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Abstract: Polystyrene (PS) is widely used in the plastics industry, but the application range of PS is
limited due to its inherently high flammability. A variety of two-dimensional (2D) nanomaterials
have been reported to impart excellent flame retardancy to polymeric materials. In this study, a 2D
nanomaterial MXene–organic hybrid (O-Ti3C2) was applied to PS as a nanofiller. Firstly, the MXene
nanosheets were prepared by acid etching, intercalation, and delamination of bulk MAX (Ti3AlC2)
material. These exfoliated MXene nanosheets were then functionalized using a cationic surfactant to
improve the dispersibility in DMF. Even with a small loading of functionalized O-Ti3C2 (e.g., 2 wt%),
the resulting PS nanocomposite (PS/O-Ti3C2) showed good thermal stability and lower flammability
evidenced by thermogravimetric analysis (TGA) and pyrolysis-combustion flow calorimetry (PCFC).
The peak heat release rate (pHRR) was significantly reduced by 32% compared to the neat PS sample.
In addition, we observed that the temperature at pHRR (TpHRR) shifted to a higher temperature by
22 ◦C. By comparing the TGA and PCFC results between the PS/MAX and different weight ratios
of PS/O-Ti3C2 nanocomposites, the thermal stability and 2D thermal- and mass-transfer barrier
effect of MXene–organic hybrid nanosheets were revealed to play essential roles in delaying the
polymer degradation.

Keywords: pyrolysis-combustion flow calorimeter; flammability; thermal stability; polymer
nanocomposite; MXene

1. Introduction

Polystyrene (PS) is one of the most widely used thermoplastics in daily life (home
appliances, decorations, packaging, etc.) due to its low density, natural transparency, ease
of processing, and good chemical resistance [1–3]. However, because of its inherently high
flammability, the application range of PS is limited for safety reasons [4]. The range of uses
for PS can be expanded by improving its fire safety performance through the use of flame
retardant (FR) additives [5,6].

Traditional halogenated FRs are gradually being phased out due to byproducts that
are harmful to the environment and human health during combustion. In addition, the high
loading (>30 wt%) of some halogen-free FRs, such as metal hydroxides, may deteriorate the
mechanical and thermal properties of the polymer [7]. Recently, inorganic nanoparticles
have attracted growing interest as novel FRs due to their impressive fire safety performance
at a relatively low loading (<5 wt%) [8,9]. Several nanomaterials with two-dimensional (2D)
layered structures, such as montmorillonite (MMT) [10], layered hydroxides (LDH) [11],
and graphene [12], have shown promising flame retardancy in polymer nanocomposites by
creating a “tortuous path” that delays pyrolysis products mixing with oxygen [13].
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MXenes are a relatively new class of graphene-like 2D layered nanomaterials that have
received considerable attention due to their excellent thermal stability, conductivity, and
mechanical properties [14,15]. The chemical formula of MXenes is Mn+1XnTx, where M rep-
resents an early transition metal element such as titanium (Ti), X is carbon (C) or nitrogen
(N), and T stands for surface terminations. Due to the transition metal elements [16] and
unique 2D structure, MXenes have the potential to be additives for preparing FR polymer
composites. Furthermore, the dispersion of the 2D layered nanomaterial additives in the
polymer has a significant effect on the performance of nanocomposites. The abundance of
functional groups (e.g., -OH, =O, and -F) on the surface of MXenes makes it possible for
them to be highly efficient FRs with excellent dispersion [17]. Recently, surface treatment
of MXenes for polymeric nanocomposites with improved properties by various approaches
has been developed [18,19]. Specifically, MXene-based FRs have been employed to improve
the flame retardancy of polymers, including poly (vinyl alcohol) (PVA) [20,21], poly (lactic
acid) (PLA) [22], thermoplastic polyurethane (TPU) [23], and unsaturated polyester resin
(UPR) [24]. In addition, Si et al. fabricated exfoliated functionalized MXene PS nanocom-
posites with good FR properties via co-coagulation and compression molding [25]. They
also investigated the flame retardancy and toxic gas products of the PS nanocomposites
using a cone calorimeter. However, flammability characteristics of bench-scale tests such as
cone calorimetry are dependent on experimental conditions as well as external physical
factors [26,27]. Additional research on inherent material properties is needed to further
develop MXenes as novel FRs in the polymer matrix.

