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Abstract: The nucleating agent N,N′-bis(2-hydroxyethyl)-terephthalamide (BHET) has promising
effects on poly(L-lactide) (PLA) under quiescent conditions and for injection molding applications,
but its suitability for industrial-scale fiber melt spinning is unclear. We therefore determined the
effects of 1% and 2% (w/w) BHET on the crystallinity, tenacity, and elongation at break of PLA fibers
compared to pure PLA and PLA plus talc as a reference nucleating agent. Fibers were spun at take-up
velocities of 800, 1400 and 2000 m/min and at drawing at ratios of 1.1–4.0, reaching a final winding
speed of 3600 m/min. The fibers were analyzed by differential scanning calorimetry, wide-angle
X-ray diffraction, gel permeation chromatography and tensile testing. Statistical analysis of variance
was used to determine the combined effects of the spin-line parameters on the material properties.
We found that the fiber draw ratio and take-up velocity were the most important factors affecting
tenacity and elongation, but the addition of BHET reduced the mechanical performance of the fibers.
The self-organizing properties of BHET were not expressed due to the rapid quenching of the fibers,
leading to the formation of α′-crystals. Understanding the behavior of BHET in the PLA matrix
provides information on the performance of nucleation agents during high-speed processing that
will allow processing improvements in the future.

Keywords: PLA melt spinning; crystallization; nucleating agents; BHET

1. Introduction

Poly(L-lactide) (PLA) is an aliphatic thermoplastic polyester produced from renewable
resources, with a production volume of ~400,000 tons in 2020 [1]. Pure PLA is often brittle,
but it shows good elastic recovery, UV resistance and favorable burning behavior [2–5].
PLA is suitable for industrial composting and is therefore widely used in food containers
and other single-use plastics. It is also suitable for melt spinning, and is therefore envisaged
as an environmentally beneficial replacement for polyester filaments in clothing, carpets
and upholstery that are currently derived from poly(ethylene terephthalate) (PET) [6–8].
PLA is also more comfortable than traditional polyester clothing because the fibers are light
and only minimally absorb sweat, thus preventing odors [9,10].

In the absence of crystallization, the relatively low glass-transition temperature (Tg) of
PLA (55–60 ◦C) confers low heat resistance, which limits the adoption of industrial-scale pro-
cesses [11]. Crystallinity increases heat resistance for subsequent textile processing [12,13],
but the crystallization rate (Rc) of PLA is low [14,15] and decreases further in the presence
of greater amounts of D-lactide [16]. Several minutes are required for the crystallization of
PLA when it is processed in bulk [17]. Crystallization is driven by C=O dipole interactions
in the PLA backbone balanced by progressively diminishing molecular motion during
cooling [18]. However, oxygen atoms also make the backbone more flexible, ensuring a
high entropic crystallization barrier. Furthermore, crystals consist of helical chains that
must be orientated to achieve optimal packing [2,18].
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The Rc can be modified by uniaxial drawing during melt spinning. Strain-induced
crystallization (SIC) occurs at high draw ratios [18–20], so melt-spun fibers cool much
faster than bulk material. Optimal processing temperatures for SIC fall within the range of
65–80 ◦C [21]. Different winding speeds and draw ratios also influence fiber properties. The
use of nucleating agents during SIC is expected to increase the degree of crystallinity (Xc) at
low draw ratios, in part by inducing earlier crystallization with lower degrees of molecular
orientation, but the effect is negligible at high draw ratios [22,23]. The temperature window
for PLA crystallization can be modified by using plasticizing agents that facilitate molecular
movement at lower temperatures [2] and nucleating agents such as talc that promote the
formation of nuclei or act as nuclei themselves [24–27].

Although many nucleating agents have been tested with PLA [26–29], few have
been used for melt spinning [30]. Most were found to be slightly less efficient than talc,
including chemically modified thermoplastic starch, cellulose nano-whiskers, and lignin
derivatives [12,31,32]. TMC-328 not only acted as a nucleating agent but also triggered
PLA degradation during processing [30,33,34]. The biobased and biodegradable nucleating
agent orotic acid improved the Rc dramatically at levels as low as 0.3% (w/w) [28].

