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Abstract: Organic semiconductors are an attractive class of materials with large application in various
fields, from optoelectronics to biomedicine. Usually, organic semiconductors have low electrical
conductivity, and different routes towards improving said conductivity are being investigated. One
such method is to increase their ordering degree, which not only improves electrical conduction
but promotes cell growth, adhesion, and proliferation at the polymer–tissue interface. The current
paper proposes a mathematical model for understanding the influence of the ordering state on the
electrical properties of the organic semiconductors. To this end, a series of aromatic poly(azomethine)s
were prepared as thin films in both amorphous and ordered states, and their supramolecular and
electrical properties were analyzed by polarized light microscopy and surface type cells, respectively.
Furthermore, the film surface characteristics were investigated by atomic force microscopy. It was
established that the manufacture of thin films from mesophase state induced an electrical conductivity
improvement of one order of magnitude. A mathematical model was developed in the framework of
a multifractal theory of motion in its Schrodinger representation. The model used the order degree of
the thin films as a fractality measure of the physical system’s representation in the multifractal space.
It proposed two types of conductivity, which manifest at different ranges of fractalization degrees.
The mathematical predictions were found to be in line with the empirical data.

Keywords: poly(azomethine); semiconducting; mesophase; biomedicine; multifractal model

1. Introduction

Organic semiconductors constitute a class of materials intensely studied in the last
decades as suitable candidates to replace inorganic ones because of their numerous ad-
vantages, such as light weight, mechanical flexibility, and ability to be processed from
solution at low temperatures, resulting in low-cost production [1]. Their successful use in
biomedicine increased researchers’ interest in these materials, which offer the advantage of
electrical control over a large range of physical and chemical properties, being considered a
new generation of “smart” biomaterials [2–5]. They were investigated to be applied as scaf-
folds in tissue engineering [2], building of biosensors [3], biointerfacing, and implantable
electronics and bionics [4]. The native electrical properties of the muscles, heart, bone,
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and brain allow external electric stimulation to affect various healing processes [5]. As an
example, numerous studies reported the potential of semiconducting polymers for building
implantable brain machines for treating neurologic diseases such as epilepsy, chronic pain,
Parkinson’s disease, and other disfunctions by identifying the signaling network and deliv-
ering neural impulses to the brain area [5]. It was demonstrated that the specific response
could be modulated by surface characteristics such as roughness, topography, chemistry
and charge [2]. Furthermore, the soft interface of organic semiconductors favors interaction
with living tissues, and good nanostructuring can regulate cellular behavior, including ad-
hesion, growth, migration, and regeneration of damaged tissues [5]. Compared with their
inorganic counterparts, the low modulus of organic materials avoids mechanical trauma
and chronic inflammation at the interface [2–5]. Among organic semiconductors, aromatic
poly(azomethine)s are especially promising because of their good charge carrier mobility
and facile preparation routes, with high yields and no side reactions, leading to products of
high purity [6]. The reversible nature of azomethine linkage makes them benign candidates
for bioapplications, allowing disintegration into biocompatible products [7]. Their good
charge carrier mobility derives from the extended electronic conjugation supported by
the azomethine (N=C) bond (also known as imine or Schiff base), which is isoelectronic
with the vinylene bond (C=C) [8]. An important property of the poly(azomethine)s, which
has been little exploited in the semiconductor domain, is their ability to self-order into
the melt state, forming thermotropic mesophases [9–11]. This is possible because of the
high conjugation of the azomethine units assuring the charge separation, which further
favors intermolecular forces that stabilize the mesophase state. Thus, on a hand, the or-
dered phase assures better electron mobility by favoring the electron jumping among the
molecules and on the other hand by creating continuous films [12]. A study on a series
of poly(azomethine-sulfones)s indicated that the presence of sulfone and isopropyl units
into a polyazomethine backbone is beneficial for promoting liquid crystalline and semicon-
ducting properties [13,14]. Moreover, it was demonstrated that this chemical design was
favorable for obtaining nanostructured ordered thin films via a simple thermal treatment
consisting of quenching from the mesophase state. In this light, the present study proposes
developing a mathematical model in a multifractal space to understand the influence of
the ordering degree of mesophases on the semiconducting properties. To this end, thin
poly(azomethine sulfone)s films were prepared by casting from solution, and then they
were thermally treated from the mesophase state. The supramolecular organization of the
films, thermally treated and pristine, was investigated by polarized light microscopy, and
their semiconducting properties were determined with a surface type cell.