Pyrolysis-combustion flow calorimetry (PCFC) has become an essential screening tool
for the flammability and combustibility of polymers and their composites since introduced
by Lyon and Walters in 2004 [28,29]. PCFC, also known as microscale combustion calorime-
ter (MCC), allows a researcher to evaluate the combustibility of a small polymeric sample
(2–5 mg) under aerobic or anaerobic pyrolysis and complete combustion (ASTM D 7309).
Through an oxygen analyzer, oxygen consumption and the heat release rate (HRR) can
be calculated according to Huggett’s relation [30]. During a test, an HRR vs. temperature
curve is recorded, along with heat release capacity (HRC, J/g·K), peak heat release rate
(pHRR, W/g), total heat release (THR, kJ/g), the temperature at pHRR (TpHRR, ◦C), and
the heating rate (◦C/s). Recent studies have combined heat-related PCFC and mass-related
thermogravimetric analysis (TGA) to obtain additional flammability characteristics [29].
Using PCFC and TGA could further improve understandings of the combustion process of
polymeric material and the polymer degradation mechanism. In this work, the flamma-
bility of the MXene–organic hybrid PS nanocomposites is investigated using PCFC and
TGA and will give insight into the polymer degradation mechanisms of MXene-based
nanocomposites.

2. Materials and Methods
2.1. Materials

Ti3AlC2 (MAX phases, ≥90%, ≤40 µm), hydrochloric acid (HCl, 37% [w/w], ACS
reagent), dimethyl sulfoxide (DMSO, ≥99.5%), and polystyrene (PS, Mw~192,000) were
obtained from Sigma-Aldrich Inc., MO, USA. Octadecyl trimethyl ammonium bromide
(OTAB, 99%) and N, N-dimethylformamide (DMF, certified ACS reagent, ≥99.8%) were
obtained from Fisher Scientific Co., Hampton, NJ, USA. Lithium fluoride (LiF, 98%+) was
purchased from Alfa Aesar, MA, USA.

2.2. Preparation of Titanium Carbide Ti3C2Tx (MXene) Nanosheet

The Ti3C2Tx MXene nanosheet was prepared according to our previous work. Briefly,
a 20 mL 6M HCl solution was prepared, and 1.6 g of LiF was stirred into the solution.
Then, 2 g of MAX powder was slowly added into the solution. The mixture was stirred at
40 ◦C for 40 h. Then, the resulting suspension was washed with DI water until the water
effluent reached pH ~6. The sediment was then collected and dispersed in DMSO solution
and stirred continuously for 20 h at room temperature. After intercalating with DMSO,
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the MXene clay was washed with DI water three times and then bath sonicated for 1 h.
Finally, the resulting MXene suspension was centrifuged at 3500 rpm for 45 min, and the
supernatant was collected as MXene nanosheets.

2.3. Modification of MXene–Organic Hybrid

As an organic cationic modifier, alkylammonium salt OTAB was inserted between the
MXene layers through electrostatic adsorption. The supernatant obtained from centrifuga-
tion in the MXene synthesis was diluted to 1 mg/mL and ultrasonicated for 30 min under
an ice bath. The suspension was stirred at room temperature for 30 min. Next, the suspen-
sion was washed with DI water and centrifuged (9000 rpm, 15 min) several times at room
temperature to remove the unexchanged surfactants. Finally, the precipitate was collected
and freeze-dried for at least 24 h to obtain MXene–organic hybrid (O-Ti3C2) powders.

