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Abstract: Polydimethylsiloxane (PDMS) foam materials with lightweight, excellent oil resistance
and mechanical flexibility are highly needed for various practical applications in aerospace, trans-
portation, and oil/water separation. However, traditional PDMS foam materials usually present
poor chemical resistance and easily swell in various solvents, which greatly limits their potential
application. Herein, novel fluorosilicone rubber foam (FSiRF) materials with different contents
of trifluoropropyl lateral groups were designed and fabricated by a green (no solvents used) and
rapid (<10 min foaming process) foaming/crosslinking approach at ambient temperature. Typi-
cally, vinyl-terminated poly(dimethyl-co-methyltrifluoropropyl) siloxanes with different fluorine
contents of 0–50 mol% were obtained through ring-opening polymerization to effectively adjust
the chemical resistance of the FSiRFs. Notably, the optimized FSiRF samples exhibit lightweight
(~0.25 g/cm−3), excellent hydrophobicity/oleophilicity (WCA > 120◦), reliable mechanical flexibility
(complete recovery ability after stretching of 130% strain or compressing of >60%), and improved
chemical resistance and structural stability in various solvents, making them promising candidates
for efficient and continuous oil–water separation. This work provides an innovative concept to design
and prepare advanced fluorosilicone rubber foam materials with excellent chemical resistance for
potential oil–water separation application.

Keywords: fluorosilicone rubber foam; room-temperature foaming; mechanical flexibility;
chemical resistance; oil–water separation

1. Introduction

Silicone rubber foam (SiRF) is one of the most versatile porous polymeric foam ma-
terials, which has been widely used in the fields of transportation, electronics, aerospace,
and national defense because of its light weight, good mechanical flexibility, and facile
processability [1–7]. The molecular structure of polydimethylsiloxane (PDMS) foam, as the
most representative one of SiRF materials, is composed of a crosslinked –Si–O–Si– backbone
and many −CH3 pendant moieties. The structural features make it possess intriguing
properties, such as wide temperature usage range (−60–220 ◦C), mechanical flexibility, high
thermal and chemical resistance, and thermal insulating performance [8,9]. Therefore, the
PDMS foam material has drawn considerable academic and industrial attention during the
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past few years [10–15]. With the ever-increasing development of society, the demand for
polymer foam materials at home and abroad continues to grow [16–22] and more demands
are imposed on the production and performance of all polymeric foams, particularly for
SiRFs. Unfortunately, the −CH3 pendant moiety of PDMS-based SiRF has low polarity [23]
and the solubility parameter (δ) of PDMS (δ = 7.3 (cal/cm3)1/2) [24] is similar to that for
nonpolar organic solvents such as hexane (δ = 7.2 (cal/cm3)1/2). It is easy to absorb solvent
and swell upon exposure to the most nonpolar or low-polar environment, resulting in
deformation and even failure of PDMS foam structural components, which seriously limits
its application [25,26], especially in the field of oil–water separation application [27].

To overcome the above drawbacks, many strategies have been developed to enhance
the solvent resistance of the PDMS foam materials. Generally, the modifying strategies of the
PDMS materials could be divided into physical and chemical methods. Physical modification
was usually accomplished by coating some hybrid inorganic/organic polymers or addition of
various fillers so that the material’s swelling ratio to organic solvent could be reduced. The
chemical method usually refers to grafting some functional groups to the PDMS chains [28,29].
For instance, Peng et al. used oxygen plasma and trichloro(1H,1H,2H,2H-perfluorooctyl)
silane to surface-modify the PDMS foam materials that were prepared by dissolved sugar
method [30], and the modified sample presented excellent hydrophobicity. However, these
above strategies still show some shortages, e.g., the unchanged intrinsic chemical resistance
of the PDMS foam materials, the uncertain structure stability of filler/polymer coatings
in organic solvents, and impractical toxic solvents used. Moreover, most of the above
approaches still need lengthy and complex steps, e.g., centrifugation and vacuum, high
temperature drying, and complex special facilities. Therefore, it is urgent and challenging
to develop an extremely simple, green, and rapid approach to prepare silicone rubber foam
materials with tunable chemical resistance.

As is well-known, the fluorine-containing groups (e.g., −CH2CH2CF3) with high
polarity could reduce the material’s surface energy, and they thus are usually used to
incorporate into the polysiloxanes to improve the material’s chemical resistance in both
nonpolar solvents and oils [31]. Previous studies have demonstrated that the chemical
resistance of traditional silicone rubber could be enhanced by the partial replacement of
methyl groups with some fluorine groups [32]; for example, fluorosilicone rubber [33–35].
However, there are few reports about the preparation of fluorosilicone rubber foam ma-
terials. Recently, Métivier et al. used supercritical CO2 as the foaming agent to prepare
poly(methylvinyldimethyl)siloxane/fluorosilicone foam materials via physical foaming
method [36]. Unfortunately, the density of the fluorosilicone rubber foam materials was
more than 0.50 g/cm3, demonstrating the closed-cell structure, which cannot be used for
oil–water separation. Therefore, developing an extremely simple, green, and facile method-
ology for fabricating novel, lightweight, mechanically flexible, and chemical-resistant
fluorosilicone rubber foam (FSiRF) materials is still of great significance.