The analysis of the fractal characteristics proved to be a useful asset to appreciate the
microstructure and the interphase interactions in various systems. Thus, the calculation of
the fractal dimension was used to assess: the interfacial microstructure and π–π stacking
in composite systems of conjugated polyimides with multiwalled carbon nanotubes [15],
microstructure evolution effect on the thermal conductivity of low density polyethylene
and boron nitride nanosheets [16], growth of titanium oxide quantum dots into polyaniline
semiconductor [17], the relationship between structure evolution and electrical conductivity
of polyurethanes doped with carbon nanotubes [18]. All these data indicate the successful
use of fractal characteristics for evaluation of the influence of microstructure on different
properties, such as electrical ones. In this light, the paper proposes a mathematical model in
a multifractal space to evaluate the microstructure—electrical conductivity relationship, as
follows. The use of a multifractal representation when investigating the physical and chem-
ical properties of polymeric materials has been reported by our group in the past few years,
with the main focus being on drug release mechanisms at various scale resolutions [19–21].
The multifractal model is dynamical and based on Scale Relativity Theory, and it works
on the underlying hypothesis that the entities of any complex system move on continuous
and nondifferential curves, named fractal curves, i.e., three dimensional fractured lines, the
nonlinearity of which is dependent on and proportional with the number of interactions
within the system. Such representation allows the utilization of the fractalization degree as
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a measure of system complexity and physical quantities, characterizing both the nature
of the system (degrees of order-disorder) and the system evolution. This approach allows
the use of fractal functions dependent both on spatiotemporal coordinates and resolution
scales. This means that the model can look at the evolution of the system and its properties
simultaneously by using appropriate choices for the scale resolutions and fractalization
degree. Furthermore, complex systems (here, poly(azomethine sulfone) polymer) can be
considered as media without interaction between their components. Dynamics in the
hydrodynamic multifractal representation were used as a benchmark for the study of the
transient physical properties of the polymeric material.

2. Materials and Methods

Thin film preparation
A series of poly(azomethine sulfones)s were synthetized according to [13]. They

were solubilized in DMF to give 1% solutions, which were casted on glass lamella and
incubated for 72 h at 50 ◦C to give thin films. Ordered thin films were prepared by thermal
treatment of the thin films on a hot stage under polarized light, heated at 10 ◦C/min up to
the mesophase state, annealed for 30 min, and quenched at room temperature. Thus, two
series of films were prepared. The untreated films were abbreviated P1–P4, and the treated
films, P1 *–P4 *. The thickness of the films before thermal treatment was around 1.6 µm
(P1: 1.84 µm, P2: 1.58 µm; P3: 1.05 µm, P4: 0.38 µm).

Equipment
Thermal treatment of the films was realized by continuous observation of the ther-

motropic behavior of the films with an Olympus BH-polarized light microscope (Olympus,
Tokyo, Japan)equipped with a THMS 600/HSF9I hot stage and a Linkam temperature
control system. For all measurements, a 40× objective was used. The eyepiece had
10×magnification.

The thickness of the untreated films was determined by Fizeau’s method for fringes of
equal thickness, using an interferential microscope MII-4(JSC “LOMO”, St. Petersburg, Russia).

The electrical conductivity of both the treated and untreated thin films was measured
on a Keithley Model 6517 electrometer(Tektronix, Beaverton, Oregon, United States). The
measurements were taken in triplicate, and the mean values are given. The resistivity of
the polymeric coating was measured by applying a two-point technique. This method
consisted of voltage drop measurements across the thin film involving a constant current
passing through it.

