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Abstract: A family of half-titanocene complexes bearing π,π-stacked aryloxide ligands and their
catalytic performances towards ethylene homo-/co- polymerizations were disclosed herein. All the
complexes were well characterized, and the intermolecular π,π-stacking interactions could be clearly
identified from single crystal X-ray analysis, in which a stronger interaction could be reflected for
aryloxides bearing bigger π-systems, e.g., pyrenoxide. Due to the formation of such interactions, these
complexes were able to highly catalyze the ethylene homopolymerizations and copolymerization
with 1-hexene comonomer, even without any additiveson the aryloxide group, which showed striking
contrast to other half-titanocene analogues, implying the positive influence of π,π-stacking interaction
in enhancing the catalytic performances of the corresponding catalysts. Moreover, it was found that
addition of external pyrene molecules was capable of boosting the catalytic efficiency significantly, due
to the formation of a stronger π,π-stacking interaction between the complexes and pyrene molecules.

Keywords: half-titanocene complexes; π,π-stacking interaction; fused-aryloxide ligands; ethylene
(co)polymerization

1. Introduction

π,π-stacking refers to the π-interaction between the π-electron clouds of aromatic sys-
tems [1,2]. It is mainly caused by intermolecular overlapping of p orbitals in π-conjugated
systems. Based on its stacking patterns, π,π-stacking can be classified into three mod-
els: face-to-face (sandwich), edge-to-face (T-shaped), and offset face-to-face (parallel-
displaced) [3,4]. Due to its multiplicity and ubiquity, such a non-covalent interaction has
been widely explored in many fields of chemistry [5–8] and biochemistry [9–11], and more
importantly, it also reveals a decisive role in influencing the course of a reaction [12–21].
However, regarding olefin polymerizations, the influence of π,π-stacking on catalytic
performances is still much less explored. As the field progressed, the main strategy for
regulating olefin polymerization behaviors from a catalyst level is still relying on steric and
electronic modification of the ligands, and for a long time, scientists have been seeking
for effective alternative methodologies [22,23]. Considering its diversity as well as facile
construction from simple introducing fused-aryl moieties, π,π-stacking might act as a
promising candidate for realizing such a goal, and in recent years, research interest in this
field is upsurging (Scheme 1). For instance, incorporation of intra-ligand π,π-interaction is
able to improve the thermal robustness of the active species for α-diimine Ni/Pd mediated
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ethylene (co)polymerizations, and simultaneously regulate the molecular weights and
branching densities of the resultant polyethylenes [24,25]; immobilization group IV met-
allocene and bis(arylimino)pyridine ferrous complexes onto graphene nanoplatelets or
carbon nanotubes via π,π-stacking interactions is capable of enhancing the overall catalytic
activities towards olefin polymerization [26,27], and in some cases, affording ultra-high-
molecular-weight products, that is difficult to be achieved by traditional catalysts [28,29].
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Scheme 1. Olefin polymerization catalysts containing π,π-stacking interactions (one of the stacked
π-systems is painted into blue to give a clearer distinguishability).

Half-titanocene type complexes Cp’TiX2(OR) (Cp’ = substituted cyclopentadienyl;
X = Cl, Me etc.; OR = alkyloxide, aryloxide, etc.), is currently one of the most important
systems that have been widely explored for ethylene (co)polymerizations [30–43]. In
such a system, due to the abundance and commercial availability of diversified phenol
derivatives, ethylene (co)polymerization performances as well as the molecular param-
eters, such as molecular weight, polydispersity, comonomer incorporation percentage,
comonomer sequences, etc., can be well regulated through tailoring the substituents on
the phenoxide moiety. Based on such considerations, in this research, a series of half-
titanocene complexes containing fused-aryloxides ligands were disclosed, and intermolecu-
lar π-π stacking interaction can be clearly observed between these aryloxide moieties. Their
structural characterizations, as well as the influence of π-π stacking interaction on ethylene
homo-/co- polymerization are also studied, which will be given in the following.