In this work, we designed and synthesized vinyl-terminated poly(dimethyl-co-methyl-
trifluoropropyl) siloxanes with different fluorine contents via anionic ring-opening polymer-
ization. Water was used as an effective foaming agent to prepare the novel fluorosilicone
rubber foam materials through a simple chemical dehydrogenative foaming method under
ambient temperature condition. The foaming process can be finished in only several min-
utes and no solvents were used, showing unique features such as environment-friendliness,
safety, facile, and no residual foaming agent. The prepared FSiRF samples show good
compatibility with hydrogen dimethicone, and the fluorine content could be controlled by
simply adjusting the composition of the starting compounds. By the partial replacement of
methyl groups with some trifluoropropyl groups, the solvent and oil resistance of FSiRF
samples are greatly improved in comparison with traditional PDMS foam materials; the
porous FSiRFs feature high compressibility and stretchability, outstanding hydrophobic-
ity/oleophilicity, as well as high structural stability. Discrepancies in the pore structure,
mechanical properties, thermal stability, and solvent resistance of the five FSiRFs with differ-
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ent fluorine content were investigated. Moreover, the solvent-resistant mechanisms were also
discussed and the application of the material in oil–water separation is also demonstrated.

2. Experimental Section
2.1. Materials

1,3,5-Tris(3,3,3-trifluoropropyl)-1,3,5-trimethylcyclotrisiloxane (D3
F) was provided by Shan-

dong Weihai Xinyuan Chemical Co., Ltd. (Weihai, China). Octamethylcyclotetrasiloxane
(D4) and hydrogen dimethicone (PDMS-H, 1.6 wt.% hydrogen group) was supplied by
Zhejiang Xin’an Chemical Industrial Group Co., Ltd. (Hangzhou, China). Vinyl dime-
thicone with low viscosity values (MMVi) was supplied by Zhejiang Runhe Silicone New
Material Co., Ltd. (Ningbo, China). Tetramethylammonium hydroxide (TMAH, as catalyst
for the preparation of vinyl-terminated poly(dimethyl-co-methyltrifluoropropyl) siloxane),
was provided by Sinopharm Group Co., Ltd. (Shanghai, China). Karstedt’s catalyst, di-
luted to a concentration of 3000 ppm, was supplied by Betely Polymer Materials Co., Ltd.
(Suzhou, China). D3

F and D4 were vacuum-dried before use. Other materials were directly
used without any further purification.

2.2. Preparation of PDFS-Vi-X

PDFS-Vi-X (Vinyl-terminated poly(dimethyl-co-methyltrifluoropropyl)siloxane) with
varying fluorine content (where X represents the methyltrifluoropropylsiloxane unit ratio)
is synthesized via anionic ring-opening copolymerization (AROP) of cyclic oligomers [37].
The specific synthesis steps are as follows: a certain amount of D4, MMVi, and TMAH were
added into a three-neck flask with a stir paddle and condenser under nitrogen atmosphere.
The mixture was stirred at 90 ◦C and dropped D3

F into the flask with a constant pressure
dropping funnel. After dropping D3

F, the solution was heated to 110 ◦C for 4 h, then to
150 ◦C for 30 min to decompose the catalyst TMAH. The decomposing products of TMAH
(mainly trimethylamine, methanol) unreacted D4 and D3

F, and low-molecular-weight
products were removed at 170 ◦C in vacuum and the viscous PDFS-Vi-X were obtained.
The feeding number of reactants to synthesize PDFS-Vi-X is listed in Table S2.

The molecular weight values and polymer dispersity index (PDI) of PDFS-Vi-X are
listed in Table 1.

Table 1. Molecular weight values of PDFS-VI-X with different fluorine contents.

Sample Code Fluorine Content
(mol%)

Mn
(g/mol)

Mw
(g/mol) PDI (Mw/Mn)

PDFS-Vi-0 0.0% 116833 153094 1.36
PDFS-Vi-12.5 12.5% 83139 116431 1.40
PDFS-Vi-25.0 25.0% 73677 103899 1.41
PDFS-Vi-37.5 37.5% 78373 105495 1.35
PDFS-Vi-50.0 50.0% 87643 122486 1.39

2.3. Preparation of FSiRF Materials

According to the previous study [11], the preparation of FSiRF materials includes the
following steps. First, a prepolymer blend was prepared by mixing the 0.2-g inhibitor,
10-g PDMS-H, and a certain content of water (0.2–1.8 wt%, as foaming agent) at a speed
of ~1200 rpm for 5 min to achieve a uniform blend. Next, the PDFS-Vi-X (70 g) and 4 g
Karstedt’s catalyst was dispersed in the above blend and stirred at 1200 rpm for 30 s.
Afterwards, the above blend was poured into a mold and foamed at ambient temperature
for ~8 min. Finally, the sample was cured at 100 ◦C for 2 h in an oven to obtain the FSiRF-Y
(where Y means FSiRF materials prepared with different PDFS-Vi-X; for example, FSiRF-1
corresponds to PDFS-Vi-12.5%, FSiRF-2 corresponds to PDFS-Vi-25.0%) materials.
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2.4. Characterizations