The topography of the film surface was assessed from images collected in semi-contact
mode with a Solver PRO-M, NT-MDT atomic force microscope (AFM) (NT-MDT Spectrum
Instruments, Moscow, Russia), using a Zelenograd NSG10 cantilever (NT-MDT Rusia), with
resonant frequency 330 KHz and force constant 26 n/m. The Nova V.1443 software was
used for recording and analyzing the AFM topographic images. The arithmetic average
roughness (Ra) was determined for all explored areas using the definition expressed by:
Ra = 1

n ∑n
i=1[Zi], where Zi is the value of the tip height in each point of the image over

a reference baseline (Z 1/4 0). The images were collected on four different film areas by
aleatory “landing” of the cantilever on the film surface and registering data for concentric
squares from 0.1 µm × 0.1 µm up to 60 µm × 60 µm. For an accurate comparison of the
film surface characteristics, the roughness exponent (RE) was calculated as the slope of
roughness versus scan size in a double log plot (Figure S1).

3. Results

A series of thin films of aromatic poly(azomethine)s (Figure 1), in ordered state, were
prepared by thermal treatment under polarized light. Thin films obtained by casting
without any thermal treatment were used as reference in order to evaluate the influence of
the ordering on electrical conduction. As can be seen in Figure 2, the ordered films presented
intense birefringence, with a fine Schlieren texture, indicating a nematic mesophase in
which the azomethine rigid mesogens were preponderantly aligned parallel to a local
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director [22–25]. The texture clarity was correlated to the percentage of mesogen in the
polymer, with more resolved textures observed for polymers containing 75% (P2) or 50%
(P3) mesogens. Furthermore, the ordered films did not present any cracks or defects,
suggesting that continuous ordered films were formed (Figure 2a–d) [26]. The untreated
films presented rare birefringent domains into a dark field under polarized light, indicating
that the rare ordered domains dispersed into an amorphous one (Figure 2e,f). Moreover,
under normal light, it was also seen that the thermal annealing supported the formation of
a continuous film without defects, while cracks were present in the untreated film.

Polymers 2022, 14, x FOR PEER REVIEW 4 of 15 
 

 

A series of thin films of aromatic poly(azomethine)s (Figure 1), in ordered state, were 

prepared by thermal treatment under polarized light. Thin films obtained by casting with-

out any thermal treatment were used as reference in order to evaluate the influence of the 

ordering on electrical conduction. As can be seen in Figure 2, the ordered films presented 

intense birefringence, with a fine Schlieren texture, indicating a nematic mesophase in 

which the azomethine rigid mesogens were preponderantly aligned parallel to a local di-

rector [22–25]. The texture clarity was correlated to the percentage of mesogen in the pol-

ymer, with more resolved textures observed for polymers containing 75% (P2) or 50% (P3) 

mesogens. Furthermore, the ordered films did not present any cracks or defects, suggest-

ing that continuous ordered films were formed (Figure 2a–d) [26]. The untreated films 

presented rare birefringent domains into a dark field under polarized light, indicating that 

the rare ordered domains dispersed into an amorphous one (Figure 2e,f). Moreover, under 

normal light, it was also seen that the thermal annealing supported the formation of a 

continuous film without defects, while cracks were present in the untreated film. 

 

Figure 1. The structure of the poly(azomethine)s P1–P4. The difference among the four polymers 

was the different content of mesogenic units: P1 (100%); P2 (75%); P3 (50%); P4 (25%). 

  
(a) P1 (b) P1* 

  
(c) P2 (d) P2* 

 
+Cl SO

2
Cl

K2CO3

DMSO
160 oC

OH OH

CH
3

CH
3

+

1 : x : y
molar ratio

OONC
H

OH N C
H

OH

SO
2OONC

H
N C

H
OO O SO

2
O

CH
3

CH
3

c ran

 

co

 

Figure 1. The structure of the poly(azomethine)s P1–P4. The difference among the four polymers
was the different content of mesogenic units: P1 (100%); P2 (75%); P3 (50%); P4 (25%).
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Polymers 2022, 14, 1487 5 of 14Polymers 2022, 14, x FOR PEER REVIEW 5 of 15 
 

 

  

(e) P3 (f) P3* 

  
(g) P4 (h) P4* 

Figure 2. Representative POM images of the treated (a–d) and untreated (e–h) thin films. POM im-

ages were acquired using the 40 × objective, and the eyepiece had 10× magnification, giving a theo-

retical magnification of 400×. 