2. Experimental Section
2.1. Materials

All manipulations of air- and moisture-sensitive materials were carried out in a
high vacuum line or a glovebox with a medium capacity recirculator (<2 ppm oxy-
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gen). The solvents (hexane, toluene, dichloromethane, benzene-d6) were purchased from
Shanghai Aladdin Biochemical Technology Co., Ltd. (Shanghai, China) and refluxed over
by sodium or CaH2 and degassed by three freeze–pump–thaw cycles prior to use. The
Trichloro (cyclopentadienyl) titanium and trichloro (pentamethylcyclopentadienyl) tita-
nium were supplied by Merck Ltd. (Shanghai, China) on Aldrich Chemical Company.
DMAO was evaporated under vacuum to obtain a white residue according to the litera-
ture [44].

2.2. Characterizations
1H NMR (400 MHz) and 13C NMR (100 MHz) spectra of complexes measured on

a Bruker-300 MHz (Bruker Optics, Ettlingen, Germany) in C6D6 using tetramethylsilane
as an internal standard. Ultraviolet−visible (UV−vis) absorption spectra were recorded
on a Cary 500 Scan UV−vis spectrophotometer. For the absorption of the UV spectra, the
concentration of pyrene was fixed at 5 × 10−6 M and the concentration of the host was
increased from 0 to 24 × 10−7 M in CH2Cl2 at 298 K. The NMR spectra of the polymers
were recorded on a Varian Unity-400 NMR (Varian, Inc., Palo Alto, CA, USA) spectrometer
at 135 ◦C with C6D4Cl2 as a solvent. Elemental analysis was carried out using an elemental
Vario EL spectrophotometer (Elementar Analysensysteme GmbH, Langenselbold, Germany).
The molecular weights (Mn) and molecular weight distributions (PDI, Mw/Mn) of poly-
mers were determined by PL-GPC 200 high-temperature gel permeation chromatography
(Agilent Technologies, CA, USA) at 135 ◦C using 1,2,4-Trichlorobenzene as an eluent. The
melting points of the ethylene/1-hexene copolymers were determined on a TA DSC Q20
instrument (TA, New Castle, DE, USA) at a heating/cooling rate of 10 ◦C/min. All the DFT
calculations were performed with the Gaussian 09 program [45]. The B3LYP functional to-
gether with the 6-311+G** basis set for all the atoms. Solvent (toluene) effects were included
using the SMD model [46]. The 3D molecular structures displayed in the manuscript were
drawn by using CYLview [47].

Crystals of the titanium complexes were obtained by laying hexane onto toluene solutions.
Data collections were performed on a Bruker SMART APEX diffractometer at −88.5 ◦C with
a CCD area detector using graphite monochromated MoK radiation (λ = 0.71073 Å). The
determination of crystal class and unit cell parameters was carried out by the SMART
program package. The raw frame data were processed using SAINT and SADABS to collect
the reflection data file. Refinement was performed on F2 anistropically for all non-hydrogen
atoms by full-matrix least-squares method. Details of X-ray structure determinations and
refinements are summarized in Table S1 in the supporting information. CCDC numbers for
Ti1 and Ti3: 1874219, 1481991.

2.3. Synthesis of Half-Titanocene Complexes
2.3.1. Synthesis of Complex Ti1

A solution of the CpTiCl3 (0.5 g, 2.27 mmol) in 10 mL of CH2Cl2 was reacted with
1.0 equiv. of lithium 1-naphthoxide (0.33 g, 2.27 mmol) in 10 mL CH2Cl2. The mixture
was warmed from −78 ◦C to room temperature and stirred for 12 h. The solvent was
evaporated under vacuum to obtain a red residue. The powder was washed twice with
diethyl ether (10 mL) and filtered, recrystallization from the concentrated toluene/hexane
solution afforded the target complex as red crystals. Yield: 62%. 1H NMR (CDCl3):
δ 8.49–8.47 (m, 1H, Ar-H), 7.57–7.55 (m, 1H, Ar-H), 7.35–7.27 (m, 2H, Ar-H), 7.23–7.19 (m,
1H, Ar-H), 7.09–7.05 (m, 1H, Ar-H), 6.82–6.80 (m, 1H, Ar-H), 6.08 (s, 5H, Cp). 13C NMR
(126 MHz, CDCl3) δ 164.97, 134.48, 127.75, 126.92, 126.70, 125.59, 125.47, 124.66, 122.24,
121.15, 114.66. Anal. Calcd for C15H12Cl2OTi: C, 55.09; H, 3.70. Found: C, 55.29; H, 3.65.

