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Abstract: The interphase region widely exists in polymer-based nanocomposites, which affects the
dielectric properties of the nanocomposites. General models, such as the Knott model, are often used
to predict the dielectric constant of nanocomposites, while the model does not take the existence
of interphase into account, which leads to a large deviation between the predicted results and
the experimental values. In this study, a developed Knott model is proposed by introducing the
interphase region and appropriately assuming the properties of the interphase. The modeling results
based on the developed model are in good agreement with the experimental data, which verifies
the high accuracy of the development model. The influence of nanoparticle loading on the effective
volume fraction is further studied. In addition, the effects of the polymer matrix, nanoparticles,
interphase dielectric and thickness, nanoparticle size and volume fraction on the dielectric properties
of the nanocomposites are also investigated. The results show that polymer matrix or nanoparticles
with a high dielectric and thick interphase can effectively improve the dielectric properties of the
materials. Small size nanoparticles with high concentrations are more conducive to improving the
dielectric properties of the nanocomposites. This study demonstrates that the interphase properties
have an important impact on the dielectric properties of nanocomposites, and the developed model
is helpful to accurately predict the dielectric constant of polymer-based nanocomposites.

Keywords: modeling; interphase; dielectric constant; nanocomposite; polymer

1. Introduction

Large capacity energy storage technology plays a vital role in the application fields of
smart grid construction [1], new energy generation [2] and electric vehicles [3]. Compared
with battery and supercapacitor storage, high energy storage electrolyte capacitors have
many advantages in safety, economic cost and charge-discharge rate [4,5]. At present,
electrostatic capacitors have high power density due to their fast charge-discharge abil-
ity among the available electric energy storage devices, while the low energy density
limits their applications [6,7]. Therefore, much research has been focusing on how to
improve the performance of energy storage materials, especially dielectric energy storage
materials [8,9]. Ceramic dielectric nanoparticles, such as barium titanate (BT) [10], lead
zirconate titanate (PZT) [11], barium strontium titanate (BST) [12] and copper calcium
titanate (CCTO) [13], which have a high dielectric constant and excellent anti-aging prop-
erties [14–16], are one of the most common used dielectric materials in energy storge.
However, there are several shortcomings that limit the application of ceramic dielectric
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nanoparticles, for instance, the high sintering temperature, complex preparation process,
poor flexibility, high dielectric loss and low electrical strength [17–19]. Polymeric materials,
such as polyethylene, polypropylene and epoxy resin, have attracted much attention in
their application in dielectric energy storage materials due to their excellent mechanical
properties, high breakdown strength and low dielectric [20,21], while the relative dielectric
constant of most polymeric materials is usually low [22]. Therefore, it is difficult to obtain
excellent energy storage devices from a single dielectric material. One of the popular
methods to overcome this disadvantage is to mix ceramic nanoparticles into the dielectric
polymer matrix [23]. Blending is the most commonly used method for preparing polymer-
based nanocomposites, which directly disperses inorganic nanoparticles in the polymer
matrix. Inorganic nanoparticles, such as SiO2, CaCO3, TiO2, Al2O3 and Fe3O4 are often
used to prepare nanocomposites.

Many works have been conducted on polymer-based dielectric materials and excel-
lent results have been obtained [24–26]. For example, BT material has the advantages of
high dielectric constant and low dielectric loss, which is the most commonly used ceramic
filling particle at present [27]. It is worth noting that although multi-factor experiments can
obtain polymer-based materials with good dielectric properties, most of the experimental
processes are repetitive and redundant, which not only takes time but also increases the
economic cost. Mathematical modeling is a simple and effective method to deepen the
understanding of experimental mechanisms [28]. By constructing an appropriate theoreti-
cal model, the dielectric properties of polymer-based nanocomposites can be accurately
predicted. Several good theoretical models have been reported, such as the Bruggeman
model [29], which was proposed to estimate the dielectric constant of nanocomposites that
contain a high concentration of particles. By regarding the filled particles as homogeneous
spheres dispersed in a continuous polymer matrix, the Rayleigh model [30] was also
proposed to predict the dielectric constant of nanocomposites, which greatly reduced
the time required for the experiment. Other models that need complex equations and
expensive software were also built to predict the properties of nanocomposites, such as
the Monte-Carlo simulation [31] and representative volume element model [32].