Fourier transform infrared spectra (FTIR) of PDFS-Vi-X were carried out using FTIR spec-
troscopy (Nicolet 5700, Thermo Scientific, Waltham, MA, USA) in the range of 600–4000 cm−1

using the KBr pellet technique. 1H NMR spectra of PDFS-Vi-X were measured by a Bruker
AV400MHz spectrometer (Bruker, Karlsure, Germany) with deuteroacetone (CD3COCD3)
as the solvent. The number-average molecular weight (Mn) was gauged by gel per-
meation chromatography (GPC) on a Waters Breeze instrument (Waters, Milford, MA,
USA) by using THF as the eluent (1 mL/min) and a Waters 2410 refractive index detector
(Waters, Milford, MA, USA).

The foaming process of prepolymer blend sample was observed by optical microscopy
(Eclipse LV00POL, Nikon, Tokyo, Japan). The structure and morphology of FSiRF were exam-
ined using scanning electron microscopy (SEM) (Sigma-500, ZEISS, Oberkochen, Germany).
Thermogravimetric analysis (TGA) and derivative thermogravimetric analysis (DTG) were
performed on a PerkinElmer Pyris Thermogravimetric Analyzer (TA-Q500, TA Instruments-
Waters LLC, Newcastle, DE, USA) using 5–10 mg of samples. The experiments were performed
at a heating rate of 10 ◦C·min−1 in air from 35 to 800 ◦C. The compressive characteristics of
the samples were tested by a DMA (TA-Q800, TA Instruments-Waters LLC, Newcastle, DE,
USA) at a strain rate of 2000 µm·min−1. Water contact angle (WCA) of various samples were
measured with a DSA30 CA analyzer (Kruss, Hamburg, Germany) using a 3 µL water droplet,
and the reported results are the average value of five parallel measurements.

The swelling properties of FSiRF samples were measured using a homemade swelling
measurement system that utilizes a Panasonic HG-C1050 micro laser distance sensor
(HG-C1050, Panasonic, Osaka, Japan) to gauge the displacement of a detector in contact
with the foam sample, thus producing the transient and steady-state change in height of
the sample as it swells or shrinks. The instrument is capable of measuring swelling ratios
with a position resolution of ±10 µm. The samples in this study are found to be isotropic, and
the volume change can be easily determined. The swelling ratio (Q) was calculated as follows:

Q =
v2

v1

where V1 and V2 are the volumes of the specimens before and after the tests.

3. Results and Discussion
3.1. Preparation and Performance of FSiRF Materials

Figure 1a shows the schematic illustration of the fabricating process of FSiRF materials,
which includes a rapid foaming and crosslinking process at room temperature. Typically,
the inhibitor, PDMS-H, and a certain content of water (as foaming agent) are mechanically
mixed to obtain a highly dispersed suspension; then, the PDFS-Vi-X and Pt catalyst were
added into the above suspension to prepare the FSiRF materials. After that, the above
mixture can react at room temperature to crosslink and generate hydrogen gas; the detailed
reactions will be discussed later. Using optical microscopy, we found that the water foaming
agent is phase-separated in the PDFS-Vi-X/PDMS-H mixture due to their different polar
properties, but these agents also present as highly dispersed in the mixture. With increasing
time, more and more bubbles were generated in the matrix (Figure 1b). Notably, these
bubbles can grow or combine during the foaming process in a few minutes, thus forming a
porous silicone rubber foam structure with pore size of several hundreds of micrometers.
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Figure 1. (a) Schematic illustration of the fabrication process of FSiRF materials. (b) Optical mi-
croscopy image of PDFS-Vi-X/PDMS-H mixture before and during foaming process. (c) Typical
image of FSiRF sample on a foxtail grass without bending any hairy branches, indicating a lightweight
nature of FSiRF materials. (d) FSiRF materials with a drop of water (blue color) and oil (orange color)
on the surface, showing strong oleophilicity and high hydrophobicity of the surface. Digital images
of FSiRF materials under (e) a stretching and releasing cycle and (f) a compressing and releasing
cycle, showing good reversible stretchability and compressibility.

It is worth noting that the prepared FSiRF sample is so light that a piece of sample with
a size of 20 mm × 20 mm × 20 mm could stand on the top of a foxtail grass without bending
any hairy branches, as shown in Figure 1c. The density values of FSiRF samples were
measured and are 0.24–0.25 g/cm3, as shown in Figure S1. Meanwhile, the prepared FSiRF
sample displays excellent surface hydrophobicity and oleophilicity. When a water droplet
(blue color) is placed on the surface of the FSiRF material, the contact angle reveals high
hydrophobicity (~130◦) (see Figures 1d and S2) with neither physical nor chemical surface
treatment. The good hydrophobicity could be owing to a combination of microporous
morphological structures and the low surface energy of fluorosilicone molecules. While
a drop of oil (orange color) was put on the surface of the FSiRF, and it was immediately
absorbed into the foam, resulting in a contact angle of nearly 0◦ (Figure 1d). The rapid
absorption of the oil can be mainly owed to the strong oleophilic nature of the FSiRF and its
microporous features, which can induce capillary action [36]. More significantly, the FSiRF
material possesses intriguing mechanical elasticity, which can be stretched to 130% strain
or compressed to about 60% strain without breaking apart and can completely restore to
its original shape (Figure 1e,f). Such excellent stretching and compressing performance
without any deformation are rarely observed in other polymer foams and aerogel materials
(e.g., inherently brittle silica aerogels) with high porosity [37,38].