2.4. Fabrication of PS/MAX, PS/MXene, and PS/MXene–Organic Hybrid Nanocomposite

PS/MXene–organic hybrid (PS/O-Ti3C2) nanocomposite was fabricated by the solution-
mixing method. For example, 20 mg of O-Ti3C2 powders were dispersed in 8 mL DMF
and ultrasonicated for 30 min under an ice bath. Then, 0.98 g of PS pellets were added to
the O-Ti3C2/DMF dispersion with magnetic stirring. After all PS pellets were dissolved,
the solution was slowly dropped into DI water to form pellet-shaped suspended particles.
Finally, the products were dried in a room-temperature vacuum oven for 24 h to remove
residual solvent. The content of O-Ti3C2 in PS nanocomposite was adjusted to create a
range of 2/4/6 wt%.

The preparation methods for the PS/Ti3AlC2 and PS/Ti3C2 nanocomposite were
similar to the PS/O-Ti3C2 nanocomposite, except for the type of additive used. The content
of the MAX or MXene additive in PS nanocomposite was 2 wt%.

The preparation process for exfoliated Ti3C2 nanosheets, functionalized O-Ti3C2, and
PS/O-Ti3C2 nanocomposite is shown in Scheme 1.
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2.5. Characterizations

X-ray diffraction (XRD) patterns were obtained by a Miniflex II (Rigaku) with Cu-Kα

radiation (λ = 1.5406 Å) with a 2θ range of 3–60◦ and used to study the crystal structures
of Ti3AlC2, Ti3C2, and O-Ti3C2. Atomic force microscopy (AFM) was conducted using a
Bruker Dimension Icon AFM. Fourier transform infrared (FTIR) spectrums were collected
by a Nicolet iS5 (Thermo Scientific) equipped with iD7 ATR. Scanning electron microscopy
(SEM) images were obtained by JEOL JSM-7500F at 5 kV acceleration voltage and used
to observe the morphology of Ti3AlC2, Ti3C2, O-Ti3C2, and the fracture surface of the PS
nanocomposites. Electron distribution spectroscopy (EDS) results were obtained using the
Oxford EDS system at 20 kV acceleration voltage and were used to observe the distribution
of Ti and C from O-Ti3C2 in the PS nanocomposites. Thermogravimetric analysis (TGA) was
carried out to investigate the thermal performance of all the samples on a TGA 5500 thermal
analyzer (TA Instruments Inc., New Castle, DE, USA) from 30 ◦C to 700 ◦C at a heating
rate of 20 ◦C/min under a nitrogen atmosphere. Pyrolysis-combustion flow calorimetric
(PCFC) measurements were performed by a microscale combustion calorimeter (MCC, Fire
Testing Technology Ltd., Gosport, UK) to investigate the flammability and combustibility of
PS/Ti3AlC2, PS/Ti3C2, and PS/O-Ti3C2 nanocomposites. For each run, the pellet-shaped
sample was accurately weighed (ca. 4.00 mg) and then heated to 900 ◦C with a heating rate
of 1 ◦C/s. The volatile thermal degradation products were then mixed with a stream of
nitrogen (80 cm3/min) and oxygen (20 cm3/min) before entering a combustion chamber.

3. Results and Discussion
3.1. Characterizations of O-Ti3C2 Nanosheets and Its PS Nanocomposites

The crystalline phases of bulk Ti3AlC2, exfoliated Ti3C2 nanosheets, and the func-
tionalized O-Ti3C2 nanosheets were studied using X-ray diffraction (XRD). As shown in
Figure 1a, (002) and (104) characteristic peaks were observed at around 9.6◦ and 39.0◦ in the
bulk Ti3AlC2 (grey line). After a selective etching by LiF and HCl, the disappearance of the
diffraction peak at around 39.0◦ (104) indicates that the aluminum layer was removed from
bulk Ti3AlC2 (red line). In addition, the pronounced peak (002) shifted from a 2θ angle of
9.6◦ to a lower 2θ angle of around 6.5◦, which is typical for Ti3C2Tx nanosheets [31,32]. The
Supplementary Material includes the AFM image (Figure S1) of Ti3C2 nanosheets, with
a thickness of ∼1.6 nm, indicating single-layer nanosheets [33]. Furthermore, the XRD
pronounced peak (002) shifts to a lower 2θ angle (4.3◦) after the organic functionalization
(blue line). This phenomenon suggests that the interplanar spacing between the nanosheets
increased from 13.4 Å to 20.5 Å due to the alkyl chains in the cationic surfactant (e.g., OTAB),
which indicates the successful functionalization of Ti3C2 nanosheets to O-Ti3C2 [34]. It
has been reported that once the positively charged head (–N(CH3)3) interacts with the
electronegative oxygen atoms in the Ti–O–Ti groups (proved by Figure S2 in the Supple-
mentary Material) on the surface of Ti3C2 nanosheets, the hydrophobicity of the resulting
O-Ti3C2 is expected to increase [17,35]. This phenomenon could solve the compatibility
issue with hydrophobic polymers.

