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Abstract: It is not conservative to directly use the strength tested under the laboratory loading rates
to evaluate the long-term creep strength of polymers. A suitable strain rate-dependent constitutive
model is crucial for accurately predicting the long-term strength and mechanical behavior of polymer
pressure pipes. In this study, the Kondner hyperbolic constitutive model is considered the base model
in deriving the rate-dependent constitutive model for PE100 pipe material, and the yield stress and
initial tangent modulus are the two rate-dependent parameters of the model. Uniaxial tension tests
are carried out under five specified strain rates ranging from 10−5 s−1 to 5 × 10−2 s−1 to obtain these
two parameters. It is demonstrated that the strain rate dependence of the yield stress and the initial
tangent modulus can be described by either a power or a logarithm law. The predictions from the
two models are in good agreement with the experiments. In contrast, the power-law rate-dependent
Kondner model is more suitable for describing the rate-dependent tensile behavior of PE100 pipe
material than the logarithm-law rate-dependent Kondner model, especially for the cases of very low
strain rates which relate to the polymer pressure pipe applications.

Keywords: high-density polyethylene; rate dependence; hyperbolic constitutive model; yield stress;
yield strain; initial tangent modulus

1. Introduction

PE100 is the third generation of pipe grade high-density polyethylene (HDPE) and
has an optimum balance of long-term strength, creep resistance, and slow crack growth
resistance. PE100 pipes have been widely used in water and gas supply networks [1–3]. It
is well recognized that HDPE exhibits viscoelastic–plastic behavior at room temperature,
and its stress–strain response is strongly affected by the loading rate [4–6]. The yield stress
and strain hardening modulus are reported to increase linearly with increasing logarithmic
value of the strain rate [7].

As the deformation rate is very low for PE100 pipes subjected to medium or low
internal pressure, the long-term deformation behavior and failure time are difficult to
measure by tests. Moreover, reliable prediction models for the strength and failure of
pressure pipes are still lacking [1,8–10]. In engineering practice, the tensile properties of the
pipe material are measured in accordance with the ISO 527 standard at various test speeds
ranging from 0.125 mm/min to 500 mm/min, depending on the test specimen size and test
material type, and used to check the failure of the pipe accordingly. Numerous studies have
shown that the strength of polymers, including HDPE, decreases with decreasing strain rate
and with increasing temperature [4,11,12]; for instance, El-Bagory et al. [13] demonstrated
that the room-temperature yield stress of an HDPE standard specimen with a gage length
of 50 mm is 27.24 MPa when the loading speed is set to be 500 mm/min, while it decreases
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to 19.58 MPa under a loading speed of 5 mm/min. Thus, it is not conservative to directly
use the strength tested under the laboratory loading rate, which is much higher than the
creep rate in the real pipe case under a constant internal pressure, to evaluate the long-term
strength of the pipe material. To properly characterize the long-term mechanical properties
and the long-term strength of the pipe material, there are usually two methodologies: one
is to perform long-term tensile tests with very slow speed, which are so expensive and
time-consuming that few laboratories carry out such tests; the other is to predict the stress–
strain response at very low strain rates through the combination of short-term laboratory
tests at various strain rates and reliable rate-dependent constitutive models. This study
adopts the latter method.

In recent decades, numerous macromechanical and micromechanical constitutive
models have been proposed for describing the rate-dependent viscoelastic and viscoplastic
behaviors of polymer materials. In micromechanical models, the crystalline and amorphous
phases in semicrystalline polymers, including HDPE, are separately modeled owing to
their different specific characteristics [14], and the two phases are combined to form a
homogenized model that represents the bulk material; therefore, the micromechanical
models are capable of studying the link between the mechanical properties and the chemical
composition of the material [15]. Macromechanical models are generally phenomenological
models, and the differential or integral constitutive equations are expressed as functions
of stress, strain rate, and strain or time [16]. The viscoelastic response is often described
by the Schapery single integral nonlinear viscoelastic model [17] or generalized Kelvin
model in the differential form [18,19], and the viscoplastic response is often described by
the overstress theory [20,21]. The model parameters are determined from creep, stress
relaxation, monotonic and cyclic uniaxial testing at different strain rates.