3.2. Molecular Design and Synthesis of PDFS-Vi-X

To meet the high controllability requirements of the molecular structure of the silicone
foam material, a series of PDFS-Vi-X molecules were designed and synthesized, and the
basic synthesis process was shown in Figure 2a. Typically, D3

F and D4 can react via a
ring-opening polymerization, and the MMVi was used to block the above reaction, thus
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obtaining the PDFS-Vi prepolymer. Clearly, the PDFS-Vi-X with different molar contents
of pendant trifluoropropyl groups were synthesized by simply altering the ratio of D4
and D3

F and anionic polymerization time. Figure 2b illustrates that the five typical molar
contents (0, 12.5%, 25.0%, 37.5%, and 50.0%) of trifluoropropyl groups can be successfully
regulated by changing the molar ratio of D4 to D3

F [38], and the molecular weight (Mn,
Mw, and PDI values) shown in Table 1 suggests a relatively good distribution of molecular
weight of the synthesized PDFS-VI-X molecules, which is helpful for the preparation of the
FSiRF materials.
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The successful chemical synthesis of PDFS-Vi-X was evidenced by the 1H NMR
and FTIR spectra (Figure 2c,d). The structure of PDFS-Vi-X copolymers with different
fluorine contents can be evidenced through 1H NMR tests (Figure 2c) by the appearance
of four peaks at 0.1, 0.75, 2.0, and 5.8 ppm, which are owing to the chemical shifts of
–Si–CH3, −CH2CH2–, −CH2CH2CF3, and −Si−CH = CH2, respectively, demonstrating
the successful introduction of trifluoropropyl groups [39]. With the increase in fluorine
content, the corresponding peaks gradually become stronger, confirming the effective
tunability of trifluoropropyl groups in the PDFS-Vi-X chain. (The details of the 1H NMR
spectrum of PDFS-Vi-X are shown in Figure S7.) Figure 2d shows the FTIR spectra of
PDFS-Vi-X copolymers with different fluorine content. As expected, a characteristic peak
at 2960 cm−1 was the signal of –CH3 bond, and the characteristic vibration absorptions at
1260 and 769 cm−1 represent the symmetrical deformation and stretching vibrations of the
Si–C bond, respectively. Moreover, characteristic vibrations at 1010 cm−1 correspond to
the stretching vibrations of Si–O–Si bond. The typical peaks at 1210, 1080, and 1720 cm−1
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were associated with the asymmetrical deformation, symmetrical deformation, and stretching
vibrations of the –CH2CH2CF3, respectively. It is worth noting that the intensity of these
three characteristic peaks become stronger with increasing fluorine content of the PDFS-Vi-X
copolymers. The related viscosity and yield of the synthesized PDFS-Vi-X are shown in
Figure S3, and the results indicate the relatively high yield (>80%) of the target molecules.
The above results confirm the successful synthesis of the PDFS-Vi-X copolymers with
tunable molecular structure, which agrees well with other studies [40,41].

3.3. Pore Microstructures of FSiRF Materials

The pore structure of the prepared FSiRF foams is determined by the effective balance
of the crosslinking and foaming reactions during the fabricating process. Typically, the
crosslinking reaction refers to the hydrosilylation reaction between hydrogen dimethicone
molecules and vinyl-terminated poly(dimethyl-methyltrifluoropropyl)siloxane molecules
under the Pt-based catalyst to form a polymer network (see Figure 3a). The foaming
reaction means that the foaming agent (water) and hydrogen dimethicone polysiloxane
react under Pt-based catalyst catalysis to release hydrogen to form a porous structure (see
Figure 3b). We do know that many factors would affect the size and uniformity of the
pore structure of the silicone rubber foam. Besides the dispersion of the foaming agent in
the system, the most important factor is the balance of the reaction rates of foaming and
crosslinking [42]. In the initial stage, the crosslinking reaction and foaming reaction are
carried out at the same time. If the crosslinking degree of the system is not sufficient and
the viscosity is too low, the generated bubbles are easy to migrate in the system and, thus,
form some large bubbles. With the progress of the crosslinking reaction, the crosslinking
degree of the system increases, the viscosity also increases, and the gas produced by the
foaming reaction is hard to migrate in the system. After completion of the foaming reaction
and crosslinking reaction, the pore structure was finally formed. When the fluorine content
is low, the terminal vinyl of PDFS-Vi-X behaves with high reactivity [43]. With increasing
fluorine content, the activity of terminal vinyl reduces intensely due to the steric hindrance
of the trifluoropropyl group, which would affect the pore morphology and structure.

