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Abstract: Soybean oligosaccharides (SBOS) isolated from wastewater of tofu production were studied
in terms of their structural characteristics and in vitro fermentation by human fecal inocula. Three
sub-fractions named Z1 (14%), Z2 (13%), and Z3 (17%) were obtained by Sephadex G-15 column
separation. Z1 contained mainly stachyose; Z2 and Z3 contained stachyose, raffinose, and sucrose
with different relative percentages. The in vitro batch fermentation model of human intestinal
bacteria including 0, 12, 24, and 48 h was used to investigate the fermentation characteristics of SBOS.
According to the results, during the fermentation process, the molecular weight of oligosaccharides
decreased significantly with increasing fermentation time, indicating that oligosaccharides could be
utilized and degraded by the colonic microbiota. Furthermore, SBOS could significantly promote the
production of short-chain fatty acids (SCFAs), especially acetic, propionic, and butyric acids. SBOS
increased the abundance of Firmicutes, while that of Proteobacteria was decreased. Additionally, SBOS
could promote the proliferation of Dialister, Bacteroides, and Akkermansia at the genus level. Therefore,
SBOS can be potentially used as prebiotic promoting gut health.

Keywords: soybean; oligosaccharides; in vitro fermentation; short-chain fatty acids; gut microbiota

1. Introduction

Tofu, also known as bean curd, is a food product prepared by coagulating soy milk
and pressing the resulting curds into solid white blocks of varying softness [1]. In tofu
production, by-products such as soy whey, bean dregs (almost 15 million tons each year),
and wastewater are produced [2,3]. These by-products are mostly used as animal feeds,
fertilizer, and in biofuel production, or even left for waste, causing environmental issues
such as bad odors and pollution to surface and groundwater [1,4]. On the other hand, these
by-products are rich in many nutrient components, including proteins, sugars, oligosaccha-
rides, minerals, and soy isoflavones; therefore, they have value-added potential.

In recent years, oligosaccharides, as an excellent microbiota-accessible carbohydrate,
have exhibited important prebiotic properties via their fermentation in the intestine, which
is attributed to them acting as carbon sources for specific probiotics, promoting the pro-
duction of SCFAs, and regulating the gut microbiota [5]. Soybean oligosaccharides (SBOS)
isolated from soybean have been widely reported, which consist mainly of raffinose,
stachyose, and sucrose [6]. Many studies have indicated that SBOS could significantly
reduce abnormal blood sugar, lipid levels, and oxidative stress. In addition, they could
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competitively inhibit potential pathogenic bacteria, improve insulin resistance, and en-
hance the immune system to prevent various diseases [7–13]. Recently, tofu wastewater
(also known as yellow water due to its yellow color), one of the main by-products of
tofu production, has been reported to contain SBOS [14]. Various technologies, such as
reverse osmosis and nanofiltration membranes, have been used to separate SBOS from tofu
wastewater [11]. However, the exact molecular structures of SBOS from tofu wastewater
have rarely been reported [1]. In addition, the fermentability of tofu wastewater SBOS on
human gut microbes, either as mixtures or single fractions, has yet to be reported [6,12].

In the present study, crude SBOS were isolated from wastewater of tofu production
and subsequently separated into three sub-fractions, Z1, Z2, and Z3, using Sephadex G-15
column chromatography. The structural features of each fraction were confirmed using
corresponding standards. The impacts of SBOS and its sub-fractions on human intestinal
microbiota were also investigated. The comprehensive analysis of the generated SCFAs
and gut microbiota compositions was conducted using gas chromatography (GC) and
high-throughput 16S rDNA gene sequencing. This study aimed to enhance the value-
added applications of soybean wastewater and provide a reference for the exploitation and
utilization of other soybean by-products in the food industry.