The PET-derivative N,N′-bis(2-hydroxyethyl) terephthalamide (BHET) can be syn-
thesized entirely from renewable materials. BHET acts as a plasticizer in the melt before
self-organizing into needle-like structures above the crystallization temperature (Tc) of PLA.
BHET has a high affinity for PLA and is therefore completely miscible in the PLA matrix,
providing a large surface area for heterogeneous nucleation during bulk processing [35].
BHET has not yet been tested for high-velocity melt spinning, but we predicted that the
replacement of talc with BHET would increase the Xc by altering the crystalline structure
and therewith the crystallization behavior [36]. Accordingly, we introduced BHET as a
nucleating agent and analyzed the resulting crystal structures in melt-spun fibers in order
to better understand their behavior.

2. Materials and Methods
2.1. Materials

We used PLA grade Luminy L130 (Total-Corbion, Gorinchem, Netherlands), which
is composed of <99% stereochemically pure poly(L-lactide) with a Tg of 55–60 ◦C and
a melting point (Tm) of ~175 ◦C. The nucleating agent BHET (Figure 1), with a Tm of
350 ◦C, was synthesized as previously described [35]. The melting behavior of BHET is
unstable because it degrades directly after melting and must be dried before use. The talc
we used as a reference nucleating agent was Plustalc H05 (Mondo Minerals, Amsterdam,
The Netherlands) with a median particle size of 1.8 µm and a maximum particle diameter
of 5.9 µm (as reported by the manufacturer).
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Figure 1. Chemical structure of N,N′-bis(2-hydroxyethyl) terephthalamide (BHET).

Master batches of PLA containing 10% (w/w) talc or 5% (w/w) BHET were prepared
using a Coperion twin-screw extruder equipped with gravimetrical dosing units. All
materials were dried overnight at 60 ◦C in a vacuum before blending. Before spinning, the
PLA granules were again dried overnight in a vacuum at 60 ◦C. The remaining moisture
content was below 50 ppm, as determined by using a HydroTracer HT3 STD. Fiber samples
were named according to the type and amount of nucleating agent (B = BHET, T = talc,
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PLA = none), the take-up velocity and the draw ratio (DR). For example, B1_800_DR2
indicates that the fiber contains 1% (w/w) BHET and was processed at a take-up velocity of
800 m/min with a final draw ratio of 2.

2.2. Fiber Spinning

PLA granules were filled into a hopper feeding the extruder under gentle nitrogen
flow. When appropriate, the dried master batch was blended with PLA granules to achieve
the specified ratio before filling the hopper.

Fibers were spun on an FET-100 Series multifunctional melt spinning system (Fiber
Extrusion Technology, Leeds, UK) with an attached single-screw extruder set at 60 bar. The
heating profile was set from 180 ◦C (hopper) to 220 ◦C (spinneret). Processing is usually
carried out at 20–30 ◦C above the polymer Tm [37], but we have previously found that PLA
processing is smoother with our machine at 220 ◦C (the upper end of the melt temperature
range suggested by the manufacturer).

We set the material flow to 37.5 cm3/min with the spin pump running at 15 rpm.
The spinneret contained 48 0.25-mm holes arranged in two circles. The filaments were
quenched with air (23–24 ◦C) flowing at ~0.6 m/min. Spin-finish, containing fatty acid
esters, surfactants, and antistatic agents (Zschimmer & Schwarz, Lahnstein, Germany) were
applied to the fibers at 0.54 m3/min. Four heated godet duos were used to take up and
draw the filaments (Figure 2).
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Figure 2. Industrial melt spinning plant FET-100 (left) and the corresponding schematic pro-
cess (right).

Take-up velocities of 800, 1400 and 2000 m/min were applied at draw ratios of 1.1,
1.5, 2.0, 2.5, 3.0 and 4.0. Higher draw ratios were only attempted if fiber spinning was
successful at the lower value. The draw ratio is the winding speed relative to the velocity
of the take-up godet, and thus differs from the melt draw ratio (MDR), which is the exit
velocity of the polymer melt from the spinneret relative to the velocity of the take-up
godet. With our spinneret and process parameters, the take-up velocities of 800, 1400 and
2000 m/min yielded MDRs of 50, 88 and 126, respectively.