To evaluate the fluorine content on influencing the pore structure, the five kinds of
FSiRFs with different pore structures were designed, and the digital images, SEM images,
and pore size distribution of these FSiRF samples with different pore sizes were shown
in Figure 3c–e. Clearly, the pore size of FSiRF samples is strongly dependent on the
content of the trifluoropropyl groups. These FSiRF materials with different pore sizes
have a comparatively complete porous structure, and the pore size changes from less than
200 µm to greater than 600 µm. It can be seen in Figure 3c that the prepared FSiRFs are
white, and the size distribution of the pores is uniform. Two different kinds of porous
structure were shown in SEM micrographs (Figure 3d): pure SiRF foam (without fluorine)
presents spherical cells, while the other FSiRFs present ellipsoid shape. The peak of cell
size distribution in Figure 3e indicates that increasing fluorine content obviously raises the
pore size of the foam; as fluorine content varies from 0 to 50%, pore size increases from
200–300 µm to greater than 600 µm (Figure 3e). Moreover, the distribution of pore size also
becomes narrower with increasing pore size, and the uniformity of the cellular structure
gradually decreases.



Polymers 2022, 14, 1628 8 of 15

Polymers 2022, 14, x FOR PEER REVIEW 8 of 16 
 

 

To evaluate the fluorine content on influencing the pore structure, the five kinds of 

FSiRFs with different pore structures were designed, and the digital images, SEM images, and 

pore size distribution of these FSiRF samples with different pore sizes were shown in Figure 

3c–e. Clearly, the pore size of FSiRF samples is strongly dependent on the content of the tri-

fluoropropyl groups. These FSiRF materials with different pore sizes have a comparatively 

complete porous structure, and the pore size changes from less than 200 μm to greater than 

600 μm. It can be seen in Figure 3c that the prepared FSiRFs are white, and the size distribution 

of the pores is uniform. Two different kinds of porous structure were shown in SEM micro-

graphs (Figure 3d): pure SiRF foam (without fluorine) presents spherical cells, while the other 

FSiRFs present ellipsoid shape. The peak of cell size distribution in Figure 3e indicates that 

increasing fluorine content obviously raises the pore size of the foam; as fluorine content varies 

from 0 to 50%, pore size increases from 200–300 μm to greater than 600 μm (Figure 3e). More-

over, the distribution of pore size also becomes narrower with increasing pore size, and the 

uniformity of the cellular structure gradually decreases. 

 

Figure 3. (a) Crosslinking and (b) foaming process of FSiRF materials at ambient temperature. Struc-

tural characterization and analysis of various FSiRF samples. (c) Photographs of (ⅰ) pure SiRF, (ⅱ) 

FSiRF-1, (ⅲ) FSiRF-2, (ⅳ) FSiRF-3, and (ⅴ) FSiRF-4. (d) SEM micrographs and (e) pore size distribu-

tion of FSiRF materials with different fluorine contents, indicating the pore size increases with the 

increase in fluorine content. 

3.4. Mechanical and Thermal Properties of FSiRF Materials 

Figure 4 shows the mechanical and thermal properties of the FSiRF materials. The 

stress–strain curves of the FSiRFs with different fluorine content is shown in Figure 4a. As 

can be seen, uniaxial compressive tests display an evident drop in the maximum stress 

values at strain = 60% with increasing fluorine content compared with that of pure SiRF 

materials, e.g., ~9.1 kPa for the FSiRF-3 and ~5.3 kPa for the FSiRF-4, which is inferior to 

that of pure SiRF with ~15.2 kPa. Normally, a higher ratio of the open-cell structure gen-

erates a much lower value in the maximum stress value [44]. As the fluorine content in-

creases, the crosslinking reaction rate gets slower, and the open-cell content becomes 

Figure 3. (a) Crosslinking and (b) foaming process of FSiRF materials at ambient temperature.
Structural characterization and analysis of various FSiRF samples. (c) Photographs of (i) pure SiRF,
(ii) FSiRF-1, (iii) FSiRF-2, (iv) FSiRF-3, and (v) FSiRF-4. (d) SEM micrographs and (e) pore size
distribution of FSiRF materials with different fluorine contents, indicating the pore size increases
with the increase in fluorine content.

3.4. Mechanical and Thermal Properties of FSiRF Materials

Figure 4 shows the mechanical and thermal properties of the FSiRF materials. The
stress–strain curves of the FSiRFs with different fluorine content is shown in Figure 4a. As
can be seen, uniaxial compressive tests display an evident drop in the maximum stress
values at strain = 60% with increasing fluorine content compared with that of pure SiRF
materials, e.g., ~9.1 kPa for the FSiRF-3 and ~5.3 kPa for the FSiRF-4, which is inferior
to that of pure SiRF with ~15.2 kPa. Normally, a higher ratio of the open-cell structure
generates a much lower value in the maximum stress value [44]. As the fluorine content
increases, the crosslinking reaction rate gets slower, and the open-cell content becomes
larger. This is the most important factor leading to a lower compressive stress value of
the FSiRF materials. In Figure 4b, the compressive strength of the FSiRFs remains almost
unchanged after 10 compression cycles, which shows the excellent mechanical flexibility
and reliability of FSiRFs.