This study focuses on developing a simple rate-dependent model from which the
tensile properties of HDPE material can be derived. To achieve this goal, quasi-static tensile
tests under constant strain rates ranging from 10−5 s−1 to 5 × 10−2 s−1 were conducted
on PE100 pipe material, and the corresponding rate-dependent stress–strain curves were
described by a modified hyperbolic constitutive model in which the rate dependences of
the yield stress and the initial elastic modulus were considered.

2. Material and Tests
2.1. Material and Specimen

The specimens for tensile tests are cut and prepared from a PE100 gas pipe with
dimensions of 315 mm in outer diameter and 28.6 mm in thickness, which is extrusion
molded by Hebei Yisu Pipeline Co., Ltd. (Cangzhou, China) with the SABIC® HDPE P6006
compound (SABIC Innovative Plastics (Shanghai) Co., Ltd., Shanghai, China) containing
a carbon black content of 2.25%. The melt flow rate of the compound at 190 ◦C and 5 kg
load is 0.23 g/10 min under the test specification of ISO 1133, and the density is measured
to be 959 kg/m3 at 23 ◦C according to ASTM D1505. The shape and dimensions of the
specimen shown in Figure 1 meet the requirements for the type B1 specimen recommended
by ISO 527-2.
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2.2. Tensile Tests with Constant Strain Rate

The constant strain rate (CSR) tensile tests are completed on a CSS44020 electronic
tensile testing machine, as shown in Figure 2. The specimens are stretched with five
specified strain rates of 5 × 10−2 s−1, 10−2 s−1, 10−3 s−1, 10−4 s−1, and 10−5 s−1; all tests
are performed at 23 ◦C and at a relative humidity of 50% RH. The longitudinal strain
is measured by an extensometer, and the digital image correlation (DIC) technique is
simultaneously used to record the longitudinal and transverse deformations to evaluate the
Poisson’s ratio during stretching. The CSR tests for each specified strain rate are repeated
three times, and the average yield stress and yield strain are obtained for further model
validations. The representative engineering stress–strain curves obtained from the tests
are shown in Figure 3a. When the strain increases to a certain value, stress softening and
strain localization occur due to necking. The subsequent stress–strain curve cannot truly
reflect the constitutive characteristics of the material due to the nonuniform deformation.
Therefore, we only retain the engineering stress–strain curve before necking for further
analysis, as shown in Figure 3b. The longitudinal strain vs. time curve and the transverse
strain vs. time curve measured under a strain rate of 10−3 s−1 are shown in Figure 4. The
longitudinal strain measured by the extensometer is consistent with that measured by
DIC technology. Therefore, in the other CSR tensile tests, only an extensometer is used to
measure the longitudinal strain for the stress–strain response analysis.
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3. Results and Discussions
3.1. Poisson’s Ratio

Poisson’s material ratio can be measured by the negative ratio of transverse strain
to longitudinal strain. The transverse strain and the longitudinal strain data set shown
in Figure 4 are replotted in Figure 5. It is obvious that the transverse strain changes in
proportion with the longitudinal strain during the tensile process. The data set is linearly
fitted by a linear function revealing a straight line with a slope of−0.456; thus, the Poisson’s
ratio of the tested PE100 pipe material is determined to be 0.456.

3.2. True Stress–Strain Curves

Figure 3 shows that the strains prior to necking yield reach 0.07–0.17 when loaded at
strain rates from 10−5 s−1 to 5× 10−2 s−1. As the specimens experience large deformation to
yield, the corresponding true stress–strain curves are considered in the following analysis.