The analysis of the topography of the treated and untreated thin films clearly showed 

that the thermal annealing transformed the rough films into smoother ones (Figure 3a–h, 

Table S1), in accordance with the quenching from the molten ordered phase. Moreover, 

the graphical representation of the roughness exponent [27] of the untreated and treated 

films undoubtedly indicated that the manufacturing of the films from molten mesophase 

not only improved the ordered state but was accompanied by an enhancement of the film 

continuity, which is beneficial for better contact between the organic film and electrodes 

(Figure S1) [13,28]. Per the AFM images, for the untreated samples, the rough surface was 

of fractal nature, with edges and broken geometries characterizing the surface of the sam-

ple. This translated into an elevated fractalization degree that was further used as refer-

ence when developing the model. After treatment, the surface was clearly smoother and 

thus described by a lower degree of fractalization. 

Figure 2. Representative POM images of the treated (a–d) and untreated (e–h) thin films. POM
images were acquired using the 40× objective, and the eyepiece had 10× magnification, giving a
theoretical magnification of 400×.

The analysis of the topography of the treated and untreated thin films clearly showed
that the thermal annealing transformed the rough films into smoother ones (Figure 3a–h,
Table S1), in accordance with the quenching from the molten ordered phase. Moreover,
the graphical representation of the roughness exponent [27] of the untreated and treated
films undoubtedly indicated that the manufacturing of the films from molten mesophase
not only improved the ordered state but was accompanied by an enhancement of the film
continuity, which is beneficial for better contact between the organic film and electrodes
(Figure S1) [13,28]. Per the AFM images, for the untreated samples, the rough surface
was of fractal nature, with edges and broken geometries characterizing the surface of the
sample. This translated into an elevated fractalization degree that was further used as
reference when developing the model. After treatment, the surface was clearly smoother
and thus described by a lower degree of fractalization.
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Figure 3. Representative 3D AFM images of the (a–d) untreated and (e–h) treated thin films acquired
on squares of 1000× 1000 nm and (c) the graphical representation of their roughness exponent (RE (P):
roughness exponent of the untreated samples; RE (P*): roughness exponent of the treated samples).

The measurements of the electrical conductivity (σ) showed values in the range of
10−7−10−8 Ω−1cm−1, which are typical values for undoped organic semiconductors [29].
To facilitate easy comparison, they are expressed as x 10−7 Ω−1cm−1. In Figure 4, the
electrical conductivity values recorded for the untreated films (coded σP) and those in
ordered state (coded σP*) are graphically represented as a function of the percentage
of mesogen in the polymer. The values of the electrical conductivity of the untreated
films were low, regardless of the percentage of mesogen. A slightly higher value for the
polymer P2, which contained 75% mesogen, was considered due to the possible formation
of cybotactic groups favored by a good balance between rigid azomethine mesogens and
flexible sulfone and isopropyl units [30,31]. On the other hand, all the films in ordered
state presented significant increases in electrical conductivity, 74 times higher in the case
of P1 with 100% azomethine mesogen. The obvious conclusion is that the ordering of the
rigid azomethine units into films favored electron conductivity, most probably because of
the close contact of the azomethine mesogens favoring electron jumping [32]. It appears
that in the case of P1, this effect was particularly effective because of the rigid azomethine
chains with high conjugation favoring good longitudinal charge mobility. The longitudinal
conduction and the side-jump motion of electrons proved to be an excellent combination
for maximizing the electrical conductivity.

Mathematical model
To further understand the improvement in conductivity due to thermal treatment

of the films into ordered state, a theoretical model was developed. In the description of
complex system dynamics through a hydrodynamic multifractal scenario [33–36], it is
possible to find the involvement of the specific multifractal impulse conservation law:

∂tvi + vl∂lvi = −∂iQ, i = 1, 2, 3 (1)

and that of the conservation law of the multifractal states density:

∂tρ + ∂l
(

ρvl
)
= 0 (2)
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where:
∂t =

∂

∂t
, ∂l =

∂

∂xl (3)

vi = 2λ(dt)[
2

f (α) ]−1
∂is, ui = λ(dt)[

2
f (α) ]−1

∂i ln ρ

ρ = ψψ, ψ =
√

ρeis

Q = 2λ2(dt)[
4

f (α) ]−2 ∂l∂
l√ρ
√

ρ
=

uiui

2
+ λ(dt)[

2
f (α) ]−1

∂lul
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In the above relations, the given measures have the following physical meanings:

− t is nonmultifractal time, an affine parameter of the movement curves of the entities
found in the complex system;

− xl is the multifractal spatial coordinate;
− vi is the velocity field at a differentiable scale resolution;
− ui is the velocity field at a nondifferentiable scale resolution;
− dt is the scale resolution;
− λ is a constant coefficient associated with the multifractal–nonmultifractal scale transition;
− ρ is the state density;
− ψ is the state function with the amplitude

√
ρ and phase s; Q is the scalar specific

multifractal potential, which quantifies the multifractalization degree of the movement
curves in the complex system;

− f (α) is the singularity spectrum of order α = α(DF) where DF is the fractal dimension
of the movement curves of the complex system entities. This spectrum allows the
identification of universality classes in the complex system dynamics, even when
attractors have different aspects, and it also allows the identification of areas in which
the dynamics can be characterized by a specific fractal dimension.

Because of their nonlinearity, Equations (1) and (2) admit analytical solutions only in
special, particular cases. Such a case is dictated by one-dimensional dynamics of complex
system entities through the following:

∂tv + v∂xv = 2λ2(dt)[
4

f (α) ]−2 ∂xx
√

ρ
√

ρ
(4)

∂tρ + ∂x(ρv) = 0
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with the initial and boundary constraints:

v(x, t = 0) = v0, ρ(x, t = 0) = ρ0e−(
x
a )

2
(5)

v(x = ct, t) = v0, ρ(x = −∞, t) = ρ(x = +∞, t) = 0

The following solution is found:

v =

v0a2 +

[
λ(dt)

[ 2
f (α) ]−1

a

]2

xt

a2 +

[
λ(dt)

[ 2
f (α) ]−1

a t

]2 (6)

ρ =
π−

1
2a2 +

[
λ(dt)

[ 2
f (α) ]−1

a t

]2


1
2
·e


− (x−v0t)2

a2+

 λ(dt)
[ 2

f (α) ]−1

a t


2


(7)

This solution, through the nondimensional variables:

v
v0

= v, ρ
√

πa = ρ,
x

v0τ
= ξ,

t
τ
= η (8)

and through the nondimensional parameters:

θ =
λ(dt)[

2
f (α) ]−1

τ

a2 , µ =
v0τ

a
(9)

can be rewritten as:

v =
1 + θ2ξη

1 + θ2η2 (10)

ρ =
1√

1 + θ2η2
·e
[−µ2 (ξ−η)2

1+θ2η2 ] (11)

Through Equation (3), the solutions in Equations (6) and (7) allowed us to construct
the following set of variables:

− the velocity field at a nondifferentiable scale:

u = 2λ(dt)[
2

f (α) ]−1· (x− v0t)

a2 +

[
λ(dt)

[ 2
f (α) ]−1

a t

]2 (12)

− the specific multifractal force field:

f = −∂xQ = 2λ(dt)[
4

f (α) ]−2· (x− v0t)a2 +

[
λ(dt)

[ 2
f (α) ]−1

a t

]2


2 (13)



Polymers 2022, 14, 1487 10 of 14

This set of variables employs the notations:

u
2v0

= u,
f τ

2v0
= f (14)

Considering Equations (8) and (9), they become:

u = θ
ξ − η

1 + θ2η2 (15)

f = θ2 ξ − η

(1 + θ2η2)
2 (16)

Then, let us assume the functionality, in nondimensional coordinates, of a relation of
the form:

J = σ f (17)

where J is a mass current density, f is the nondimensional specific multifractal force field,
and σ is a mass conductivity, which then allows us to define the following conductiv-
ity types:

− conductivity at differentiable scale resolutions:

σD =
ρv
f

=
√

1 + θ2η2 1 + θ2ξη

θ2(ξ − η)
e
[−µ2 (ξ−η)2

1+θ2η2 ] (18)

− conductivity at nondifferentiable scale resolutions:

σF =
ρu
f

=
√

1 + θ2η2
(µ

θ

)2
e
[−µ2 (ξ−η)2

1+θ2η2 ] (19)

− conductivity at global scale resolutions:

σ =
ρ(v + iu)

f
= σD + iσF =

√
1 + θ2η2

[
1 + θ2ξη

θ2(ξ − η)
+ i
(µ

θ

)2
]

e
[−µ2 (ξ−η)2

1+θ2η2 ] (20)

In this context, since the θ parameter is a measure of the multifractality degree, then
ε = 1

θ functions as a measure of ordering degree. Then, the conductivity species in
Equations (18)–(20) change as:

− conductivity at differentiable scale resolutions:

σD =
√

ε2 + η2 ε2 + ξη

ε(ξ − η)
e
[−(µε)2 (ξ−η)2

ε2+η2 ]
(21)

− conductivity at nondifferentiable scale resolutions:

σF =
√

ε2 + η2εµ2e
[−(µε)2 (ξ−η)2

ε2+η2 ]
(22)

− conductivity at global scale resolutions:

σ =
√

ε2 + η2
[

ε2 + ξη

ε(ξ − η)
+ iεµ2

]
e
[−(µε)2 (ξ−η)2

ε2+η2 ]
(23)

We present in Figure 5a,b the theoretical dependencies of σD(ε) and σF(ε) for ξ, η = ct.,
and the restriction ξ 6= η. By selecting clear resolution scales for particular types of conduc-
tivity, it was possible to address both various interaction scales and fractalization degrees.
Conduction in complex systems is performed through specific mechanisms dependent on
scale resolution. As a consequence, we made a distinction among differentiable conduction
σD, nondifferentiable conduction σF, and global conduction σ. Conduction mechanisms at
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the two types of scale resolutions are simultaneous and reciprocally conditional. Thus, the
values of σD and σF increase along with increases in the ordering degree (synchronous type
conductions), and with increases in the multifractalization degree, σD values increase and
σF values decrease (asynchronous type conductions). We also noticed that higher degrees of
multifractalization were seen as a higher mismatch in long scale orientation of the polymer.
In the framework of the model, this read as losses in the inflection point of the trajectory.
The conductivity of the polymer in the multifractal interpretations was seen as a measure
of the available electron fluid to be transferred in different points of the material. The flow
of the current was well characterized by the multifractal hydrodynamic model; thus, in
each inflection point of the electron trajectories, losses could have appeared and thus led
to lower conductivity. There was also an optimum at which we could obtain relatively
higher conductivity. This point was unstable, as the system was overcome by losses and
the conductivity decreased again. With decreases in the fractalization degree, we observed
an exponential-type increase in conductivity.
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Figure 5. Three-dimensional representation of the two types of conductivities derived from the
multifractal model.

The validity of the model was tested by fitting the empirical data presented in Figure 6.
The fit was performed setting a fix variable η = 50, which was a high enough value to
emulate long-time behavior, while all the other parameters were left unbound. From the fit,
we extracted an average fractalization value at which each particular type of conductivity
could be found. For fractal-type conductivity, an average of 0.3 was found, while for the
differentiable type, an average of 5.1 was found.
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4. Conclusions

The improvement of the electrical conductivity of thin films by thermal treatment
into the mesophase state was investigated by creating a mathematical model based on a
multifractal hydrodynamic model. The mathematical model predicted the possibility of two
types of conductivity based on the fractalization degree of the system. The experimental
measurements demonstrated that the electrical conductivity was significantly improved
by thermal pretreatment, which contributed on one hand to the ordering of the mesogenic
units into a continuous phase and on the other hand to jumping of electrons among the
chains. The thermal pretreating also contributed to the nanostructuring of the surface,
which constituted a good premise for bioapplications. The decrease in fractalization by
thermal treatment changed the nature of the conductivity as defined by an exponential-
type function. The validation of the model by fitting the empirical data revealed average
fractalization values for which each type of conductivity was dominant.
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roughness versus scan size of untreated (black lines) and treated (red lines) P1 (a), P2 (b), P3 (c) and P4
(d) film; Table S1: Average values of Ra and its standard deviation at scan size of 1000 nm × 1000 nm.
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