Although the models mentioned above were well established, the authors simply
investigated the effect of additive components on the properties of the nanocomposites,
while the interaction between additive particles and polymer matrix was ignored. In
fact, in a micro-environment, there is an interphase formed by the interaction between
additive particles and polymer matrix, which significantly affects the properties of the
nanocomposites, and several works have reported that the existence of the interphase
affects the mechanical and electrical properties of composite materials [33,34]. It can also be
expected that the interphase has effects on the overall dielectric constant of nanocomposites.
The additive particle surrounded by polymer matrix can be regarded as an equivalent
sphere with a core-shell structure. Therefore, by parameter simulation with the interphase
property, the dielectric constant of the nanocomposite can be accurately predicted. Similarly,
the dielectric constant from modeling results will be underestimated if the interphase
is ignored.

In the study of plastic foam, Knott et al. [35] introduced a model in which filler particles
were regarded as small cubes surrounded by substrates of the same thickness, and the
effective capacitance of the foam (the effective permittivity) could be simulated by using
the capacitance of the cube and the substrate. However, they also neglected the existence
of the interphase, which limits the accuracy of the equation. In this study, the effect of
interphase on the dielectric properties of nanocomposites is investigated. By extending the
Knott equation, the effects of a polymer matrix, particles, interphase dielectric, interphase
thickness, particle size and volume fraction on the dielectric properties of nanocomposites
are studied. The developed model provides a promising method for predicting the dielectric
properties of nanocomposites.
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2. Model Description

The Knott model was developed to give an engineering estimation of the dielectric
constant of plastic foams, which consists of a polymer base and gas. The gas in the foam
was assumed to be a small cubic lattice, covered by a thin polymer base. The elemental
unit is composed of a gas cubic lattice and polymer cover, and it was placed in a uniform
electric field. Based on this assumption, the Knott model was proposed as [35,36]:

ε = εm − εm
(εm − εf)Vf

εf + (εm − εf)Vf
1
3

(1)

where εf and εm are the dielectric permittivity of gas and polymer base, respectively. Vf is
the volume fraction of gas.

Although this model was designed for plastic foams, it can also be extended to estimate
the dielectric permittivity of other materials. Considering the shape of a small cubic lattice,
this Knott model is applied for predicting the dielectric constant of polymeric composites
containing spherical particles. Even though a spherical particle is slightly different from a
cubic lattice, it has been demonstrated that this small difference in the shape of fillers has a
minor influence on the dielectric permittivity of nanocomposites.

However, as we have stated previously, the Knott model did not take into consideration
the interphase region. Besides, the present Knott model fails to include the effect of particle
parameters. To introduce them, the development of the Knott model is necessary.

Tanaka et al. [37] proposed a simple formula that can be used to estimate the dielectric
constant of the hybrid particle and the hybrid particle has a configuration of the core-shell
structure, as illustrated in Figure 1. The Tanaka formula is expressed as:

εh = εs
εc(1 + 2ρ) + 2εs(1 − ρ)
εc(1 − ρ) + εs(2 + ρ)

(2)

where εh is the effective permittivity of hybrid particles. εc and εs are dielectric permittivity
of core part and shell part of hybrid particle, respectively. ρ is a parameter that defined by
the size of the core part and shell part:

ρ =
Rc

3

(Rc + Rs)
3 (3)

where Rc is the radius of core filler and Rs is the thickness of the shell part.
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Figure 1. A schematic illustration of the hybrid particle in a nanocomposite.

In this study, the Tanaka formula is utilized to introduce the effect of the interphase
region. The nanoparticle is considered as the core part of the hybrid particle while the
surrounding interphase region is treated as the shell part of the hybrid particle. As a result,
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the dielectric permittivity εef of the effective particle, composed of filler and surrounding
interphase, can be expressed as:

εef = εi
εf(1 + 2ρ) + 2εi(1 − ρ)
εf(1 − ρ) + εi(2 + ρ)

(4)

and

ρ =
R3

(R + Ri)
3 (5)

where εf and εi are dielectric permittivity of filler and surrounding interphase, respectively.
R denotes the radius of inclusions and Ri represents the thickness of the interphase.