For the test data shown in Figure 3b, the engineering stress and strain are converted to
the true stress and strain by Equations (1) and (2):

εtrue = ln(1 + ε) (1)
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σtrue = σ(1 + ε)2µ (2)

where εtrue and ε denote the true strain and the engineering strain, respectively; σtrue and σ
denote the true stress and the engineering stress, respectively; and µ is the Poisson’s ratio
of the material.
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Figure 5. Transverse strain vs. longitudinal strain curve of PE100 pipe material loaded at a strain rate
of 10−3 s−1.

The converted true stress-true strain curves for various strain rates are plotted in
Figure 6. The true stress at a given true strain increases with increasing strain rate. For
instance, the true stresses at a true strain of 0.07 are 17.6 MPa, 20.4 MPa, 24.5 MPa, 28.6 MPa,
and 30.6 MPa for strain rates of 10−5 s−1, 10−4 s−1, 10−5 s−1, 10−6 s−1, and 5 × 10−5 s−1,

respectively. For each order of magnitude increase in the strain rate, the true stress increases
by 15–20%.
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3.3. Rate-Dependent Yielding

As necking and strain softening are the consequence of yielding, the peak stress prior
to necking is taken as the yield stress. The yield stresses at various strain rates can be
determined from the test data in Figure 3, and Figure 7 shows the measured yield stress at
five different strain rates. Two models are adopted to fit the data: one is the logarithm law,
and the other is the power law.
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3.3.1. Logarithm Law

As suggested by the Eyring model [22,23], which was first proposed to describe the
chemical reaction rate behavior and is currently applied to the viscoelasticity of polymers,
the necking of polymers is considered as a thermal activation rate process; then, the yield
stress and the logarithm of the strain rate satisfy a linear relationship as follows [24]:

σy =
kBT
V

[
ln
(

2
.
ε

.
ε0

)
+

Q
kBT

]
= Alg

.
ε + B (3)

where
.
ε0 is the reference strain rate, kB is the Boltzmann constant, T denotes the temperature

in Kelvin, Q denotes the activation energy, V is the activation volume, and A and B are
material parameters. Fitting Equation (3) with the test data in Figure 7, the material
parameters can be determined, as shown in Equation (4), with a correlation coefficient
greater than 0.99. The dashed line in Figure 7 represents such regression fitting.

σy = 34.62 + 3.18lg
.
ε (4)

This logarithm-law rate dependence of the yield stress is consistent with a previous
investigation by Zhang et al. [7].

3.3.2. Power Law

Often, the rate dependence of the yield stress of polymers is instead described with a
power law added to a constant [25]:

σy = σy0 + p
.
ε

n (5)

where σy0 is the static yield stress corresponding to zero-rate tension (strain rate approach-
ing zero), p and n are the coefficient and the exponent of the power-law dependence,
respectively. The parameters are determined by curve fitting with the least-square-error
method, as given in Equation (6). Such a fit provides a good description of the test data
with a correlation coefficient greater than 0.97, as depicted by the solid line in Figure 7.

σy = 10.74 + 27.34
.
ε

0.1 (6)

4. Constitutive Model
4.1. Rate-Dependent Hyperbolic Model

The hyperbolic stress–strain model of Kondner [26] and Duncan and Chang [27],
which was originally formulated for consolidated-undrained triaxial compression of soils,
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has been proven to be applicable for the nonlinear mechanical behavior of polymer
materials [28,29]. The hyperbolic constitutive model is given as:

σ1 − σ3 =
ε

a + bε
(7)

in which σ1 and σ3 are the major and minor principal stresses, ε is the axial strain, and
a and b are experimentally determined material constants that are generally considered
as uncorrelated independent variables. Suleiman et al. [29] further considered the linear
correlation between the parameters a and b, and developed a focus point approach to
estimate the parameters. The original Kondner hyperbolic model does not consider the
strain rate effect of the material in the constitutive relationship.