2. Materials and Methods
2.1. Materials and Chemical Reagents

Wastewater of tofu production was provided by Tianjin Shanhaiguan Bean Products
Co., LTD (Tianjin, China). The flow chart of tofu production is demonstrated in Figure 1.
Moreover, 2-ethylbutyric acid and volatile free acid standard mix including acetic acid, pro-
pionic acid, isobutyric acid, butyric acid, isovaleric acid, valeric acid, isocaproic acid, caproic
acid, and heptanoic acid were purchased from Sigma-Aldrich Chemical Co. (Shanghai,
China). All the other chemicals and solvents used in the study were of analytical grade.
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2.2. Isolation and Fractionation of SBOS

Yellow wastewater from tofu production was condensed (1/5 of its original volume)
and precipitated using three times the volume of cold ethanol (4 ◦C). The supernatant was
then freeze-dried and termed crude SBOS. The crude SBOS isolated from wastewater of
tofu production were redissolved in distilled water (30 mg/mL), and 2 mL solution was
passed through the Sephadex G-15 column (1.0 × 70 cm, Sigma, Shanghai, China) at a flow
rate of 0.5 mL/min with ultra-pure water. The SBOS were pooled based on the elution
curve monitored by the phenol–sulfuric acid method [15].

2.3. Oligosaccharide Profile Analysis

Each tube solution containing SBOS obtained from the Sephadex G-15 column was
determined using a Shimadzu HPLC system (Prominence LC-20A, Kyoto, Japan) equipped
with an Ultrahydrogel TM DP guard column, Ultrahydrogel TM 250 column (7.8 × 300 mm,
Waters, Milford, MA, USA), and Ultrahydrogel TM DP 120A column (7.8 × 300 mm,
Waters, Milford, MA, USA) in series, coupled with a refractive index detector (RI). The
running conditions were as follows: 20 µL oligosaccharide solution (3 mg/mL), detecting
temperature at 40 ◦C, flow rate of 0.5 mL/min, and Milli-Q water as the mobile phase.
According to the results, the different sub-fractions collected were designated Z1, Z2, and
Z3 in the order of increased retention volume.

2.4. In Vitro Fermentation of SBOS
2.4.1. Preparation of Human Intestinal Microbiota and Medium

This study used a high concentration of fecal inoculum from human fecal samples
to provide the microbiota and as the main source of nutrients for the bacteria [16]. The
fresh human feces were collected from three healthy volunteers aged 20–28 who had not
been treated with antibiotics in the last three months. Fecal samples were collected as
described by Young-Do N et al. [17]. Approximately 5 g of stool sample was collected into
sterile plastic containers by the participants themselves and immediately brought to the
experimental laboratory. The feces were mixed well in an equal amount in an anaerobic
incubator and stored at –80 ◦C until further processing.

The protocol followed Ding et al. [18], with minor modifications. In brief, 1 L anaerobic
incubation medium (AIM) containing 50 mg CaCl2, 2 mg CoCl·6H2O, 20 mg FeSO4, 900 mg
K2HPO4, 50 mg MgSO4, 20 mg MnSO4·H2O, 900 mg NaCl, 4000 mg Na2CO3, 900 mg
(NH4)2SO4, 20 mg MnSO4·H2O, and 1 mg resazurin was sterilized at 121 ◦C for 20 min
(pH 6.8) after boiling and flushing with mixed gas (10% CO2, 10% H2, and 80% N2).
Additionally, vitamins including 0.05 mg biotin, 2 mg calcium D-pantothenate, 0.005 mg
cobalamine, 0.05 mg folic acid, 2 mg nicotinamide, 0.1 mg para-aminobenzoic acid, 2 mg
vitamin B2, 2 mg vitamin B6, 2 mg vitamin B1, and 1000 mg L-Cysteine HCl solutions
were sterilized using 0.22 µm filters, and then mixed with the autoclaved medium in
the anaerobic chamber (Shanghai CIMO Medical Instrument Manufacturing Co., Ltd.,
Shanghai, China).