The set take-up velocity determined the velocity of godet duo 1, so the other godet
duos were freely adjusted to create and maintain a stable process, with most of the fiber
drawing occurring between godet duos 2 and 3. The default temperatures were set to 50,
80, 80 and 70 ◦C for godet duos 1–4, respectively. Some process parameters were adjusted
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slightly to accommodate changes in the nucleating agent content, and the take-up velocities
were modified to ensure smooth-running process conditions.

Fiber tension was monitored using a digital tension meter and was adjusted to remain
at ~10 cN during winding. The fiber was wound onto bobbins using the industrial winder
WinTens 602 (STC Spinnzwirn, Chemnitz, Germany) factory-optimized for winding veloci-
ties of 500–4200 m/min. The bobbins were wound for 5–7 min to ensure process stability.

2.3. Tensile Testing

Tensile testing was carried out using a ZwickiLine Z2.5 (Zwick Roell, Ulm, Germany)
fitted with an Xforce HP load cell for a 50 N nominal force prepared with capstan clamps
for fiber testing. Fibers were tested with a starting length of 200 mm and a pretension of
0.1 cN/tex. Testing was performed at a draw rate of 200 mm/min according to DIN EN
ISO 5079. Before each test, the linear density of the spun fibers (dtex) was determined gravi-
metrically as the average of five 100 m samples according to the DIN EN ISO 1973 standard.
The linear density was tested in triplicate.

2.4. Gel Permeation Chromatography

The molecular weight of the fibers was determined by gel permeation chromatography
(GPC) using a 1260 Infinity II SECurity device (Agilent Technologies, Santa Clara, CA,
USA) with a coupled refractive index detector. The GPC instrument was calibrated using
polymethyl methacrylate (PMMA) standards. Samples were prepared by dissolving ~4 mg
of fiber in 1.5 mL hexafluoroisopropanol (HFIP).

2.5. Differential Scanning Calorimetry

For differential scanning calorimetry (DSC), 3.5 mg samples were placed in pierced
aluminum pans on a DSC 214 device (Netzsch, Selb, Germany). We applied a single heating
cycle of 30–230 ◦C at 10 K/min, followed by an isothermal hold at 230 ◦C for 3 min before
cooling to 30 ◦C at 10 K/min. Samples of pure PLA and those containing 1% (w/w) of each
nucleation agent prepared at a take-up velocity of 800 m/min and a draw ratio of 1.1 were
tested in triplicate, whereas all other samples were tested in single experiments. The data
were analyzed using Proteus Thermal Analysis v7.0.1 (Netzsch). The caloric data from the
DSC measurements allowed us to calculate Xc values if the maximum attainable heat of
fusion (∆Hm0) for a single crystal of pure poly(L-lactide) was also known. We therefore
used the reported value of 93 J/g [2,18,38–43] and calculated Xc using Equation (1):

Xc = (∆Hm − ∆Hcc)/∆Hm
0 (1)

To account for the quantity of nucleating agents incorporated into the polymer melt,
the nominal Xc value was multiplied by the amount of PLA (0.99 for 1% BHET and talc, or
0.98 for 2% BHET and talc) to give the final Xc value.

2.6. Wide-Angle X-ray Diffraction

Samples were prepared from 3–4 loops of fiber to gain sufficient intensity for the
wide-angle X-ray diffraction (WAXD) scan. The straightened fibers were analyzed at
DSM (Geleen, The Netherlands) on a SAXSLAB Ganesha System (Saxslab, Kopenhagen,
Denmark). Cu radiation (λ = 0.15406 nm) was used at a detector distance of ~0.08 m. The
refractive intensities within angles of 2–27◦ were recorded at 0.0025◦ intervals. Fityk v1.3.1
was used for peak deconvolution [44] in the exported 2θ curves.