To consider the strain-rate dependent behavior, the material parameters a and b are
assumed to be strain-rate dependent due to the viscoelasticity of the material [28]. Thus,
for uniaxial tension of polymer materials, Equation (7) reduces to

σ
(
ε,

.
ε
)
=

ε

a
( .
ε
)
+ b

( .
ε
)
·ε

(8)

The mechanical meanings of the two parameters are considered below. If the strain
approaches infinity, the stress will reach its asymptotic value, which is called the ultimate
stress σu, i.e., σu

( .
ε
)
= lim

ε→∞
σ = 1/b

( .
ε
)
. It is clear that the ultimate stress derived from

Equation (8) is higher than the maximum stress that the real material experienced during
tension as no real material can deform to infinite strain before fracture. For the PE100 pipe
material in this study, the maximum stress is the yield stress prior to necking; thus, the
yield stress is assumed to relate to the ultimate stress in the following relation:

σy
( .
ε
)
= r·σu

( .
ε
)
, (r < 1) (9)

where r is the ratio of the yield stress to the fictitious ultimate stress. Therefore, parameter
b is proportional to the reciprocal of the yield stress of the material.

The strain-dependent tangent modulus is obtained through the derivative of
Equation (8) with respect to strain:

Et =
∂σ

∂ε
=

a
( .
ε
)[

a
( .
ε
)
+ b

( .
ε
)
·ε
]2 (10)

where Et is the tangent modulus. The initial modulus is defined as

E0
( .
ε
)
= lim

ε→0
Et =

1
a
( .
ε
) (11)

Because of the large deformation mentioned in Section 3.2, the true stress and true
strain are used to describe the mechanical behavior of the PE100 pipe material. Replacing
the stress σ and the strain ε in Equation (8) with the corresponding true stress σtrue and true
strain εtrue, the hyperbolic constitutive model with two rate-dependent parameters, a

( .
ε
)

and b
( .
ε
)

or E0
( .
ε
)

and σy
( .
ε
)
, is rewritten as

σtrue =
εtrue

a
( .
ε
)
+ b

( .
ε
)
·εtrue

=
εtrue

1
E0(

.
ε)

+ r
σy(

.
ε)

εtrue
(12)

In engineering applications, yielding is often considered one of the failure criteria. In
such cases, the failure strain corresponding to the yield stress is given by

εy
( .
ε
)
=

σy
( .
ε
)

(1− r)E0
( .
ε
) (13)
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4.2. Identification of Model Parameters

Equation (12) can be rewritten in a linearized form as follows:

εtrue

σtrue
= a

( .
ε
)
+ b

( .
ε
)
·εtrue =

1
E0

( .
ε
) +

r
σy
( .
ε
) εtrue (14)

In this transformation, the ratio of the true strain to the true stress defines the transient
compliance, a or 1/E0 represents the intercept and b or r/σy represents the slope of the
transient compliance versus true strain curve. Figure 8 shows the transient compliance—
true strain curves of PE100 pipe material under various strain rates by transforming from
the data in Figure 6. The linearity of this transformation is confirmed by the linear regression
lines for each strain rate, which are highly consistent with the experimental data.

Polymers 2022, 14, x FOR PEER REVIEW 9 of 13 
 

 

0.00 0.05 0.10 0.15 0.20
0.000

0.002

0.004

0.006

0.008

0.010

  = 5x10-2 s-1

  = 10-2 s-1

  = 10-3 s-1

  = 10-4 s-1

  = 10-5 s-1

T
ra

n
si

en
t 

co
m

p
li

an
ce

 (
M

P
a-1

)

True strain (-)
 

Figure 8. Transient compliance-true strain curves of PE100 pipe material under various strain rates. 

Substituting Equation (4) into Equation (14), the linear regression lines determine 

the parameters ( )0E  , ( )a   and r, which are listed in Table 1. All regressions have 

high correlation coefficients that are not less than 0.99. The ratio r has a rate independent 

value of 0.9. 

Table 1. Model parameters E0, a and r. 