2.4.2. In Vitro Fermentation

In the fermentation system, oligosaccharides including SBOS, raffinose, stachyose,
sucrose, C1 (a mass ratio of raffinose and stachyose of 1:3), and C2 (a mass ratio of raffinose,
stachyose and sucrose of 1:3:4), which was based on a previous study [19], were the sole
carbon source, with a concentration of 1% (w/v), and 10% (w/v) of feces (fecal mixture
from three volunteers) was selected for inoculation. Specifically, 0.04 g oligosaccharide
samples were thoroughly dissolved in 4 mL AIM, and then mixed with feces (0.4 g) in
an anaerobic chamber. Subsequently, the mixture was introduced in different anaerobic
sealed bags for 48 h at 37 ◦C in a thermostat incubator (ZWY-103B, Shanghai Zhicheng
Analytical Instrument Manufacturing Co., Ltd., Shanghai, China). The culture fluid was
collected at 0 h, 12 h, 24 h, and 48 h, respectively, and centrifuged at 11,000 r/min for
20 min. The supernatant was used to determine SCFAs and changes in molecular weight,
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while the precipitate was used to investigate the changes in human gut microbiota. Fructo-
oligosaccharides (FOS) served as the positive control, while the negative control (NC) only
contained feces in AIM without carbon sources added.

2.5. Determination of SCFAs

The supernatant of the fermentation culture was filtrated through a 0.22 µm membrane,
and the SCFAs were analyzed by a GC (Bruker 450GC, Billerica, MA, USA) system equipped
with a Nukol TM Fused Silica Capillary Column (60 m × 0.25 mm × 0.25 µm) and flame
ionization detector (FID). The temperatures of the injector and detector were 200 ◦C and
250 ◦C, respectively. The standard curves were established with volatile free fatty acid
mixed standard, and 2-ethylbutyric acid was added as an internal standard.

2.6. Changes in Mw of SBOS

The supernatant of the fermentation culture was filtrated through a 0.22 µm membrane
and the changes in the oligosaccharide profiles of SBOS and sub-fractions under the
different fermentation times were tracked by HPLC. The analysis method was the same as
described in Section 2.3.

2.7. 16S rDNA Gene Sequencing of Gut Microbiota

The genomic DNA was extracted according to the method of Chen et al. [20]. The
PCR amplification was performed on the V3-V4 hypervariable regions of the bacterial
16S rDNA genes, which used the forward primer 341F (5′-CCTAYGGGRBGCASCAG-3′)
and the reverse primer 806R (5′-GGACTACNNGGGTATCTAAT-3′). PCR products were
accumulated using the QIAquick PCR Purification Kit (QIAGEN, Hilden, Germany). The
16S rDNA amplicon sequencing was performed on the Illumina NovaSeq PE250 platform
(Novogene Bioinformatics Technology Co., Ltd., Beijing, China). The Ion Plus Fragment
Library Kit 48 rxns library construction kit of Thermofisher Company (Waltham, MA, USA)
was used to construct the library. After the library was qualified by Qubit quantification
and a library test, the Ion S5TMXL of Thermofisher was used for computer sequencing.
Clean reads of all samples were clustered by Uparse software (Uparse v7.0.1001, Robert
C Edgar, Tiburon, CA, USA,) at a 97.0% similarity level to obtain OTUs. Alpha diversity
analysis was performed using ACE, Chao 1, rarefaction curves, and Shannon indexes. The
weighted unifrac algorithm was used for the analysis of PCoA. The analysis of LefSe was
performed with a threshold >4.0.

2.8. Statistical Analysis

The data were expressed as means ± standard deviations (STD) based on triplicate
tests. The statistical significance of differences (p < 0.05) was analyzed by ANOVA using
SPSS 25.0 software (IBM Corp, Chicago, IL, USA).

3. Results
3.1. Isolation and Fractionation

As shown in Figure 2b, crude SBOS contained six peaks. The percentages of peaks 1
to 6 were 40.1%, 9.2%, 4.8%, 23.4%, 5.0%, and 17.5%, respectively, according to the ratios
of peak areas. Compared with standards, peak 1, peak 2, and peak 3 (Figure 2a) in SBOS
corresponded to stachyose, raffinose, and sucrose, respectively. The SBOS were then further
separated and purified by the Sephadex G-15 column, from which three components were
obtained, named Z1, Z2, and Z3, with yields of 14%, 13%, and 17%, respectively, as shown
in Figure 2b. The contents of stachyose, raffinose, sucrose, and glucose were determined
based on the peak area ratios of each component in Z1, Z2, and Z3. As shown in Figure 2b
and Table 1, Z1 was stachyose (100%); Z2 contained stachyose (60.41%), raffinose (28.07%),
and sucrose (11.52%); Z3 was composed of sucrose (67.69%), stachyose (19.25%), and
raffinose (13.06%).
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Figure 2. The HPLC chromatogram of SBOS, glucose, sucrose, raffinose, and stachyose (a); the HPLC
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Table 1. Peak area ratios of stachyose, raffinose, sucrose in Z1–Z3 components and monosaccha-
ride composition.