2.3.2. Synthesis of Complex Ti2

The complex Ti2 was carried out using a similar method as preparation of Ti1. Yield:
63%. 1H NMR (CDCl3): δ 8.59–8.57 (m, 1H, Ar-H), 8.39–8.35 (m, 2H, Ar-H), 7.58–7.33 (m,
5H, Ar-H), 7.20 (s, 1H, Ar-H), 6.07 (s, 5H, Cp). 13C NMR (126 MHz, CDCl3) δ 163.28, 131.76,
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131.18, 128.31, 128.10, 127.68, 127.33, 126.19, 122.97, 122.83, 122.77, 121.24, 119.60, 113.50.
Anal. Calcd for C19H14Cl2OTi: C, 60.52; H, 3.74. Found: C, 60.63; H, 3.70.

2.3.3. Synthesis of Complex Ti3

Lithium1-pyrenoxide (0.49 g, 2.27 mmol) was added slowly to a stirred toluene solu-
tion (10 mL) containing Cp*TiCl3 (0.65 g, 2.27 mmol) at −78 ◦C. The mixture was warmed
to room temperature and then refluxed for 24 h. The red powder was obtained by removing
the solvent, recrystallization from the concentrated toluene/hexane solution afforded the
desired product as red crystals. Yield: 60%. 1H NMR (400 MHz, CDCl3, δ, ppm): 8.42–8.40
(m, 1H, Pyrene-H), 8.20–7.85 (m, 7H, Pyrene-H), 7.80–7.71 (m, 1H, Pyrene-H), 6.82 (s, 5H,
Cp-H). 13C NMR (126 MHz, CDCl3) δ 163.45, 131.38, 128.31, 127.13, 126.88, 126.55, 125.64,
125.32, 125.16, 121.17, 120.83, 119.56, 117.21, 103.81. Anal. Calc. for C21H14Cl2OTi (401.1):
C, 62.88; H, 3.52. Found: C, 62.91; H, 3.49.

2.3.4. Synthesis of Complex Ti4

The complex Ti4 was carried out using a similar method as preparation of Ti3. Yield:
42%. 1H NMR (400 MHz, CDCl3, δ, ppm): 8.42–8.40 (m, 1H, Pyrene-H), 8.20–7.85 (m, 7H,
Pyrene-H), 7.80–7.71 (m, 1H, Pyrene-H), 1.5 (s, 15H, Cp-Me). 13C NMR (126 MHz, CDCl3)
δ 159.51, 133.24, 131.51, 127.62, 127.28, 126.33, 126.19, 125.57, 125.39, 125.12, 124.84, 121.34,
118.33, 13.13. Anal. Calc. for C26H24Cl2OTi (471.2): C, 66.27; H, 5.13. Found: C, 66.21; H, 4.79.

2.4. Polymerization Procedure

A typical polymerization procedure for ethylene polymerization was shown as follows:
100 mL stainless steel autoclave was heated in a vacuum at 80 ◦C and recharged with
ethylene three times, then cooled to room temperature. In a 10 mL Schlenk flask, the
additive (pyrene) solution in toluene (1 mL) was added to a solution of titanium complex
Ti1, the mixture stirred for 10 min and transferred into the reactor. Then, the required
amount of the cocatalyst was added, the autoclave was pressurized to 6 atm immediately.
The reaction mixture was stirred at the desired temperature for 10 min. The mixture was
then quenched by pouring into a large quantity of acidified ethanol containing HCl (3 M).
The polymer was collected by filtration, washed with water and ethanol, and dried to a
constant weight under vacuum at 70 ◦C.