 /s−1 E0/MPa a/MPa−1 r Correlation Coefficient, R2 

10−5 1.26 × 103 7.93 × 10−4 0.90 0.9991 

10−4 1.55 × 103 6.47 × 10−4 0.90 0.9981 

10−3 2.36 × 103 4.23 × 10−4 0.90 0.9974 

10−2 3.56 × 103 2.81 × 10−4 0.90 0.9977 

5 × 10−2 3.92 × 103 2.55 × 10−4 0.90 0.9995 

It is also necessary to obtain the relationship between the initial modulus and the 

strain rate. Figure 9 shows the variation of the initial modulus with the strain rate. Two 

types of functions are used for regression fitting: the power law and the logarithm law. 

The regressions are given in Equations (15) and (16). It is seen that two regressions have 

high correlation coefficients greater than 0.96; however, Equation (16) is not appropriate 

for the cases of extremely low strain rates, as it predicts a negative modulus for strain 

rates less than 10−6 s−1. Equation (15) reveals that the initial elastic modulus increases with 

increasing strain rate by the power-law with a constant static value. 

( ) ( )0.18 2

0 326.44 6624.5 0.9630E R = + =  (15) 

( ) ( )2

0 5034.21 835.04lg 0.9822E R = + =  (16) 

Figure 8. Transient compliance-true strain curves of PE100 pipe material under various strain rates.

Substituting Equation (4) into Equation (14), the linear regression lines determine
the parameters E0

( .
ε
)
, a

( .
ε
)

and r, which are listed in Table 1. All regressions have high
correlation coefficients that are not less than 0.99. The ratio r has a rate independent value
of 0.9.

Table 1. Model parameters E0, a and r.

.
ε/s−1 E0/MPa a/MPa−1 r Correlation

Coefficient, R2

10−5 1.26 × 103 7.93 × 10−4 0.90 0.9991
10−4 1.55 × 103 6.47 × 10−4 0.90 0.9981
10−3 2.36 × 103 4.23 × 10−4 0.90 0.9974
10−2 3.56 × 103 2.81 × 10−4 0.90 0.9977

5 × 10−2 3.92 × 103 2.55 × 10−4 0.90 0.9995

It is also necessary to obtain the relationship between the initial modulus and the
strain rate. Figure 9 shows the variation of the initial modulus with the strain rate. Two
types of functions are used for regression fitting: the power law and the logarithm law.
The regressions are given in Equations (15) and (16). It is seen that two regressions have
high correlation coefficients greater than 0.96; however, Equation (16) is not appropriate for
the cases of extremely low strain rates, as it predicts a negative modulus for strain rates
less than 10−6 s−1. Equation (15) reveals that the initial elastic modulus increases with
increasing strain rate by the power-law with a constant static value.

E0
( .
ε
)
= 326.44 + 6624.5

.
ε

0.18 (
R2 = 0.9630

)
(15)
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E0
( .
ε
)
= 5034.21 + 835.04lg

.
ε

(
R2 = 0.9822

)
(16)
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4.3. Determined Rate-Dependent Constitutive Model

Two optional rate-dependent hyperbolic constitutive models for PE100 pipe material
are finally determined by selecting either the logarithm-law or the power-law dependence.

4.3.1. Model with Logarithm-Law Rate Dependence

Substituting Equations (4) and (16) into Equation (12) and setting r = 0.9, the logarithm-
law rate-dependent hyperbolic constitutive model is finally determined by

σtrue
( .
ε
)
=

εtrue
1

5034.21+835.04lg
.
ε
+ 0.9

34.62+3.18lg
.
ε
εtrue

(17)

The predictions by Equation (17) are plotted as solid lines in Figure 10, which are in
good agreement with the experimental data in the CSR tests except for the case of 10−5 s−1.
The inconsistency is attributed to the underestimation of E0 and σy for low strain rates less
than 10−5 s−1.
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4.3.2. Model with Power-Law Rate Dependence

Substituting Equations (6) and (15) into Equation (12) and setting r = 0.9, the power-law
rate-dependent hyperbolic constitutive model is finally determined by

σtrue
( .
ε
)
=

εtrue
1

326.44+6624.5
.
ε
0.18 +

0.9
10.74+27.34

.
ε
0.1 εtrue

(18)

The predictions by Equation (18) are plotted as solid and dashed lines in Figure 11.
The solid lines are consistent with the experimental data in the CSR tests under all strain
rates, while the dashed lines show the reasonable predictions of stress–strain responses for
the case of very low strain rates.
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Furthermore, the predictions for yield strains under various strain rates are given by
substituting either Equations (4) and (16) or Equations (6) and (15) into Equation (13) and
setting r = 0.9.