Fractions Yield (%)
Peak Area Ratios (%)

Stachyose 1 Raffinose 2 Sucrose 3

Z1 14 100.00 - -
Z2 13 60.41 28.07 11.52
Z3 17 19.25 13.06 67.69

1 Rt: 33.87 min; 2 Rt: 35.03 min; 3 Rt: 36.91 min.

3.2. In Vitro Fermentation
3.2.1. SCFAs Production

According to the standard curves of SCFAs in mixed acid standards, as shown in
Table 2, the concentrations of SCFAs including acetic acid, propionic acid, isobutyric acid,
butyric acid, isovaleric acid, valeric acid, isocaproic acid, caproic acid, and heptanoic acid of
FOS, raffinose, stachyose, sucrose, SBOS, C1, and C2 generated during in vitro fermentation
at different time points are presented in Figure 3.

Table 2. Standard curves of SCFAs in mixed acid standards.

SCFAs Standard Curve R2

Acetic acid y = 0.1556x − 0.0057 0.9916
Propionic acid y = 0.3400x − 0.0216 0.9905
Isobutyric acid y = 0.4474x − 0.0257 0.9947

Butyric acid y = 0.4396x − 0.0282 0.9924
Isovaleric acid y = 0.4801x − 0.0259 0.9958

Valeric acid y = 0.4696x − 0.0413 0.9921
Isocaproic acid y = 0.4630x − 0.0359 0.9959

Caproic acid y = 0.4582x − 0.0359 0.9953
Heptanoic acid y = 0.4388x − 0.0310 0.9950
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Acetic acid, propionic acid, and butyric acid were the main SCFAs obtained by the
in vitro fermentation of oligosaccharides. Compared with the negative control (NC), the
acetic acid, propionic acid, and butyric acid production from FOS were increased signifi-
cantly (p < 0.05) at 24 h. The same trends were observed in stachyose, but the concentration
of SCFAs was slightly lower than FOS. The acetic acid content in the sucrose group reached
the maximum at 12 h fermentation, which was 25.50 ± 4.90 mM, slightly lower than that in
the FOS group (26.33 ± 5.42 mM). The content of acetic acid produced by the SBOS group
was increased to 25.75 ± 7.24 mM at 24 h fermentation, which reached a maximum. At 24 h
fermentation, the amounts of propionic acid produced by FOS, stachyose, and SBOS were
10.07 ± 0.29 mM, 5.42 ± 0.53 mM, 3.19 ± 0.44 mM, respectively. The content of butyric acid
produced by SBOS at 12 h reached the highest at 1.73 ± 0.37 mM, which was higher than
the stachyose and raffinose groups but lower than the FOS group.

Previous studies showed that the major SCFAs of soybean meal oligosaccharides
(SMO) were acetic, propionic, and butyric acids, which accounted for approximately 94.4%
of the total SCFAs [21]. The total SCFAs produced by stachyose and raffinose were higher
than SMO. SCFAs play several roles in animal and human metabolism. Among them, acetic
acid is the main SCFA in the large intestine, which is absorbed by the colonic epithelium
cells and then transported to the heart, brain, and nerve tissues for energy [22]. Butyric
acid is the primary source of energy for colon epithelial cells, which maintains the integrity
of the intestinal mucosal barrier. It has the unique ability to promote the normal phenotype
of colon cells by repairing damaged DNA [23]. Propionic acid can inhibit the synthesis
of cholesterol [24]. Moreover, as early as 1991, a study showed that the oligosaccharides
fructans, stachyose, lactose, and raffinose could pass into the large intestine and were
readily fermented to produce SCFAs [25].