The thermal stabilities of bulk Ti3AlC2, exfoliated Ti3C2 nanosheets, and the functional-
ized O-Ti3C2 nanosheets were studied by TGA, and the results are shown in Figure 1b. The
commercial Ti3AlC2 is thermally stable under nitrogen (grey line), except for a 1 wt% mass
increase in the high-temperature region (higher than 500 ◦C) due to the selective oxidation
of Al into Al2O3 under a high-purity nitrogen atmosphere [36]. After etching, exfoliated
Ti3C2 nanosheets are still thermally stable until 700 ◦C (red line), except for a 3 wt% mass
loss at around 100 ◦C and gradual mass loss afterward. The reason for the first mass loss
is likely the presence of small amounts of residual water, and the following consecutive
mass loss is likely due to the removal of unstable surface functional groups (e.g., -OH, =O,
and -F). After functionalization, O-Ti3C2 exhibits significant mass loss (24.4 wt%) due to
the grafting of cationic surfactant OTAB (blue line). The final 75.6 wt% residue indicates
that OTAB is functionalized to the surface of Ti3C2 nanosheets after washing. Details of the
calculations are described in the Supplementary Material.
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The morphologies of the bulk Ti3AlC2, exfoliated Ti3C2 nanosheets, and the function-
alized O-Ti3C2 nanosheets were studied by scanning electron microscopy (SEM), and the
results are shown in Figure 2a–c. The SEM micrograph of the Ti3AlC2 powder (Figure 2a)
indicates a different bulk particle structure (circled) than the 2D layer Ti3C2 nanosheets after
successful exfoliation and freeze-drying (Figure 2b, pointed). After the functionalization
for O-Ti3C2 nanosheets, the 2D layered structure is maintained (Figure 2c, pointed).
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element mapping on PS/O-Ti3C2 nanocomposite surface.

The dispersion of additives has a significant effect on the flame retardancy performance
of nanocomposites, especially for those made of 2D layered nanomaterial fillers, as they
tend to agglomerate or restack [8]. Therefore, the dispersion of O-Ti3C2 nanosheets in the
PS matrix was studied by SEM and electron distribution spectroscopy (EDS), as shown in
Figure 2d–f. The SEM micrograph of the neat PS surface (Figure 2d) shows a comparatively
smooth surface, whereas the SEM micrograph of the nanocomposite surface (Figure 2e)
shows a slightly rougher fracture interface of PS surface but no pronounced agglomeration
of the O-Ti3C2 nanosheets, indicating that they are uniformly distributed in the PS matrix.
The element mapping (Figure 2f, circled) also suggests a uniform distribution of Ti in the PS
matrix. This uniform dispersion indicates that the compatibility issue of hydrophilic MXene
with hydrophobic PS was greatly improved by organic functionalization. More detailed
calculations (Supplementary Material) proved that O-Ti3C2 nanosheets were loaded to the
PS matrix.
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3.2. Thermal Stability of PS/O-Ti3C2

The thermal decomposition behaviors of PS and PS/O-Ti3C2 nanocomposites were
studied by TGA, and the results are summarized in Table 1 and Figure 3. In this study,
the onset decomposition temperature is defined as the temperature at 5 wt% weight loss
(T5%). PS in our study reached its T5% at 334 ◦C and the maximum thermal degradation (Tmax)
at 410 ◦C. The thermal degradation of PS is a typical radical chain scission process, which
includes initiation, propagation, and termination reactions. Monomer, dimer, and trimer of
styrene are the primary thermal decomposition products for neat polystyrene [37], and trace
amounts (0.18%) of residues were left at around 430 ◦C (when the curvature stabilized).