3. Results and Discussion
3.1. Synthesis and Characterization of the Half-Titanocenes Ti1–Ti4

Half-titanocene complexes Ti1–Ti4 containing anionic fused-aryloxide ligands were
prepared by stoichiometric reaction between CpTiCl3 (or Cp*TiCl3) and newly prepared
lithium aryloxide derivatives (Scheme 2). Additionally, very pure products could be crystal-
lized as red platelets in high yields upon cooling their saturated n-hexane/toluene solutions
to −35 ◦C in the drybox. In order to establish the structure-activity relationship, fused-
aryloxides bearing different π-systems, including 1-naphthoxide, 9-phenanthrenoxide,
1-pyrenoxide, were intentionally explored. All the complexes were well-characterized
by NMR and elemental analysis. Moreover, the solid-state structure of Ti1 and Ti3 were
further confirmed by single crystal X-ray analysis.
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Single crystal structures of complexes Ti1 and Ti3 are shown in Figures 1–4. In these two
complexes, the Ti-O and O-Cipso bond distances are 1.7788(15) Å (Ti1), 1.7794(18) Å (Ti3) and
1.365(2) Å (Ti1), 1.362(3) Å (Ti3), respectively, which are quite similar to previously reported
CpTiCl2(OAr) analogues that reveal Ti-O bond distances of 1.75-1.82 Å and O-Cipso bond
distances of ca. 1.36 Å [34,42,48–58]. In contrast, they reveal much larger Cipso-O-Ti bond
angles (158.09(13)o for Ti1, 158.26(18)o for Ti3) when comparing half-titanocenes ligated
with 2,6-unsubstituted aryloxide moieties that possess similar steric hindrance around
the metal center, such as Cipso-O-Ti bond angle of 153.77(16)o in CpTiCl2(O(4-tBuPh) [59].
These larger angles imply much bigger O→Ti π donations into titanium due to the much
bigger π systems in fused-aryloxide moieties. Nevertheless, they are still comparatively
smaller than counterparts having 2,6-diisopropylphenoxide ligand (163.0(4)o for CpTi, and
173.0(3)o for Cp*Ti) due to the lack of ortho- bulky groups that could ‘sterically’ force the
more open Cipso-O-Ti angle [31].
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Figure 1. Single crystal structure of complex Ti1 (left); side-view of the π-π stacked dimer (upper
right); top-view of the π-π stacked dimer (lower right, the two naphthalenyl rings were drawn in
different color to give a clearer distinguishability). Selected bond length (Å) and angles (◦): Ti1-Cl1,
2.2517(10), Ti1-Cl2, 2.2764(10), Ti1-O1, 1.7788(15), O1-C1, 1.365(2), Cl1-Ti1-Cl2, 102.53(5), O1-Ti1-Cl1,
103.76(6), O1-Ti1-Cl2, 102.39(7), C1-O1-Ti1, 158.09(13).
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cies as well as high molecular weight products in analogous half-titanocene mediated ole-
fin polymerizations [33]. As the results summarized in Table 1, Ti1 and Ti2, bearing 1-
naphthoxide and 9-phenanthrenoxide moieties, respectively, gave very similar catalytic 
activities of 4.98 × 106 and 5.07 × 106 g PE•mol−1 (Ti)•h−1; nevertheless, for Ti3 promoted 
systems, much lower polymer yields were afforded under identical conditions. Due to the 
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angles that had been concluded from single crystal data, such catalytic differences in Ti1, 
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Figure 3. Single crystal structure of complex Ti3 (left); side-view of the π-π stacked dimer (upper
right); top-view of the π-π stacked dimer (lower right, the two pyrenyl rings were drawn in different
color to give a clearer distinguishability). Selected bond length (Å) and angles (◦): Ti1-O1, 1.7794(18),
Ti1-Cl2, 2.2528(8), Ti1-Cl1, 2.2737(9), O1-C1, 1.362(3), O1-Ti1-Cl2, 102.22(7), O1-Ti1-Cl1, 103.00(7),
C1-O1-Ti1, 158.26(18).