3. Results and Discussion
3.1. Preliminary Adjustments

The polymer throughput for all trials was a constant 37.5 cm3/min. At a draw ratio of
1.1 and the slowest take-up velocity of 800 m/min, the linear density of the fiber exceeded
500 dtex. At the fastest take-up velocity of 3600 m/min, the linear density was 127 dtex.
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When we added BHET, the polymer melt started dripping from the spinneret due to an
increase in viscosity. The spin pump pressure decreased by 10 bar when the polymer
contained 1% (w/w) BHET (compared to pure PLA or PLA + 1% (w/w) talc). At 2%
(w/w) BHET, it was necessary to reduce the temperature by 20 ◦C in order to spin fibers
successfully. We also needed to reduce the temperatures of godet duos 2 and 3. The correct
spin-finish grade of PLA is necessary to ensure a stable process and smooth fibers.

3.2. Tensile Testing

The fibers were tested as-spun without additional tempering. The tensile strength of
the fibers increased with faster take-up velocities and higher draw ratios (Figure 3). This
refined the molecular orientation, making more tie molecules available to link the separate
crystals [22,45]. The effect was clearest for the samples containing 1% (w/w) talc, although
the tenacity of these fibers at take-up velocities of 800 and 1400 m/min was lower than that
of pure PLA fibers.
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Figure 3. Tenacity of fibers plotted against the draw ratio for different nucleation agents. (a) Pure
PLA fiber as a reference. (b) Fibers containing 1% (w/w) BHET. (c) Fibers containing 1% (w/w) talc.
(d) Fibers containing 2% (w/w) talc. Data are plotted as the mean ± standard deviation (n = 5).

Under comparable processing conditions with a take-up velocity of 800 m/min, pure
PLA fibers showed the highest tenacity and the samples containing BHET showed the
lowest tenacity (Figure 4). Increasing the take-up velocity and/or the draw ratio did not
improve the tenacity of BHET-containing fibers beyond a value of 21 cN/tex. There was
little difference in tenacity between samples containing 1% and 2% (w/w) talc, although
the latter could be extended further if production was successful. Data point values and
the corresponding error values are given in Table 1.
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Figure 4. Tensilegram for as-spun fibers at 800 m/min take-up velocity and various draw ratios. The
complete measurement curves are shown for samples containing 1% BHET (B1_800).

Table 1. Data values for the samples displayed in Figure 4.

Sample
Tenacity Elongation

Sample
Tenacity Fmax Elongation

Fmax [cN/tex] SD εFmax [%] Fmax [cN/tex] SD εFmax [%]

PLA_800_DR11 8.3 0.171 198.1 B1_800_DR11 6.0 0.121 183.0

PLA_800_DR15 12.1 0.103 131.3 B1_800_DR15 9.2 0.486 132.3

PLA_800_DR20 17.5 0.110 88.6 B1_800_DR20 13.1 0.556 94.4

PLA_800_DR25 22.5 0.298 50.9 B1_800_DR25 19.0 0.312 61.2

PLA_800_DR30 27.0 0.142 39.9 B1_800_DR30 21.1 0.684 42.6

T1_800_DR11 6.6 0.598 228.3 T2_800_DR11 8.2 0.228 218.4

T1_800_DR15 11.4 0.089 134.1 T2_800_DR15 11.7 0.214 138.9

T1_800_DR20 15.7 0.772 73.0 T2_800_DR20 16.7 0.288 88.5

T1_800_DR25 21.5 0.634 45.4 T2_800_DR25 20.8 0.969 45.7

T1_800_DR30 22.5 1.460 33.4 T2_800_DR30 25.9 0.888 36.5

Having tested various parameters side by side, an analysis of variance (ANOVA)
was used to evaluate the combinations of effects (Figure 5, Table 2). A custom plan was
created with the following factors: additive (talc or BHET), amount (0%, 1% or 2%, where 0%
represents pure PLA), take-up velocity (800, 1400 or 2000 m/min) and draw ratio (1.1, 1.5 or
2.0). Most combinations could be produced. Figure 5a shows a Pareto chart ranking the
effective strength of each factor and the interactions that influenced tensile strength. The
take-up velocity and draw ratio were found to be the most significant variables (92% of the
cumulative percentage), indicating that molecular orientation has the strongest impact on
tenacity. Furthermore, the amount and presence of the nucleation agent were significant, as
were the interactions additive*amount, take-up velocity*draw ratio, amount*take-up velocity and
amount*additive*draw ratio. Figure 5b shows a Pareto chart ranking the effective strength
of each factor and the interactions that influenced elongation and indicated that the draw
ratio was more significant than the take-up velocity in this case, and that no other factors
played a significant role.
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Figure 5. Pareto chart ranking the effective strength and cumulative frequency of the factors and the
interactions that influence (a) tenacity and (b) elongation. DR = draw ratio, TU = take-up velocity,
Add = nucleating agent additive, and Am = amount of nucleating agent.