3.2.2. Changes in Mw during Fermentation

The Mw changes of the NC group and different oligosaccharides during the fer-
mentation are shown in Figure 4. With the increase in fermentation time, the Mw of
oligosaccharides decreased significantly. As demonstrated in Figure 4, the peak time of
oligosaccharides changed and the peak area was decreased during the fermentation, in-
dicating that they could be utilized and degraded by the colonic microbiota. As shown
in Figure 4B,C,E, the fermentation ability of FOS and stachyose was weaker than that of
sucrose. Interestingly, there were no large peaks after 12 h fermentation for stachyose,
SBOS, C1, or C2 groups, which indicated that these oligosaccharides could be quickly
utilized by colonic microorganisms and most of them were degraded. In general, the ability
of intestinal microorganisms to use oligosaccharides for fermentation was affected by the
types, molecular weights, and the proportions of each component of oligosaccharides. In
the present study, SBOS could be quickly utilized and degraded by colonic microorganisms.
Similarly, recent studies observed that oligosaccharides were rapidly degraded during
in vitro fermentation [26], which is consistent with our results.

3.2.3. Changes in Microbiota Composition

Dietary carbohydrates can be selectively utilized by gut microbiota to modulate the
composition of the gut microbiota and activate the proliferation of probiotics associated
with host health [27]. In the present study, the effects of FOS, raffinose, stachyose, and
SBOS on the gut microbiota were examined using the sequences of the 16S rDNA gene
(repeated three times).

The alpha diversity of the gut microbiota can reflect microbial species diversity, includ-
ing richness and uniformity. The rarefaction curves, which were used to confirm whether
the sample sizes and sequencing depth were adequate to study the intestinal microbiota,
are shown in Figure 5C. The results showed that with the increase in sequencing depth and
sample size, no additional OTUs were detected, revealing that the data of the gut microbial
community were sufficient and credible to meet the requirements for data analysis. Here,
the ACE, Chao 1, and Shannon indexes were used to evaluate the complexity of the micro-
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bial communities. As shown in Figure 5A,B, compared with the NC.12 group, the ACE and
Chao1 indexes were significantly increased in the STA.12, SBOS.12, and SBOS.24 groups
(p < 0.05), indicating that the treatments of these groups could increase the community
richness of the fecal microbiota. In addition, compared with the NC.12 group, the Shannon
index was significantly increased in the STA.12, STA.24, and SBOS.12 groups, suggesting
that the microbial community diversity was raised with the treatments of these groups.

Polymers 2022, 14, x FOR PEER REVIEW 8 of 16 
 

 

  

  

  

  

Figure 4. Mw distribution of NC (A) and oligosaccharides FOS (B), raffinose (RAF) (C), stachyose 

(STA) (D), sucrose (SUC) (E), SBOS (F), C1 (G), C2 (H) before and after simulated intestinal fermen-

tation by human fecal microbiota. 

3.2.3. Changes in Microbiota Composition 

Dietary carbohydrates can be selectively utilized by gut microbiota to modulate the 

composition of the gut microbiota and activate the proliferation of probiotics associated 

10 20 30 40

0
1
2
3
4
5
6
7
8
9

10
11

48h

24h

12hIn
te

n
si

ty
(m

V
)

Retention time (min)

C2

×
1
0
0
0
0

H

C2

Figure 4. Mw distribution of NC (A) and oligosaccharides FOS (B), raffinose (RAF) (C), stachyose
(STA) (D), sucrose (SUC) (E), SBOS (F), C1 (G), C2 (H) before and after simulated intestinal fermenta-
tion by human fecal microbiota.



Polymers 2022, 14, 1704 9 of 16

Polymers 2022, 14, x FOR PEER REVIEW 9 of 16 
 

 

with host health [27]. In the present study, the effects of FOS, raffinose, stachyose, and 

SBOS on the gut microbiota were examined using the sequences of the 16S rDNA gene 

(repeated three times). 

The alpha diversity of the gut microbiota can reflect microbial species diversity, in-

cluding richness and uniformity. The rarefaction curves, which were used to confirm 

whether the sample sizes and sequencing depth were adequate to study the intestinal mi-

crobiota, are shown in Figure 5C. The results showed that with the increase in sequencing 

depth and sample size, no additional OTUs were detected, revealing that the data of the 

gut microbial community were sufficient and credible to meet the requirements for data 

analysis. Here, the ACE, Chao 1, and Shannon indexes were used to evaluate the com-

plexity of the microbial communities. As shown in Figure 5A,B, compared with the NC.12 

group, the ACE and Chao1 indexes were significantly increased in the STA.12, SBOS.12, 

and SBOS.24 groups (p < 0.05), indicating that the treatments of these groups could in-

crease the community richness of the fecal microbiota. In addition, compared with the 

NC.12 group, the Shannon index was significantly increased in the STA.12, STA.24, and 

SBOS.12 groups, suggesting that the microbial community diversity was raised with the 

treatments of these groups. 