As designed, intermolecular π-π stacking interactions can be clearly observed in both
two complexes (Figures 1–4). Two spatially adjacent anionic fused-aryloxide groups are
found to be almost parallel with each other, giving a reversely orientated dimer structure.
Additionally, similarly to most cases, an offset stacked conformation was adopted [1,4].
The strength of the π-π stacking interactions can be evaluated by the distances between
two almost parallel planes. As illustrated in Figures 2 and 4, an obvious shorter distance
with value of 3.430 Å in Ti3 was observed (versus 3.519 Å in Ti1), implying the much
stronger π-π interaction in Ti3. This result makes sense when considering the overlapping
nature of p orbitals in π-conjugated systems, which becomes stronger as the number of
π-electrons increases.
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3.2. Ethylene (Co)polymerization Performances

Ethylene homopolymerizations were firstly evaluated by using the present half-
titanocene complexes Ti1–Ti4 bearing intermolecular π-π stacking interactions. Dry methy-
laluminoxane (DMAO), which was prepared by removing free trimethylaluminum from
commercially available MAO toluene solution [44], was chosen as cocatalyst herein because
it had been previously testified to be effective for achieving high catalytic efficiencies as
well as high molecular weight products in analogous half-titanocene mediated olefin poly-
merizations [33]. As the results summarized in Table 1, Ti1 and Ti2, bearing 1-naphthoxide
and 9-phenanthrenoxide moieties, respectively, gave very similar catalytic activities of
4.98 × 106 and 5.07 × 106 g PE•mol−1 (Ti)•h−1; nevertheless, for Ti3 promoted systems,
much lower polymer yields were afforded under identical conditions. Due to the structure
similarities of Ti1 and Ti3 in Ti-O and O-Cipso bond distances and Cipso-O-Ti bond angles
that had been concluded from single crystal data, such catalytic differences in Ti1, Ti2
and Ti3 were probably originated from steric reasons caused by the π-π stacked dimer
structure. As the steric crowding maps from buried volume calculations for complexes
Ti1 and Ti3 (Figure 5) [60–62], Ti3 revealed relative higher buried volume %Vbur than Ti1
(55.0% vs. 54.2%), implying the more sterically crowded environment around the titanium
atom, which prevented ethylene monomer from accessing to the metal center and thus even-
tually resulted in inferior catalytic activities. Additionally, because of the steric congested
reason that is able to suppress chain transfer reaction, polyethylene products obtained from
Ti3/DMAO revealed much higher molecular weight than Ti1 and Ti2 mediated systems
(Mw = 26.2 × 104 g/mol (Ti1), 21.8 × 104 g/mol (Ti2), 79.4 × 104 g/mol (Ti3)).

Another thing worthy of note is that, for half-titanocenes bearing 2,6-unsubstituted ary-
loxides, such as CpTiCl2(O(4-tBuPh) and CpTiCl2(O(4-MePh), very low catalytic activities
generally resulted in olefin polymerization [48]. Such catalytic inefficiencies were probably
due to the lack of bulkier ortho-substituents that could force a more open Ti-O-Cipso bond
angle, which finally led to less O→Ti donation into Ti atom and therefore destabilized
the active species. For the present complexes Ti1 and Ti3; however, although their un-
stacked structures exhibited similar buried volume %Vbur to CpTiCl2(O(4-tBuPh) (Figure 6,
52.0%, 52.2% vs. 50.7%), appreciable catalytic efficiencies were eventually afforded. These
satisfying results were also presumably due to the big π systems caused by π-π stacking
interactions, which were able to enhance the electron donation to the metal center and
therefore gave a more stable catalytic active species.
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Table 1. Ethylene polymerization with Ti1–Ti4/DMAO catalytic systems a.