Logarithm-law rate-dependent yield strain:

εy
( .
ε
)
=

34.62 + 3.18lg
.
ε

(1− 0.9)×
(
5034.21 + 835.04lg

.
ε
) (19)

Power-law rate-dependent yield strain:

εy
( .
ε
)
=

10.74 + 27.34
.
ε

0.1

(1− 0.9)×
(

326.44 + 6624.5
.
ε

0.18
) (20)

As shown in Figure 12, the predictions for yield strain by Equations (19) and (20)
generally agree with the experimental measurements. In contrast, Equation (20) is more
appropriate than Equation (19).
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5. Conclusions 

The investigation performed uniaxial tension tests at five specified strain rates 
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5. Conclusions

The investigation performed uniaxial tension tests at five specified strain rates ranging
from 10−5 s−1 to 5 × 10−2 s−1 on PE100 pipe material. The strain rate dependence of
the yield stress and initial tangent modulus were analyzed and incorporated into the
rate-dependent Kondner hyperbolic constitutive model. The following conclusions can be
drawn from the present investigation:

(a) The tensile mechanical behavior of PE100 pipe material depends on the loading
strain rate, and the strain-rate dependence of the yield stress and the initial tangent
modulus can be described by either a power law or a logarithm law in the tested
strain rate range.

(b) The strain-rate dependent Kondner hyperbolic constitutive model takes the yield
stress and initial tangent modulus of the material as model parameters, and it can
describe the tensile mechanical behavior of PE100 pipes prior to yielding under
various strain rates. The predictions agree well with the tests and provide the stress–
strain responses at very low strain rates. In contrast, the power-law rate-dependent
Kondner model is more suitable for describing the rate-dependent tensile behavior of
PE100 pipe than the logarithm-law rate-dependent Kondner model.

Author Contributions: Conceptualization, Y.L. and W.L.; data curation, Y.L. and X.L.; formal analysis,
Y.L. and W.L.; funding acquisition, W.L., M.L. and X.L.; investigation, Y.L. and B.Y.; methodology,
Y.L. and W.L.; project administration, B.Y.; writing—original draft, Y.L. and W.L.; writing—review &
editing, W.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (12072308,
11802259), Natural Science Foundation of Hunan Province (2021JJ30644), High-level Talent Gathering
Project in Hunan Province (2019RS1059), State Administration for Market Regulation of China
(2020MK128) and Hunan Provincial Innovation Foundation for Postgraduates (CX2017B309).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.



Polymers 2022, 14, 1357 12 of 12

References
1. Robledo, N.; Dominguez, C.; Garcia-Munoz, R.A. Alternative accelerated and short-term methods for evaluating slow crack

growth in polyethylene resins with high crack resistance. Polym. Test. 2017, 62, 366–372. [CrossRef]
2. Gholami, F.; Pircheraghi, G.; Rashedi, R.; Sepahi, A. Correlation between isothermal crystallization properties and slow crack

growth resistance of polyethylene pipe materials. Polym. Test. 2019, 80, 106128. [CrossRef]
3. Yang, P.Y.; Zhao, L.; Pan, X.F.; Zhou, F.Q.; Yang, Z.X.; He, X.L. The effect of branched structure on the lamellae evolution under

uniaxial extension and SCG resistance of polyolefins. Polym. Test. 2020, 87, 106555. [CrossRef]
4. Xu, L.; Du, Z.; Wang, J.; Cheng, C.; Du, C.; Gao, G. A viscoelastoplastic constitutive model of semi-crystalline polymers under

dynamic compressive loading: Application to PE and PA66. Mech. Adv. Mater. Struct. 2020, 27, 1331–1341. [CrossRef]
5. Kühl, A.; Muñoz-Rojas, P.A. Application of a master curve and the modified superposition principle for modeling creep and

loading rate effects at small strains in high-density polyethylene. Mech. Adv. Mater. Struct. 2021, 28, 891–903. [CrossRef]
6. Zhang, Y.; Jar, P.Y.B. Time-strain rate superposition for relaxation behavior of polyethylene pressure pipes. Polym. Test. 2016,