Table 2. Significance level (p) of factors and their interactions corresponding to Figure 5.

Factor Significance Level (p)
Tenacity

Significance Level (p)
Elongation

Add 0.000 0.033
Am 0.000 0.874
TU 0.000 0.000
DR 0.000 0.000

Add*Am 0.000 0.140
Add*TU 0.056 0.000
Add*DR 0.073 0.004
Am*TU 0.000 0.021
Am*DR 0.159 0.981
TU*DR 0.000 0.001

Add*Am*TU 0.122 0.000
Add*Am*DR 0.040 0.126
Am*DR*TU 0.303 0.091

Add*Am*DR*TU 0.375 0.877

3.3. Gas Permeation Chromatography

To investigate the degradation of the compounds during processing, GPC analysis
was applied only to those fiber samples containing the highest amount of additive and that
experienced the highest strain during spinning due to the take-up velocity and draw ratio.
GPC analysis revealed a small reduction in the molecular weight of the processed samples
compared to unprocessed PLA (Figure 6, Table 3). This was anticipated and reflects the
elevated temperature and shear stress during compounding and the melt spinning process.
The molecular weight of the processed PLA samples containing talc remained the same as
the processed samples of pure PLA, indicating that talc does not trigger PLA degradation
during processing. The molecular weight of the samples containing 2% (w/w) BHET was
slightly lower than that of the other processed samples, in agreement with a previous
study using this additive [35]. However, this effect was more prominent in our process,
reflecting a longer exposure of the samples to high temperature and shear stress in our
industrial-scale device compared to the laboratory equipment used for the earlier study.
A small reduction in molecular weight during processing is not expected to significantly
influence the mechanical performance of the fibers or their crystallization behavior.
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Table 3. Mw, Mn and polydispersity values for the samples tested in Figure 6.

Sample Mw [g/mol] Mn [g/mol] Polydispersity

PLA_Reference 1.51 × 105 9.70 × 104 1.56
PLA_2000_DR15 1.27 × 105 8.71 × 104 1.46

B2_800_DR15 1.10 × 105 7.58 × 104 1.45
T1_2000_DR15 1.32 × 105 8.79 × 104 1.50
T2_1400_DR20 1.37 × 105 8.95 × 104 1.53

3.4. Differential Scanning Calorimetry

The spun fibers containing BHET yielded DSC curves similar to those previously
reported [35] for pure PLA (Figure 7, Table 4). Analysis of the cold-crystallization peak for
1% (w/w) BHET under different processing conditions revealed that crystallization takes
longer for the blends with higher cold-crystallization temperatures (Tcc) (Figure 7a). At a
slow take-up velocity of 800 m/min and a low draw ratio, the Tcc peak was found at 93 ◦C.
As the draw ratio was increased, the peak temperature fell to 76 ◦C, and if the take-up
velocity was increased while maintaining a medium draw ratio, the peak temperature fell
further to 74.6 ◦C. A lower temperature was sufficient to form crystals if the polymer chains
were highly oriented. At a medium take-up velocity (1400 m/min) and low draw ratio, the
Tcc was similar to the slow take-up sample and shows that a low Tcc is maintained as the
draw ratio increases. The higher the draw ratio, the earlier crystallization begins, which
suggests that stretching in the solid state leads to rapid SIC.