 

Figure 5. Alpha diversity including ACE (A), Chao 1 (B), rarefaction curves (C), and Shannon index 

(D). 

Figure 5. Alpha diversity including ACE (A), Chao 1 (B), rarefaction curves (C), and Shannon
index (D).

A Venn diagram is presented in Figure 6A,B that shows overlap in the observed OTUs
among these samples. There were 245 shared OTUs at 12 h and 255 shared OTUs at 24 h of
fermentation. A higher number of OTUs were retained at 24 h than 12 h of fermentation.
PCoA was carried out based on the weighted unifrac distances to analyze the taxonomy in
the oligosaccharide and NC groups, as shown in Figure 6C. The results suggested that the
clusters of the oligosaccharide groups intertwined mutually but detached from those of the
NC.12 group, which is consistent with the results of alpha diversity.
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In Figure 7, the gut microbiota composition structures at the phylum and genus levels
for all the groups are displayed. The microbiota community was mainly composed of Fir-
micutes, Bacteroidetes, Actinobacteria, and Proteobacteria at the phylum level (Figure 7A).
After 24 h, the relative abundances of Bacteroidetes and Firmicutes decreased, while those
of Actinobacteria and Proteobacteria increased in the control group. Compared with the
NC.0 group, the relative abundance of Firmicutes was significantly increased in the SBOS
group, while the abundance of Proteobacteria was reduced, indicating that SBOS could
promote the regulation of the intestinal microenvironment, which is consistent with the
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results of Arseneau et al. [28]. Studies have confirmed that a bloom of Proteobacteria is a
manifestation of dysbiosis or instability of the gut microbial community [29]. In the FOS.12
and FOS.24 groups, the relative abundance of Proteobacteria was slightly reduced, while
that of Bacteroidetes and Actinobacteria was significantly increased.
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To further identify the specific genus of interest to metabolize SBOS, the abundance of
the genera was evaluated, as shown in Figure 7B. At the genus level, the gut bacteria before
fermentation were mainly composed of Klebsiella, unidentified_Ruminococcaceae, Dialister,
Faecalibacterium, Bacteroides, Roseburia, Agathobacter, and so on. After 24 h fermentation,
six genera, namely unidentified_Enterobacteriaceae, Weissella, Enterococcus, Bifidobacterium,
Roseburia, and Sphingomonas, were obviously increased, whereas Klebsiella, Faecalibacterium,
and Dialister were decreased compared to the control group. Compared with the NC.12
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group, STA.12 and SBOS.12 decreased the relative abundance of genera Klebsiella, Weissella,
Enterococcus, and Romboutsia, and promoted the proliferation of Alistipes, Dialister, Faecal-
ibacteerium, and Bacteroides. In addition, SBOS also significantly increased the abundance
of Akkermansia, which could improve the inflammatory response and protect intestinal
epithelial cells [30]. Moreover, the genera Dialister, Faecalibacterium, Bacteroides, and Bi-
fidobacterium were increased in the FOS.24, RAF.24, and STA.24 groups compared to the
NC.24 group. Among them, Bifidobacteria is the most often utilized prebiotic oligosaccha-
ride, which can beneficially affect host health [30,31]. One study has shown that feeding
SBOS resulted in significantly higher Bifidobacteria and Clostridium perfringens than in the
control group [32].