Since the volume fraction of nanoparticles is calculated by the following expression:

Vf =
Vp

Vc
(6)

where Vp represents the volume of nanoparticles and Vc is the volume of the nanocomposite.
The volume of spherical inclusions Vp is simply calculated as:

Vp =
4
3
πR3 (7)

Therefore, the volume of the effective particle can be derived as:

Vep =
4
3
π(R + Ri)

3 (8)

Based on Equations (6)–(8), the volume fraction Vef of the effective particle is derived:

Vef = Vf

(
R + Ri

R

)3
(9)

As a result, a developed Knott model that considers the parameters of filled particles
as well as the interphase properties is developed as:

ε = εm − εm
(εm − εef)Vef

εef + (εm − εef)Vef
1
3

(10)

3. Results and Discussion

In order to verify the applicability of the developed Knott model, it is used to predict
the dielectric constant of polymer-based nanocomposites, in which the parameters are
obtained from the published literature. The prediction results are compared with the
experimental data to examine the accuracy of the developed model. Figure 2 displays
the experimental and modeling results of the dielectric constant of three nanocomposites
under different particle loads. It can be seen that the dielectric constant calculated by the
developed model is very consistent with the data obtained from the actual experiment
while a much larger deviation between the modeling results of the original Knott model
and experimental results can be observed, which indicates that the developed model can
accurately predict the dielectric constant of nanocomposites and can be used for the pre-
evaluation of dielectric materials. In fact, the developed Knott model has widespread
applicability in different nanocomposites. The experimental data of multiple samples have
been utilized to validate the developed Knott model, as shown in Supporting Information
Figure S1. Introducing the interphase into the Knott model is responsible for the accurate
simulation results. By reasonably assuming the properties of the interphase and optimizing
the calculation parameters, the accurate dielectric constant of the nanocomposite can be
obtained, which will help to reduce the experimental steps to save time and cost.
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Figure 2. The experimental results and the modeling results of the dielectric constant of polymer-based
nanocomposites (a) BaTiO3-epoxy resin [38], (b) Al2O3-epoxy resin [39], (c) BaTiO3-epoxy resin [40].

The dielectric properties of nanocomposites are affected by many factors, includ-
ing particle volume fraction, dielectric properties of polymer matrix and nanoparticles,
thickness and dielectric properties of interphase. The modeling results of particle load
and particle volume fraction are displayed in Figure 3. Obviously, for the three selected
nanocomposites, the simulated effective volume fraction is higher than the theoretical
particle volume fraction. As shown in Figure 3b, there is a small difference between the
modeling results and the experimental data when the particle loading is low. However, as
the particle load increases gradually, the deviation between theoretical and modeling results
increases and the effective particle volume fraction is much higher than the theoretical data,
especially for Figure 3a,c. The existence of the interphase is responsible for these results,
which effectively expands the action range of particles, thus increasing their effective vol-
ume fraction. Therefore, the actual effect of particles will be largely underestimated if the
interphase is ignored.
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Figure 3. Comparison of particle volume fraction and effective particle volume fraction of polymer-
based nanocomposites (a) BaTiO3-epoxy resin (b) Al2O3-epoxy resin (c) BaTiO3-epoxy resin.

The nanocomposite is composed of polymer matrix and nanoparticles; therefore, the
properties of polymer matrix and particles jointly determine the dielectric constant of the
nanocomposite [41,42]. To further investigate the effect of interphase on the dielectric
constant of the nanocomposite, the dielectric constant of nanocomposite εc was simulated
with the dielectric constant of the polymer matrix (εm) and particles (εf) as Ri = 10 nm,
R = 100 nm, Vf = 0.1 and εi = 20. As shown in Figure 4, it is obvious that the maximum
dielectric constant of the nanocomposite εc is obtained at the highest εm and εf. As the
dielectric constant of the polymer matrix is low, for instance, εm is less than 3.5, the
dielectric constant of the nanocomposite εc is determined by the properties of the polymer
matrix, and no matter how many particles are added, indicating a low εm is sufficient for
the nanocomposites to have a low dielectric constant. With the increase of the dielectric
properties of a polymer matrix, the dielectric constant of nanocomposites increases, and εc is
determined by both the dielectric properties of polymer matrix and particles. High dielectric
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constant particles significantly improve the dielectric properties of the nanocomposites.
Therefore, in the actual experimental process, it is a feasible method to select particles with
high dielectric constant to prepare nanocomposites with high dielectric properties.
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In order to improve the dielectric constant of particles, some surface modification
can be performed. The compatibility between nanoparticles and polymer matrices can be
improved by introducing active functional groups through surface chemical or physical
modification. For instance, Kim et al. [36] improved the compatibility between polymer
matrix and particles by coating different organic phosphoric acids on the surface of barium
titanate particles. Zhang et al. [43] chemically integrated the third monomer chlorofluo-
roethylene (CFE) or chlorotrifluoroethylene (CTFE) into PVDF-trifluoroethylene to form
a ternary mixture, and they found that the ternary polymer is an electrical ferroelectric
relaxation material with excellent dielectric properties.