Fibers spun without a high draw ratio featured a small exothermic crystallization
peak immediately before the endothermic melting peak (Figure 7b). This is associated with
recrystallization where α′-crystals transform into α-crystals [43]. Spinning with low draw
ratios leads to the formation of imperfect α′-crystal structures due to the low strain during
drawing. These α′-crystals can melt and recrystallize to form α-crystals. The exothermic
peak may also reflect a high level of polymer orientation in the amorphous phase due to
the strain applied while drawing from the melt, which is thought to promote the formation
of a mesomorphic phase [46,47].
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Figure 7. Differential scanning calorimetry thermograms for the first heating cycle of BHET-
containing fibers at different take-up velocities and draw ratios. (a) Detailed view of the glass-
transition temperature Tg and cold-crystallization temperature Tcc. (b) Melting temperature Tm.
(c) Crystallization temperature Tc during cooling.

Table 4. Differential scanning calorimetry data for Figure 7.

Sample Tg [◦C] Tcc [◦C] Tm [◦C] Tc [◦C]

B1_800_DR11 65.2 92.0 174.3 99.7
B1_800_DR30 66.0 76.0 174.3 98.4

B1_1400_DR11 60.9 87.3 175.4 101.3
B1_1400_DR20 62.3 74.6 174.3 100.9
B1_2000_DR11 63.6 85.4 174.6 96.6

The exothermic peak vanished at higher draw ratios, but a twin peak developed for
the Tm. This was due to the highly oriented polymer chains, resulting in the formation of
imperfect crystals that melted at a slightly lower temperature than perfect crystals. This
phenomenon was exacerbated by rapid quenching at high velocities, which provided
insufficient time to form perfect crystals.

There were no significant differences between the heating cycles for pure PLA and PLA
plus either of the additives at the slowest take-up velocity and lowest draw ratio. At higher
take-up velocities, the Tc declined for pure PLA and PLA + talc but not for PLA + BHET,
indicating that BHET cannot exploit the higher degree of polymer orientation in the fiber,
thus preventing crystallization at lower temperatures (Figure 8, Table 5). This is the opposite
of the behavior anticipated for a nucleating agent.
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Figure 8. Differential scanning calorimetry data (exotherm down) for the first heating cycle at
different take-up velocities and in the presence of different nucleating agents. (a) The first heating
cycle at a take-up velocity of 800 m/min. (b) The corresponding crystallization peak during cooling.
(c) The heating cycle at a take-up velocity of 2000 m/min. The curves are offset for visual clarity.

Table 5. Differential scanning calorimetry data for Figure 8.

Sample Tg [◦C] Tcc [◦C] Tm [◦C] Tc [◦C]

B1_800_DR11 65.2 92.0 174.3 99.7
PLA_800_DR11 61.2 90.8 174.7 102.9
T1_800_DR11 65.0 90.0 174.7 110.0
T2_800_DR11 59.2 91.0 175.4 113.7
B1_2000_DR11 63.6 85.4 174.6 96.6

PLA_2000_DR11 61.1 75.1 173.8 102.0
T1_2000_DR11 59.4 74.5 174.4 112.2

During the cooling cycle, the presence of talc increased the Tc by almost 10 ◦C. This
effect has been reported before and is often used to accelerate crystallization [31,32].

The enthalpy of recrystallization (exothermic peak from the first heating cycle) was
subtracted from the melting enthalpy to calculate Xc, which generally increased at higher
draw ratios due to the higher degree of polymer orientation and SIC during spinning
(Figure 9). As stated above, Xc was corrected by the amount of additive in each composite
material. At low take-up velocities, Xc declined as the draw ratio increased from 1.5 to 2,
but it increased more rapidly at higher draw ratios. The only samples that did not show
a decrease in Xc within this range of draw ratios were those containing 2% (w/w) talc,



Polymers 2022, 14, 1395 11 of 15

indicating that the talc particles suppress this effect if enough nuclei are present to maintain
the crystallization process.
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Figure 9. Degree of crystallinity (Xc) calculated from enthalpy as the draw ratio increases. The data
represent take-up velocities of (a) 800 m/min, (b), 1400 m/min, and (c) 2000 m/min.