50, 292–296. [CrossRef]
7. Zhang, Y.; Ben Jar, P.Y. Effects of crosshead speed on the quasi-static stress-strain relationship of polyethylene pipes. J. Press.

Vessel Technol.-Trans. Asme 2017, 139, 021402. [CrossRef]
8. Grellmann, W.; Langer, B. (Eds.) Deformation and Fracture Behaviour of Polymer Materials; Springer: Berlin/Heidelberg,

Germany, 2017.
9. Alimi, L.; Chaoui, K.; Amirat, A.; Azzouz, S. Study of reliability index for high-density polyethylene based on pipe standard

dimension ratio and fracture toughness limits. Int. J. Adv. Manuf. Technol. 2018, 96, 123–136. [CrossRef]
10. Cholewa, J.A.; Brachman, R.W.I.; Moore, I.D. Effectiveness of viscoelastic models for prediction of tensile axial strains during

cyclic loading of high-density polyethylene pipe. J. Pipeline Syst. Eng. Pract. 2010, 1, 77–83. [CrossRef]
11. Amjadi, M.; Fatemi, A. Creep behavior and modeling of high-density polyethylene (HDPE). Polym. Test. 2021, 94, 107031.

[CrossRef]
12. Kanters, M.J.W.; van Erp, T.B.; van Drongelen, M.; Engels, T.A.P.; Govaert, L.E. Loading rate dependence of failure strength as

predictor for the long-term performance of thermoplastic polymeric products. Polym. Test. 2017, 59, 177–184. [CrossRef]
13. El-Bagory, T.M.A.A.; Sallam, H.E.M.; Younan, M.Y.A. Effect of loading rate and pipe wall thickness on the strength and toughness

of welded and unwelded polyethylene pipes. J. Press. Vessel Technol. 2021, 143, 011505. [CrossRef]
14. Boyce, M.C.; Parks, D.M.; Argon, A.S. Large inelastic deformation of glassy polymers. part I: Rate dependent constitutive model.

Mech. Mater. 1988, 7, 15–33. [CrossRef]
15. Drozdov, A.D.; Christiansen, J.D. Viscoelasticity and viscoplasticity of semicrystalline polymers: Structure–property relations for

high-density polyethylene. Comput. Mater. Sci. 2007, 39, 729–751. [CrossRef]
16. Sepiani, H.; Polak, M.A.; Penlidis, A. Modeling short- and long-term time-dependent nonlinear behavior of polyethylene. Mech.

Adv. Mater. Struct. 2018, 25, 600–610. [CrossRef]
17. Schapery, R.A. On the characterization of nonlinear viscoelastic materials. Polym. Eng. Sci. 1969, 9, 295–310. [CrossRef]
18. Zhang, C.; Moore, I.D. Nonlinear mechanical response of high density polyethylene. Part I: Experimental investigation and

model evaluation. Polym. Eng. Sci. 1997, 37, 404–413. [CrossRef]
19. Zhang, C.; Moore, I.D. Nonlinear mechanical response of high density polyethylene. Part II: Uniaxial constitutive modeling.

Polym. Eng. Sci. 1997, 37, 414–420. [CrossRef]
20. Krempl, E.; Khan, F. Rate (time)-dependent deformation behavior: An overview of some properties of metals and solid polymers.

Int. J. Plast. 2003, 19, 1069–1095. [CrossRef]
21. Colak, O.U.; Dusunceli, N. Modeling viscoelastic and viscoplastic behavior of high density polyethylene (HDPE). J. Eng. Mater.