Table 1. TGA and PCFC results of PS and its different nanocomposites.

Sample
TGA Result PCFC Results

T5% (◦C) Tmax (◦C) Residues (wt%) THR (kJ/g) pHRR (W/g) HRC (J/g·K) TpHRR (◦C)

Neat PS 334 410 0.18 39.9 968 991 441

PS/Ti3AlC2 2 wt% 339 418 2.25 39.8 931 939 448

PS/Ti3C2 2 wt% 397 429 2.24 37.5 878 894 451

PS/O-Ti3C2 2 wt% 399 445 1.66 37.3 660 673 463
PS/O-Ti3C2 4 wt% 386 441 3.15 37.9 608 622 464
PS/O-Ti3C2 6 wt% 395 444 4.46 37.6 548 560 463
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The thermal degradation trends were similar for PS nanocomposite, with the exception
that the T5% and Tmax were delayed. Among all samples, only the nanocomposite with
bulk Ti3AlC2 powder additive is the most similar in thermal performance to neat PS.
Furthermore, the nanocomposites with 2D layered Ti3C2 and O-Ti3C2 delayed the T5%
by 60 ◦C on average. This was mainly due to the physical barrier effect of the MXene
nanosheets with excellent thermal stability, preventing the PS molecular chain from earlier
degradation. This phenomenon suggests that the layered MXene nanosheets delay the PS
degradation and significantly improve thermal stability.

3.3. Flammability Behavior of PS/O-Ti3C2

PCFC was used to investigate the flammability and fire safety properties of the PS
nanocomposites, and the results are summarized in Table 1 and Figure 4a. The pHRR of the
neat PS is 968.8 W/g, as shown in the HRR vs. temperature curve in Figure 4a. This value
is a typical value for PS and within the calibration range provided by the manufacturer
of PCFC. When incorporating 2 wt% filler, the PS/Ti3AlC2 nanocomposite has a similar
pHRR (4% in difference) as neat PS, and the PS/Ti3C2 nanocomposite lowers the pHRR
value by 9%. However, the pHRR value reduced considerably (32%) with the PS/O-Ti3C2
nanocomposite, probably due to the improvement dispersibility of O-Ti3C2 in DMF. Better
dispersion could form a more uniform barrier that could result in a “tortuous path” to
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isolate the flammable and volatile pyrolysis products from the oxygen supply, slowing
down the thermal degradation process and lowering the flammability when combined with
the high thermal stability of MXene. Moreover, the combustion of gas products is typically
a complete combustion under normal PCFC operation conditions (with oxygen) [38], which
means the 32% reduction in pHRR values suggests that there are fewer volatile products
transferring to the gas phase.
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In addition, we observed (Figure 4a) that the TpHRR of PS/O-Ti3C2 nanocomposites
was shifted to a higher temperature (+22 ◦C) compared to the neat PS. Another observation
is that the THR values for PS/Ti3C2 and PS/O-Ti3C2 nanocomposites are just slightly
lower than the neat PS, considering the Ti3C2 and O-Ti3C2 nanosheet loading. These two
phenomena suggest that the pyrolysis process of the PS remains almost unchanged, but the
flammable pyrolysis products are released slower. Wilkie et al. also reported a considerable
reduction in the pHRR of PS nanocomposites with a layered structure [37]. Since the layered
structure in the nanocomposite acts as a barrier to heat and mass transfer, the degradation
products are retained for a more extended period, spreading out the degradation over time
and lowering the peak value.