The TGA and DTG curves of SiRF and FSiRF materials under air conditions from room
temperature to 750 ◦C are measured and shown in Figure 4c,d. Pure SiRF starts to degrade
at about 351.7 ◦C, owing to the thermal pyrolysis of pendant groups, and retains a steady
weight residue of above 520 ◦C. Evidently, with the increase in fluorine content, the thermal
stability of RSiRF composite foams significantly declined; for instance, the decomposition
temperature at 5 wt% weight loss of FSiRF-4 decreases by ~8 ◦C (see Figure 4c and Table S1)
compared with pure SiRF. In addition, the remaining weight at 750 ◦C of SiRF is also
reduced after the addition of trifluoropropyl groups, e.g., from 73.4 wt% for pure SiRF to
56.8 wt% for FSiRF-3 and 39.8 wt% for FSiRF-4 sample, respectively. As the temperature
rises, the trifluoropropyl groups of the side chain degrade at first, and the molecular weight
of the trifluoropropyl group is larger than that of the methyl group [45]. As a result, the
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mass loss of the FSiRF under high temperature conditions is larger than that of pure SiRF.
Figure 4d reveals that the degradation curves have two stages, and the relative parameters
are shown in Table S1. The first stage ranges from 350 ◦C to 400 ◦C. The mass loss at this
stage raises with increasing trifluoropropyl content [46]. This stage corresponds to the
decomposition of these side chain organic groups. The second stage ranges from 450 ◦C
to 500 ◦C, which is related to the decomposition of main Si-O-Si chains. Of course, the
degradation processes under air atmosphere are complex, and the concrete mechanism of
thermal pyrolysis needs to be further researched.

Polymers 2022, 14, x FOR PEER REVIEW 9 of 16 
 

 

larger. This is the most important factor leading to a lower compressive stress value of the 

FSiRF materials. In Figure 4b, the compressive strength of the FSiRFs remains almost un-

changed after 10 compression cycles, which shows the excellent mechanical flexibility and 

reliability of FSiRFs. 

The TGA and DTG curves of SiRF and FSiRF materials under air conditions from 

room temperature to 750 °C are measured and shown in Figure 4c,d. Pure SiRF starts to 

degrade at about 351.7 °C, owing to the thermal pyrolysis of pendant groups, and retains 

a steady weight residue of above 520 °C. Evidently, with the increase in fluorine content, 

the thermal stability of RSiRF composite foams significantly declined; for instance, the 

decomposition temperature at 5 wt% weight loss of FSiRF-4 decreases by ~8 °C (see Figure 

4c and Table S1) compared with pure SiRF. In addition, the remaining weight at 750 °C of 

SiRF is also reduced after the addition of trifluoropropyl groups, e.g., from 73.4 wt% for 

pure SiRF to 56.8 wt% for FSiRF-3 and 39.8 wt% for FSiRF-4 sample, respectively. As the 

temperature rises, the trifluoropropyl groups of the side chain degrade at first, and the 

molecular weight of the trifluoropropyl group is larger than that of the methyl group [45]. 

As a result, the mass loss of the FSiRF under high temperature conditions is larger than 

that of pure SiRF. Figure 4d reveals that the degradation curves have two stages, and the 

relative parameters are shown in Table S1. The first stage ranges from 350 °C to 400 °C. 

The mass loss at this stage raises with increasing trifluoropropyl content [46]. This stage 

corresponds to the decomposition of these side chain organic groups. The second stage 

ranges from 450 °C to 500 °C, which is related to the decomposition of main Si-O-Si chains. 

Of course, the degradation processes under air atmosphere are complex, and the concrete 

mechanism of thermal pyrolysis needs to be further researched. 

 

Figure 4. Mechanical and thermal properties of FSiRF samples. (a) Compressive stress−strain curves 

of the FSiRF materials with different fluorine content at strain = 60%, and (b) compression cycle tests 

at strain = 60% of various FSiRF samples, demonstrating the mechanical stability of the materials. 

(c) TGA and (d) DTG curves of FSiRF materials under air conditions. 

3.5. Chemical Resistance of FSiRF Materials 

The swelling phenomenon of polymer foam materials is an obstacle to the promising 

application in oil–water separation. To analyze the swelling ratio of the FSiRF materials, 

Figure 4. Mechanical and thermal properties of FSiRF samples. (a) Compressive stress−strain curves
of the FSiRF materials with different fluorine content at strain = 60%, and (b) compression cycle tests
at strain = 60% of various FSiRF samples, demonstrating the mechanical stability of the materials.
(c) TGA and (d) DTG curves of FSiRF materials under air conditions.

