCF-7, indicating that the TO-CS/Alg-NCs had significantly higher cytotoxicity
against the MDA-MB-231 and MCF-7 than the equivalent dose of the unencapsulated TO.
The cytotoxic effects of the TO-CS/Alg-NCs observed in both breast cancer and normal
cells demonstrate the non-selectivity of the nanocarriers.
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Table 2. Mean IC50 values of unencapsulated TO and TO-CS/Alg-NCs against MDA-MB-231, MCF-7,
and HEK293 cell lines.

Cell Line
IC50 (µg/mL)

Unencapsulated TO TO-CS/Alg-NCs

MDA-MB-231 329.53 ± 8.06 99.11 ± 3.40 *
MCF-7 344.60 ± 42.5 82.88 ± 4.40 *,ˆ

HEK293 141.33 ± 11.09 84.30 ± 9.60
ANOVA results: * p < 0.0001 (compared to unencapsulated TO), ˆ p = 0.8765, no significant difference (compared
to mean IC50 of TO-CS/Alg-NCs in MDA-MB-231).

The potential off-target effects of the TO-CS/Alg-NCs (at an equivalent concentration
of at least 80 µg/mL TO) were shown by the reduced viability of HEK293 cells of 41%. Since
the nanocarrier CS/Alg-NCs resulted in a >70% viability for HEK293 cells at the equivalent
concentration, the significant off-target effects imply that the reduced viability resulted
from the encapsulation of the TO in the CS/Alg-NCs. The cell death of HEK293 cells may
have come from the wide variety of phytochemicals present in the TO [78]. Based on the
cell viability findings of the present study, a possible strategy to overcome this limitation is
to optimize the concentration of TO in CS/Alg-NCs to achieve an optimum therapeutic
efficacy while reducing the toxic side effects. The cytotoxic effects may also be attributed to
the components of the nanocarrier system itself. Nanoparticle-induced apoptosis in both
normal and cancer cells can occur via ROS generation triggering the activation of caspase
9, consequently inducing the intrinsic apoptosis pathway through the mitochondria [79].
Therefore, another strategy to overcome these unwanted findings is to conjugate a ligand
with CS. The selective toxicity toward breast cancer cells can be increased by targeting
the folate receptors, which are highly expressed in breast cancer cells. The nanocarrier
can result in even higher cytotoxicity toward breast cancer cells through ligand-receptor-
mediated endocytosis. Conjugating folic acid with chitosan has been shown to increase
the cytotoxicity of drug-loaded nanocarriers toward breast cancer cells and their biocom-
patibility with normal cells, as demonstrated in several studies [69,80–82]. Nevertheless,
it was clear that the encapsulation of the TO in the CS/Alg-NCs significantly enhanced
their cytotoxicity toward the breast cancer cells. Therefore, the use of TO-CS/Alg-NCs
can be proposed as a potential alternative therapeutic strategy for breast cancer treatment.
Further optimization studies are required to appropriately design the nanoformulation for
intravenous administration with minimal off-target effects on normal cells.

4. Conclusions

TO-CS/Alg-NCs containing poloxamer 407 as a non-ionic surfactant were prepared
using the o/w emulsification, ionotropic gelation, and freeze-drying method with a CS/Alg
mass ratio of 0.03:1, 0.65% poloxamer, and 1% TO. The prepared NCs were spherical in
shape, with an average particle size of 200 nm and a zeta potential of −21.8. The EE of the
TO was 70. The FTIR analysis confirmed the PEC between the primary amines of CS and
the carboxylic groups of Alg. The PEC formation was also confirmed by the significant
change in the surface charge of the TO-Alg-NCs following CS coating. No new chemical
entity formation was observed, indicating chemical compatibility between the TO and the
CS/Alg-NCs. The sustained release of TO of approximately 50% after 12 h in both media
suggests that CS/Alg-NCs can be used as sustained and controlled nanocarriers for TO.
The cytotoxicity of the TO-CS/Alg-NCs was significantly more potent than that of the
unencapsulated TO against both the MDA-MB-231 and the MCF-7. With a computed EE of
70%, we can assume that the unencapsulated or unbound TO was 30%. The cytotoxicity
of the TO-CS/Alg Alg-NCs was likely to have been due to both the encapsulated and the
unencapsulated TO. In the future, the enhanced cytotoxicity of TO-CS/Alg-NCs against
cancer cells can be further improved by the functionalization of polymeric materials with
cancer-specific ligands for developing active targeted delivery systems.
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