A decrease in Xc was even observed at medium take-up velocities, especially for pure
PLA fibers. The PLA fibers with BHET also showed a decrease in Xc but at a slightly higher
draw ratio, possibly reflecting the switch from drawing in the molten state (as defined by
the take-up velocity) to solid-state drawing after consolidation. Alternatively, this is the
point at which there is insufficient time for crystallization and the stress is not yet high
enough for SIC. There was no decrease in Xc at higher take-up velocities, which strengthens
the hypothesis that SIC occurs under these conditions. The maximum Xc was ~55% for the
selected ∆Hm0 and is clearly shown for the fibers containing 2% (w/w) talc (T2_800) in
Figure 9a. The plateau is consistent with earlier reports [20].

The DSC data were statistically evaluated by ANOVA (Figure 10, Table 6). The main
effects contributing to the Xc were ranked by importance, as follows: draw ratio, take-up
velocity, type and amount of additive. This confirms that the draw ratio has the strongest
effect on the Xc.
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Figure 10. Pareto chart representing the effective strength and cumulative frequency of the factors
and their interactions on the degree of crystallinity (Xc). DR = draw ratio, TU = take-up velocity,
Add = nucleating agent, and Am = amount of nucleating agent.

Table 6. Significance level (p) of factors and their interactions corresponding to Figure 10.

Factor Significance Level (p)

Add 0.000
Am 0.888
TU 0.000
DR 0.000

Add*Am 0.003
Add*TU 0.010
Add*DR 0.614
Am*TU 0.188
Am*DR 0.073
TU*DR 0.809

Add*Am*TU 0.214
Add*Am*DR 0.799
Am*DR*TU 0.199

Add*Am*DR*TU 0.831

3.5. Wide-Angle X-ray Diffraction

The WAXD data were deconvoluted to isolate the crystalline signals, which are shown
in Figure 11. It is clear that α-crystals (small peaks at 16.4◦) only formed at high draw
ratios, whereas faster take-up velocities only increased the meso-phase [46]. This supports
the importance of a high draw ratio during spinning for crystal formation. At high draw
ratios, a second peak developed at 18.7◦ for PLA and PLA + talc, indicating the presence
of α′-crystals. The addition of talc changed the crystallization behavior because the peak
at 16.4◦ indicates that α-crystals were formed even at lower draw ratios. In contrast, the
presence of BHET strengthened the meso-phase in comparison to pure PLA.

The deconvoluted WAXD signals for fibers prepared at a slow take-up velocity and
high draw ratio revealed that PLA containing 1% (w/w) BHET had a slightly higher peak
than pure PLA, but a lower peak than PLA containing 2% (w/w) talc (Figure 11d). Pure
PLA and the fibers containing 1% (w/w) talc also showed a small peak at 18.7◦, indicating
the presence of α′-crystals. This peak disappeared from the fibers containing 2% (w/w) talc,
probably reflecting smaller crystals originating from the more abundant nuclei. Because
the process conditions were identical, a high level of strain in the fiber led to imperfect
larger crystals but had a less significant effect on the small crystals, which prevented the
formation of α′-crystals.
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4. Conclusions

BHET worked as a plasticizer in the molten PLA as expected, but the presence of
2% (w/w) BHET reduced the melt viscosity and thus prevented effective melt spinning.
However, BHET did not enhance the tensile strength of the spun fibers and even reduced
their mechanical performance compared to pure PLA or PLA + talc. Statistical analysis
revealed that the additives had no significant effect on the tenacity or elongation of the as-
spun fibers, and GPC did not reveal any substantial polymer degradation during processing.
Although BHET is known to promote hydrolysis, the minimal degradation we observed
is not expected to influence the mechanical properties of the resulting fibers. BHET was
not an efficient nucleating agent under our melt spinning conditions. The BHET-loaded
fibers behaved like pure PLA fibers with only slightly lower values, and there was no
change in the final Xc or Tc. Importantly, with higher take-up velocities, BHET inhibited
crystallization at lower temperatures. WAXD peaks representing α-crystals only appeared
at high draw ratios for all three types of material. BHET may be a suitable nucleating
agent at low take-up velocities and low draw ratios when the temperature is high, but this
would result in a much lower production efficiency. We conclude that the BHET content
should be tailored for each polymer to enable dissolution at higher temperatures in the
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polymer melt. This will facilitate subsequent compounding and melt spinning at lower
temperatures without destroying the self-assembled structures of the nucleating agent.
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