Entry Cat. T (◦C) Yield (g) Activity b Mw
c (×10−4 g/mol) Mw/Mn

c

1 Ti1 20 1.66 4980 26.2 1.6
2 Ti2 20 1.69 5070 21.8 1.4
3 Ti3 20 0.56 1680 79.4 1.8
4 Ti4 20 1.82 5146 71.1 2.3
5 Ti3 50 1.22 3660 95.1 1.6
6 Ti3 70 0.97 2910 60.5 1.4
7 Ti4 50 2.61 7830 117.8 1.7
8 Ti4 70 1.24 3720 79.7 1.9

a Polymerization: carried out in 60 mL of toluene for 10 min with 2 µmol of titanium catalyst, under an ethylene
pressure of 6.0 atm, [Al]/[Ti] = 2000. b Activity: kg PE•mol-1 (Ti)•h-1. c Determined by high temperature GPC.
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The most active precatalyst was concluded to be Ti4 bearing pentamethylcyclopen-
tadienyl (Cp*) and 1-pyrenoxide ligands, in which a catalytic activity of 5.14 × 106 g
PE•mol−1 (Ti)•h−1 was demonstrated. This was consistent with Nomura’s results that the
more electron donating Cp* was able to stabilize the active species, and thus led to higher
activity [31].

π-π stacking conformations are very sensitive to high temperatures. Generally, the
stacked dimer structure tends to be dissociated upon increasing the temperature. There-
fore, in order to better elucidate the influence of the π system on catalytic performances,
ethylene polymerization at different temperatures were carried out by using Ti3 and Ti4 at
precatalysts. As the data shown in Table 1 and Figure 7, upon increasing the temperature
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from 20 ◦C to 70 ◦C, both of Ti3 and Ti4 revealed a first increasing and then decreasing
trend, with 50 ◦C as the optimized temperature. Such increasing polymerization activities
from 20 ◦C to 50 ◦C were probably due to the dissociation of π-π stacking structures into
unstacked active species, which allowed more monomers to access to the metal center,
as revealed from the decreased buried volumes %Vbur when comparing the stacked and
unstacked complexes (55.0% vs. 52.2% for Ti3). Further increasing polymerization tem-
perature to 70 ◦C witnessed obviously decreased activities for both two complexes, which
were presumably due to the decomposition of the active species at very high temperatures.
Moreover, elevating polymerization temperature also posed big influence on the molecular
weights of the resultant polyethylenes. For Ti3 and Ti4 mediated polymerizations, a first
increasing and then decreasing trend was also observed for the resultant polymer products
when increasing the temperature from 20 ◦C to 70 ◦C.
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Figure 7. Ethylene polymerization results at various temperatures by Ti3 and Ti4.

Inspired by the good catalytic efficiencies of Ti3 and Ti4 towards ethylene polymeriza-
tion, their performances for copolymerization of ethylene and 1-hexene was also evaluated.
As the data summarized in Table 2, moderate to high catalytic activities in the range of
1.08–10.26 × 106 g polymer•mol−1 (Ti)•h−1 were obtained. Compared to ethylene ho-
mopolymerizations, Ti3 revealed comparable copolymerization activities when 0.32 mol/L
comonomer was introduced, further increasing the 1-hexene concentration to 0.48 mol/L
resulted in a decreased catalytic activity to 1.08 × 106 g polymer•mol−1 (Ti)•h−1. In
contrast, Ti4 revealed distinctly different copolymerization behaviors. With an increas-
ing 1-hexene concentration from zero to 0.48 mol/L, Ti4 demonstrated monotonously
increased catalytic activities from 8.19 × 106 g polymer•mol−1 (Ti)•h−1 to 10.26 × 106 g
polymer•mol−1 (Ti)•h−1. When further increasing 1-hexene concentration to 0.70 mol/L,
its activity was hardly changed. The much-improved catalytic activities with increasing
1-hexene concentrations for Ti4 was probably ascribed to the comonomer effect, which
allowed more monomers to access to the active species and thus more enchainment pos-
sibilities. Determined by 13C NMR (Figure 8), the 1-hexene incorporation levels in the
resultant copolymers were in the range of 8.1–15.6%, and comonomer sequence analysis for
copolymer samples can be found in Table 3. Determined by DSC analysis, the Tm values
of the copolymers obtained from Ti4 decreased gradually from 131 ◦C to 62 ◦C, and the
DSC curves changed from a sharp peak to broad melting range, indicating the randomly
incorporated 1-hexene commoners.
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Table 2. Ethylene/1-hexene copolymerization with Ti3 and Ti4 a.