The distribution histogram based on LDA scores is shown in Figure 8A, which esti-
mates the intestinal microbiota diversity and reveals the dominant microorganisms in the
oligosaccharide and NC groups. These results indicate that Klebsiella, Faecalibacterium in the
NC 0 group and Peptostreptococcaceae, Romboutsia in the NC.12 group had a significant in-
fluence. Meanwhile, in the NC.24 group, Proteobacteria, Enterobacteriales, Enterobacteriaceae,
Gammaproteobacteria, and Escherichia-coli had an important influence in the dominant com-
munity. However, many beneficial bacteria were found after oligosaccharide treatment.
Among them, Bacteroidales, Bacteroidetes, Bacteroidia, and Prevotellaceae had an important
influence in the FOS.12 group. Prevotellaceae has an important role in the hydrolysis of
dietary fiber among intestinal microorganisms, and its activity can be significantly in-
creased by carbohydrate treatment [33]. Bacteroidetes have a significant role in promoting
metabolism and immune function in obese people [34]. In the RAF.24 group, there was
one dominant family and two types of dominant genera: Leuconostocaceae, Weissella, and
Weissella-cibaria. There were eight types of dominant genera for the stachyose groups after
12 h and 24 h, respectively, including Granulicella, Dorea, Bifidobacterium, Ruminococcus, etc.
In the SBOS groups, Clostridia, Ruminococcaceae, Clostridiales, Arthrobacter, Cytophagaceae, etc.,
had an important influence. SCFAs are mainly produced by microbial fermentation and
are the main products of intestinal bacterial metabolism. Akkermansia, Ruminococcus, and
Prevotella have been reported to be associated with the degradation of carbohydrates and
the production of SCFAs [35,36]. In addition, the results of the evolutionary branch graph
of LEfSe are presented in Figure 8B. In the NC group, the branches of Proteobacteria were
the major microbiota. In comparison, the predominant gut microbiota, such as Firmicutes
and Bcteroidetes, played a critical role in fermentation in the oligosaccharide group. These
results were in accordance with the analysis of the microbiota composition shifts at the
phylum and genus levels. Therefore, SBOS could be used as a dietary supplement to
improve gut microbiota and promote gut health.

3.3. Correlation of Structure and Prebiotic Properties

According to a previous study, the utilization rate of oligosaccharides may depend on
their structures, including the degree of polymerization, degree of glycoside binding, and
branching [37]. For instance, the prebiotic activity of pectin oligosaccharides (POSs) was
positively correlated with the branching degree (galactose: rhamnose and arabinose: rham-
nose molar ratios) and the content of neutral sugars, especially galactose and arabinose [38].
Moreover, many recent studies indicated that low-Mw or de-polymerized oligosaccha-
rides exhibit better colonic persistence and thus have increased fermentability by intestinal
microbial communities [39]. In addition, Wu et al. summarized the structural features,
interactions with the gut microbiota, and anti-tumor activity of eight common natural
oligosaccharides, namely FOS, human milk oligosaccharides (HMOS), galactooligosaccha-
rides (GOS), xylooligosaccharides (XOS), chitinoligosaccharides (NACOS), arabinoxylo-
oligosaccharides (AXOS), mannan-oligosaccharides (MOS), and isomaltooligosaccharides
(IMOS), with low-viscosity oligosaccharides, which displayed a fast fermentation rate by
gut microbiota [40].
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4. Conclusions

In conclusion, SBOS could be extracted from tofu wastewater and purified into three
sub-fractions, named Z1, Z2, and Z3. Among them, Z1 was identified as stachyose, while
Z2 and Z3 contained stachyose, raffinose, and sucrose with different amounts. Thus, SBOS
were confirmed to be an oligosaccharide mixture including tetrasaccharide, trisaccharide,
and disaccharides. In addition, the results of in vitro fermentation showed that SBOS
could be degraded and significantly promoted the production of SCFAs, especially acetic,
propionic, and butyric acids. Additionally, SBOS could modulate the intestinal microbiota
composition and significantly increase the relative abundance of beneficial bacteria. These
results provide a good understanding of the effects of SBOS on the fermentability of the
human gut and SBOS can be developed as potential functional ingredients to maintain
human intestinal health. Although we can confirm, to a certain extent, that SBOS are a
possible prebiotic capable of promoting intestinal health, the in vitro fermentation model
also has some limitations—for instance, microorganisms are not easily controlled during
fermentation; intestinal absorption, digestive secretion, and the intestinal defense system
are not considered. Therefore, in vivo experiments on SBOS should be conducted to further
verify their probiotic potential.
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