Technol. 2006, 128, 572–578. [CrossRef]
22. Eyring, H. Viscosity, plasticity, and diffusion as examples of absolute reaction rates. J. Chem. Phys. 1936, 4, 283–291. [CrossRef]
23. Ree, T.; Eyring, H. The relaxation theory of transport phenomena. In Rheology: Theory and Applications; Eirich, F.R., Ed.; Academic

Press: New York, NY, USA, 1958; pp. 83–144.
24. Unger, R.; Exner, W.; Arash, B.; Rolfes, R. Non-linear viscoelasticity of epoxy resins: Molecular simulation-based prediction and

experimental validation. Polymer 2019, 180, 121722. [CrossRef]
25. Rottler, J.; Robbins, M.O. Shear yielding of amorphous glassy solids: Effect of temperature and strain rate. Phys. Rev. E Stat.

Nonlinear Soft Matter Phys. 2003, 68, 011507. [CrossRef]
26. Kondner, R. Hyperbolic stress-strain response: Cohesive soils. J. Soil Mech. Found. Div. ASCE 1963, 89, 115–143. [CrossRef]
27. Duncan, J.M.; Chang, C.Y. Nonlinear analysis of stress and strain in soils. J. Soil Mech. Found. Div. ASCE 1970, 96, 1629–1653.

[CrossRef]
28. Merry, S.M.; Bray, J.D. Time-dependent mechanical response of HDPE geomembranes. J. Geotech. Geoenviron. Eng. 1997, 123, 57–65.

[CrossRef]
29. Suleiman, M.T.; Coree, B.J. Constitutive model for high density polyethylene material: Systematic approach. J. Mater. Civ. Eng.

2004, 16, 511–515. [CrossRef]

http://doi.org/10.1016/j.polymertesting.2017.07.022
http://doi.org/10.1016/j.polymertesting.2019.106128
http://doi.org/10.1016/j.polymertesting.2020.106555
http://doi.org/10.1080/15376494.2018.1508796
http://doi.org/10.1080/15376494.2019.1605008
http://doi.org/10.1016/j.polymertesting.2015.12.014
http://doi.org/10.1115/1.4033777
http://doi.org/10.1007/s00170-017-1564-7
http://doi.org/10.1061/(ASCE)PS.1949-1204.0000053
http://doi.org/10.1016/j.polymertesting.2020.107031
http://doi.org/10.1016/j.polymertesting.2017.01.026
http://doi.org/10.1115/1.4047444
http://doi.org/10.1016/0167-6636(88)90003-8
http://doi.org/10.1016/j.commatsci.2006.09.001
http://doi.org/10.1080/15376494.2017.1285452
http://doi.org/10.1002/pen.760090410
http://doi.org/10.1002/pen.11683
http://doi.org/10.1002/pen.11684
http://doi.org/10.1016/S0749-6419(03)00002-0
http://doi.org/10.1115/1.2345449
http://doi.org/10.1063/1.1749836
http://doi.org/10.1016/j.polymer.2019.121722
http://doi.org/10.1103/PhysRevE.68.011507
http://doi.org/10.1061/JSFEAQ.0000479
http://doi.org/10.1061/JSFEAQ.0001458
http://doi.org/10.1061/(ASCE)1090-0241(1997)123:1(57)
http://doi.org/10.1061/(ASCE)0899-1561(2004)16:6(511)

	Introduction 
	Material and Tests 
	Material and Specimen 
	Tensile Tests with Constant Strain Rate 

	Results and Discussions 
	Poisson’s Ratio 
	True Stress–Strain Curves 
	Rate-Dependent Yielding 
	Logarithm Law 
	Power Law 


	Constitutive Model 
	Rate-Dependent Hyperbolic Model 
	Identification of Model Parameters 
	Determined Rate-Dependent Constitutive Model 
	Model with Logarithm-Law Rate Dependence 
	Model with Power-Law Rate Dependence 


	Conclusions 
	References