Entry Cat 1-hexene
(mol/L)

Yield
(g) Activity b Mw

c (×10−4 g/mol) Mw/Mn
c Hexene Content (%) d

9 Ti3 0.32 0.59 1770 7.1 2.4 8.2
10 Ti3 0.48 0.36 1080 7.0 3.0 12.1
11 Ti4 0.32 2.73 8190 28.6 2.5 8.1
12 Ti4 0.48 3.42 10,260 28.9 2.3 14.0
13 Ti4 0.70 3.25 9750 20.8 2.0 15.6

a Polymerization: carried out in 60 mL of toluene for 10 min with 2 µmol of Ti, under an ethylene pressure of
6.0 atm, [DMAO]/[Ti] = 2000, 25 ◦C. b Activity: kg polymer•mol-1 (Ti)•h-1. c Determined by high temperature
GPC. d Determined by NMR.
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Table 3. Monomer sequence distributions ethylene/1-hexene copolymers obtained with Ti3 and
Ti4/DMAO system a.

Cat.
Content
(mol%) b

Triad Sequence (%) b Dyad Sequence (%) b

EEE EEH + HEE HEH EHE EHH + HHE HHH EE EH + HE HH

Ti3 12.1 63.8 16.8 2.3 10.0 2.5 Trace 76.7 21.9 Trace
Ti4 14.0 64.4 18.6 2.1 11.0 3.6 Trace 73.7 24.4 Trace

a Polymerization: see Table 2. b Calculated by 13C NMR spectra.

Considering the positive influence of π,π-stacking on ethylene polymerizations, when
comparing with the half-titanocenes counterparts bearing 2,6-unsubstituted aryloxides,
we are trying to explore whether externally added π-conjugated small molecules, which
will also form π,π-stacking interaction with the fused-aryloxide moieties in the present
titanocene complexes, would also enhance the catalytic performances. Based on this,
Ti1–Ti3 catalyzed ethylene homopolymerizations were carried out in the presence of
1.0 equiv. of pyrene. As shown by the data in Table 4, obviously enhanced catalytic
activities were observed for all the three systems, giving increased values from 4980 to
5190 g PE•mol−1 (Ti)•h−1 for Ti1, from 5070 to 5760 g PE•mol−1 (Ti)•h−1 for Ti2, from
1680 to 2610 g PE•mol−1 (Ti)•h−1 for Ti3, respectively. Moreover, molecular weights of
the resultant polyethylenes were also much higher than pyrene-free systems (26.2 × 104