3.5. Chemical Resistance of FSiRF Materials

The swelling phenomenon of polymer foam materials is an obstacle to the promising
application in oil–water separation. To analyze the swelling ratio of the FSiRF materials,
the samples were immersed in different solvents and chemicals, e.g., n-hexane, xylene,
n-octane, acetone, and isopropanol. Figure 5a shows the representative swelling process
of the FSiRFs in n-hexane. It can be clearly observed that when SiRF is put into n-hexane,
its volume expands rapidly until reaching saturation equilibrium. Normally, when the
foam is immersed in the solvent, the solvent molecules quickly spread into the crosslinking
network of the foam; thus, the volume of the foam expands. Consequently, the contractile
force of the internal crosslinking network increases gradually. When the contractile force
is equal to the force of solvent diffusion, the swelling equilibrium and the volume no
longer change [47]. Notably, with the increase in fluorine content, the foams show better
resistance to organic solvents and the swelling volume is smaller, indicating good structural
stability. Figure S4 displays the digital photographs of the FSiRF samples with different
fluorine contents before and after swelling in n-hexane. Using the equilibrium swelling
method to test the swelling capacity of FSiRF materials, the swelling degree is calculated
by measuring the size change in real time. The results are shown in Figure S5; the FSiRF
foams undergo swelling and equilibrium processes. With increasing fluoride content, the
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swelling capacity of FSiRFs decreased and the swelling resistance of the FSiRF sample was
obviously improved.
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materials for different organic solvents, which shows that the swelling resistance of FSiRF material
is enhanced with the increase in fluorine content. (c) Diagram and comparison of the antiswelling
mechanism of FSiRF materials with different fluorine contents of 0 and 50%.

In comparison with methyl-vinyl silicone rubber foam, the oil and solvent resistance of
fluorosilicone rubber foam is obviously prominent and can be tuned [48]. We investigated
the swelling of FSiRF materials and analyzed the effect of the content of trifluoropropyl
groups on the chemical resistance of fluorosilicone rubber foam in the following solvents
(i.e., n-hexane, xylene, n-octane, acetone, and isopropanol). Each sample was immersed in
the solvents at room temperature for 24 h. The volume changes of each sample swelled in
the solvents were recorded. The swelling ratio (Q) is defined as follows:

Q =
V2

V1

where V1 and V2 are the volumes of the samples before and after the tests. Figure 5b
shows swelling ratios of FSiRF materials in the above organic solvents and the specific
information is listed in Table 2. As we can see from the data, the swelling ratios of foams
with more content of trifluoropropyl groups in solvent are much smaller than those of pure
SiRF material. For example, the swelling ratio from ~4.41 in xylene for 12.5 mol% to ~1.08
for 50 mol% trifluoropropyl groups, which is inferior to that (~4.98) of the PDMS foam
materials with a lateral methyl group. The swelling ratio ranges from ~3.28 in acetone for
25.0 mol% to ~1.18 for 50 mol% trifluoropropyl groups, which is inferior to that (~4.79)
of the PDMS foam materials with a lateral methyl group. Figure 5b shows that with
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the increase in fluorine content, the swelling ratio of foam in organic solvents decreases
gradually, which proves that the introduction of fluorine-containing groups can endow
silicone rubber foam with excellent chemical resistance and swelling resistance. The higher
the fluorine content is, the more obvious the swelling resistance is. Therefore, the chemical
resistance of fluorosilicone rubber foam materials can be tuned by controlling the amount
of trifluoropropyl groups introduced.

Table 2. Swelling ratios of FSiRF materials for different organic solvents.

Sample Code
Swelling Ratio (100%)

Hexane Xylene N-Octane Acetone Isopropanol

SiRF 4.90 4.98 4.87 4.79 4.15
FSiRF-1 4.25 4.41 4.01 4.21 3.90
FSiRF-2 3.40 3.57 3.37 3.28 3.47
FSiRF-3 2.32 2.47 2.39 2.54 2.77
FSiRF-4 1.48 1.08 1.24 1.18 1.38

The mechanisms of tunable chemical resistance were proposed and illustrated in
Figure 5c. When a crosslinked polymer contacts with a solvent, the network absorbs a certain
amount of solvent, which is largely dependent on the polymer–solvent interactions [49,50].
As shown in Figure 5c, the polarity of dimethyl silicone rubber foam molecules is very
small. According to the “Polarity nearness” rule in the polymer–solvent system, some
nonpolar or weak-polar solvent molecules can infiltrate into the crosslinking network of
SiRF and swell, leading to an increase in volume and a reduction of physical properties.
The chemically stable trifluoropropyl groups as substituents can “shield” the main chain of
Si–O–Si in fluorosilicon molecules and increase the polarity of the molecular chain, which
improves the chemical resistance of FSiRF materials. The feature further protects against
the infiltration of solvent molecules into the crosslinking network, and obviously improves
the structural stability of silicone rubber foams in various solvents.