The reduced pHRR trend continues when increasing the O-Ti3C2 weight percentage
in PS nanocomposites (Figure 4b). For example, when O-Ti3C2 was 6 wt% in the PS matrix,
the pHRR of the nanocomposite was reduced by 43%. However, the TpHRR was not shifted
further, which suggests the TpHRR shifted effect may not be related to filler concentration
but rather to the unique chemical structure of O-Ti3C2. In addition, the first derivatives
of the TGA curve (the DTG curve) and HRR curve from PCFC for PS and PS/O-Ti3C2
are shown in the same plot as Figure 5. The solid line represents the heat-related HRR
curve, and the dashed line represents the mass-related DTG curve. The temperature at the
maximum mass loss in the DTG curve for PS/O-Ti3C2 nanocomposites (with 2 wt% filler)
shifting higher compared to the neat PS sample shows a similar trend with HRR curves,
which means the nanocomposites postpone the polymer degradation.

As long as the heating rate (1 ◦C/s in this study) remains constant throughout the test,
HRC could be used as a good predictor of flammability, regardless of the shape or mass of the
samples [26,39]. It has been found that the MXene–organic hybrid is an excellent candidate
for reducing HRC, implying lower flammability with a lower risk of fire hazards. In addition,
the reduction in HRC is defined by 100 × (HRCneat polymer − HRCnanocomposite)/HRCneat polymer,
and the reduction in HRC for PS/O-Ti3C2 with 2/4/6 wt% filler is 32/37/44%. The
comparison of the reduction in HRC indicates that increasing the amount of O-Ti3C2 in the
PS matrix continues lowering the flammability. As a result, the enhanced thermal stability and
flammability performance are ascribed to the amount of O-Ti3C2 in the nanocomposite, which
slows down the degradation process on the PS nanocomposite system via the barrier effect.
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According to the results above, the enhanced thermal stability and flammability perfor-
mance are the results of the O-Ti3C2 presented in the PS nanocomposite. Figure 6 illustrates
the proposed mechanisms for the slower degradation of PS nanocomposites. In the neat
PS, a significant amount of volatile gas was produced due to the rapid decomposition of
polystyrene. In addition, due to the poor distribution of MXene in hydrophobic polymers,
the decomposition process is similar in PS/Ti3C2 nanocomposite. However, when O-Ti3C2
with high thermal stability is introduced to PS nanocomposite, the layered structure of
MXene–organic hybrid nanosheets could benefit from improving the 2D thermal- and mass-
transfer barrier effect. It would impede heat transfer and retard the transfer of pyrolysis gas
products. The barrier effect becomes more prominent as the O-Ti3C2 nanosheets increase.
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4. Conclusions

In this study, Ti3C2 nanosheets were successfully exfoliated from Ti3AlC2 powder
and functionalized by cationic surfactant OTAB to enhance dispersion in PS to produce a
nanocomposite with improved thermal stability and flammability performance compared
to neat PS. In addition, the nanosheet functionalizations increased the interlayer distance
between the nanosheets and enhanced its dispersion in the PS matrix. According to
the PCFC results, the PS/O-Ti3C2 nanocomposites (with 2 wt% filler) effectively lower
the flammability (lower the pHRR by 32%) and significantly shift the TpHRR to a higher
temperature by 22 ◦C. The comparison between the PS/bulk MAX and different weight
ratios of PS/O-Ti3C2 nanocomposites reveals that the thermal stability and 2D thermal-
and mass-transfer barrier effect of MXene–organic hybrid nanosheets play essential roles
in delaying the polymer degradation. Hence, this work demonstrates a straightforward
method to prepare MXene–organic hybrids, which have the potential to be promising
FR additives in PS nanocomposites. In the future, the synergistic effect with other FRs
to improve flame retardancy as well as the application of different MXene types as filler
should be examined.
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MXene-organic hybrids in water and DMF. Figure S4: TGA and DTG curves of OTAB under nitrogen
conditions. Figure S5: EDS element distribution and signal intensity. Table S1: Electron distribution
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