vs. 37.5 × 104 for Ti1, 21.8 × 104 vs. 49.3 × 104 for Ti2, 79.4 × 104 vs. 111.7 × 104 for
Ti3), indicating the formed active species therein were more stable and therefore long-
lived. These results could be explained by the assumption that the original π,π-stacked
dimer of complex Ti3 would be dissociated in the presence of pyrene molecules and then
restack with pyrene to form a more active and stable active species (Scheme 3). Such
a speculation could be established after comparing optimized structures of π,π-stacked
dimer of complex Ti3 and Ti3-pyrene shown in Scheme 3 (bottom), in which the latter
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one revealed a relative stronger π,π-stacking interaction than the former one, as evaluated
from the distances between two almost parallel planes (3.267 Å vs. 3.318 Å), implying that
Ti3 revealed a bigger tendency to stack with pyrene molecule rather than itself. Such an
observation made sense when considering the bigger electron density in pyrene than the
pyrenoxide group that was connected to an electrophilic titanium metal center. Because
of the same reason, the Cipso-O-Ti bond angle of Ti3-pyrene was slightly higher than that
in Ti3 dimer (156.9o vs. 156.5o). Additionally, the reformation process of π,π-stacking
interaction between Ti3 and pyrene could be also monitored by in situ NMR and UV/Vis
studies, which had been reported in other related complexes [15,17,63]. In the UV/Vis
experiment, the concentration of Ti3 was gradually increased from zero to 24 × 10−7 M
while keeping the concentration of pyrene unchanged (5 × 10−6 M). It was found that
the intensity of the absorbance of pyrene was gradually enhanced (Figure 9), indicating
the formation of strong binding, i.e., π,π-stacking interaction, between Ti3 and pyrene
molecules. This interaction could be also evidenced from the NMR study, which was carried
out by gradually adding pyrene (0–3.9 equiv.) to a C6D6 solution of Ti3 (17.8 mM). As the
spectra shown in Figure 10, two characteristic proton resonance peaks at ca. 8.65 ppm and
ca. 7.35 ppm, which were assigned to the 6- and 2- substituted protons on the pyrenoxide
group, respectively, witnessed a clear upshift to high field when gradually adding more
pyrene molecules. This was due to the formation of a stacking interaction between Ti3 and
pyrene, which caused a bigger shielding effect due to it having a bigger electron density
than the pyrenoxide moiety.

Table 4. Ethylene polymerization with Ti1-Ti3/DMAO system in the presence of 1.0 equiv. of pyrene a.

Entry Cat. T (◦C) Yield (g) Activity b Mw
c (×10−4 g/mol) Mw/Mn

c

1 Ti1 20 1.73 5190 37.5 1.6
2 Ti2 20 1.92 5760 49.3 1.6
3 Ti3 20 0.87 2610 111.7 1.8

a Polymerization: carried out in 60 mL of toluene for 10 min with 2 µmol of Ti, under an ethylene pressure of 6.0 atm,
[Al]/[Ti] = 2000, [pyrene]/[Ti] = 1:1. b Activity: kg PE•mol-1 (Ti)•h-1. c Determined by high temperature GPC.
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Figure 10. 1H NMR experiments of gradually adding pyrene to Ti3 solution in C6D6.

4. Conclusions

In summary, we have prepared a series of half-titanocene complexes containing fused-
aryloxide ligands. Due to the presence of big π-systems therein, such complexes could form
π,π-stacking interactions to give dimer structures, and such interactions could be clearly
observed from single crystal X-ray spectroscopy analysis. Because of these π,π-stacking
interactions, the present half-titanocenes revealed good catalytic activities to ethylene ho-
mopolymerizations and copolymerization with 1-hexenes, which confirmed the positive
influence of π,π-stacking interaction on enhancing the catalytic performances when com-
paring with other half-titanocenes bearing 2,6-unsubstituted aryloxide moieties. Moreover,
the overall catalytic behaviors of these complexes can be regulated by adding external
pyrene additives. Through formation of a stronger π,π-stacking between the complexes and
pyrene additives, the catalytic efficiencies as well as the molecular weight of the obtained
polymers could be further enhanced.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/polym14071427/s1, Table S1: Crystallographic data and re-
finement details for complex Ti1 and Ti3. Figure S1: 13C NMR spectrum of ethylene/1-hexene
copolymer obtained with Ti1/MAO system (Table 2, Entry 9); Figure S2: 13C NMR spectrum
of ethylene/1-hexene copolymer obtained with Ti3/MAO system (Table 2, Entry 10); Figure S3:
13C NMR spectrum of ethylene/1-hexene copolymer obtained with Ti4/MAO system (Table 2,
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Entry 11); Figure S4: 13C NMR spectrum of ethylene/1-hexene copolymer obtained with Ti4/MAO
system (Table 2, Entry 11); Figure S5: 13C NMR spectrum of ethylene/1-hexene copolymer obtained
with Ti4/MAO system (Table 2, Entry 12).
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