3.6. Oil–Water Separation of the FSiRF Materials

By taking advantage of oleophilic and hydrophobic properties, good mechanical
flexibility and reliability, as well as excellent tunable chemical resistance, the FSiRF material
can be an ideal candidate as an efficient absorbent material that can absorb oil from
oil–water mixtures. During the experiment, we found that the dimensional stability of the
FSiRF materials is closely related to the separation performance. In this paper, the FSiRF-4
material with the best separation performance was selected as the demonstration for the
application of oil–water separation. As shown in Figure 6a, the porous FSiRF-4 sample
with the best chemical resistance is used to absorb the light organic solvent (xylene dyed by
orange), which is floating on water. The xylene was entirely absorbed by FSiRF-4, thereby,
it was eliminated from the water without any solvent left, confirming the good solvent
absorption capacity. Moreover, the FSiRF-4 samples can also imbibe oils or organic solvents
that are denser than water, such as dichloromethane (dyed by orange), which sinks under
the water. We can see from Figure 6b that dichloromethane is immediately absorbed by
the FSiRF-4 sample without wetting by water. As another proof, the FSiRF-4 is fixed in a
syringe, and a mixed solution of water (dyed by blue) and chloroform (dyed with orange)
is poured from the beaker. Chloroform immediately sinks and passes through the foam
because of its larger density than water; however, water remains on the top surface of the
foam. While a mixed solution of water (dyed by blue) and xylene (dyed with orange) is
poured from the beaker, as xylene is lighter than water, the mixture remains on the top
surface of the foam (Figure S6). These results indicate that the FSiRF-4 can be used for
separating both light and heavy oil from water with selective absorption.
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Figure 6. The performance of FSiRF-4 samples in the oil–water separation process. Removal of
(a) light organic solvent (xylene dyed by orange) on water surface and (b) heavy organic solvent
(dichloromethane dyed by orange) underwater via FSiRF-4 material, demonstrating good absorption
capacity. The illustration of continuous oil–water separation performances of FSiRF-4 by plugging it
with a pump, pumping (c) light xylene and (d) heavy CH2Cl2 from the oil–water mixture via FSiRF-4
samples. They passed through FSiRF-4 porous samples effectively and quickly, and no water went
through the sample owing to the excellent surface hydrophobicity and oleophilicity of the samples.

Except uncomplicated adsorption and extruding for oil absorption and recovery, we
tried to continuously separate the oil–water blend under the assistance of a peristaltic
pump. The separation process is as follows: one port of the rubber tube is plugged with
FSiRF-4 while the other port is placed in a clean beaker, and the side containing the foam is
put in an oil–water blend. Based on a simple combination of FSiRF-4 sample with pipes and
a peristaltic pump to achieve continuous collection of oil from the oil–water mixture [51],
the oil–solvent collection process is shown in Figure 6c–d. In the pumping process shown
in Figure 6c, 50 mL heavy chloroform (dyed orange) can be immediately absorbed by
the macropores of the FSiRF-4 material and then pumped into the clean beaker in 60 s.
During the above processes, no water could pass through the FSiRF-4 due to the excellent
surface hydrophobicity [52]. In Figure 6d, the floating n-hexane (dyed orange) can be
collected from the water surface and pumped into the beaker in 90 s. After the above
continuous oil–water separation process, the dimensions of the FSiRF-4 sample remained
almost unchanged. (It shows that the structural stability of FSiRF-4 in continuous oil–water
separation is better than that of PDMS foam. The comparison experiment is shown in
Figure S8). Based on the results, it is clear that the optimized fluorosilicone foam materials
with high trifluoropropyl content prepared in this work show promising application in the
field of oil–water separation prospects.

4. Conclusions

In summary, we successfully synthesized vinyl-terminated poly(dimethyl-co-methyltr-
ifluoropropyl) siloxanes with different trifluoropropyl contents of 0–50 mol% and prepared
a series of FSiRF materials via a green, facial, and rapid foaming method under ambient
temperature. The FSiRF samples feature light weight (0.24–0.25g/cm−3), excellent hy-
drophobicity/oleophilicity (WCA > 120◦), and excellent mechanical flexibility and cyclic
elasticity; and they can completely recover their original shape even after being stretched
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to 130% strain or compressed over 60%. Notably, with increasing fluorine content, the
FSiRF materials display excellent structural stability and excellent solvent–oil resistance in
various solvents (e.g., swelling ratio from ~4.41 in xylene for 12.5 mol% to ~1.08 for 50 mol%
trifluoropropyl groups, which is inferior to that (~4.98) of the PDMS foam materials with a
lateral methyl group. Further, the optimized FSiRF samples with 50 mol% trifluoropropyl
groups demonstrated excellent adsorption potentiality for both floating or heavy solvent–
oil and consecutive oil–water separating ability. Clearly, this work extends the design
and development of novel high-performance fluorosilicone rubber foam materials with
good mechanical flexibility (for both stretching and compressing) and tunable chemical
resistance, showing promise for potential oil–water separation application.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/polym14081628/s1, Figure S1: The density of FSiRF materials
with different fluorine contents; Figure S2: Surface water contact angles (insets are the water contact
angles) of FSiRF materials; Figure S3: Viscosity and yield of PDFS-Vi-X with different fluorine
contents; Figure S4: Photographs of FSiRF materials before and after swelling; Figure S5: Swelling
capacity of FSiRF materials in hexane and xylene, respectively; Figure S6: Photographs of separated
oil (dyed orange)/water (dyed blue) mixture for the FSiRF materials; Figure S7: Details of the 1H
NMR spectrum of PDFS-Vi-X; Figure S8: The performance of SiRF samples in the oil/water separation
process; Table S1: Detailed information of TGA curves under air conditions; Table S2. The feeding
number of reactants to synthesize PDFS-Vi-X.
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