The effects of interphase thickness Ri and dielectric constant εi on the dielectric proper-
ties of the polymer-based nanocomposites are also investigated as εf = 50, εm = 6, R = 100 nm
and Vf = 0.1. As shown in Figure 5, the polymer-based nanocomposites obtain the highest
dielectric constant at the maximum Ri and εi, and the lowest dielectric properties are
obtained at the minimum Ri and εi. However, the dielectric constant of the polymer-based
nanocomposites (εc) is determined only by the interphase thickness Ri as the interphase
is thin. It can be seen that the dielectric properties of the polymer-based nanocomposites
are determined by both Ri and εi as the increase of interphase thickness and dielectric
constant. It should be noted that the interphase thickness plays a more important role than
the interphase dielectric constant, in which thin thickness always results in low dielectric
properties of the nanocomposite. Therefore, a thick and high dielectric interphase is helpful
to improve the dielectric properties of nanocomposites. By evenly dispersing the particles
in the polymer matrix to increase the contact area, a thick interphase may be formed.

Particle radius R and volume fraction Vf are also important factors affecting the
dielectric properties of polymer-based nanocomposites. As shown in Figure 6, the highest
nanocomposite dielectric constant is obtained at the smallest R with the highest Vf as
εf = 50, εm = 6, εi = 20, Ri = 25 nm and the lowest dielectric constant of the polymer-
based nanocomposite is obtained in the particles with a maximum size and low volume
fraction. Although the particle radius and volume fraction both determine the dielectric
properties of the polymer-based nanocomposites, the volume fraction plays more role
than particle size, in which low volume fraction results in the low dielectric constant of
nanocomposite no matter what size particles are added. It should be noted that the large
particle size seriously damages the overall properties of the nanocomposites. Therefore,
filling small size particles with high concentrations is an effective method to improve the
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dielectric properties of nanocomposites. The aggregation of nanoparticles easily occurs, as
the small size of the filled particles with high concentrations. Thus, it is necessary to modify
or evenly disperse these particles into a polymer matrix. Surfactants or dispersants are
commonly applied to improve the surface of nanoparticles [44,45], resulting in uniformly
dispersed particles in a polymer matrix. For instance, Kim et al. [46] modified BT particles
to prepare nanocomposite, and the obtained thin film materials exhibit good dispersibility
and high dielectric strength. In addition, process methods, such as magnetic stirring [29]
and ultrasonic dispersion [47] are always helpful in enhancing the dispersive property of
particles into a polymer matrix.
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4. Conclusions

In this study, a developed Knott model is proposed by introducing the interphase
properties of nanoparticles. By comparing experimental data with modeling results, it is
found that the developed model can accurately predict the dielectric properties of polymer-
based nanocomposites. The effect of particle loading on the effective volume fraction is
further studied. It demonstrates that the effective volume fraction is close to the theoretical
data as the particle concentration is low, while the effective volume fraction is much
higher than the theoretical data as the loading concentration is large. The existence of
the interphase effectively expands the action range of the filled particles. Furthermore,
the effects of a polymer matrix, particles, interfacial dielectric and thickness, particle size
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and volume fraction on the dielectric properties of the nanocomposites were investigated
and the results show that high dielectric polymer matrix, particles and thick interphase
can effectively improve the dielectric properties of the materials. High concentration
and small size particles are more conducive to enhancing the dielectric properties of
the nanocomposites. This study demonstrates that the interphase properties have an
important impact on the dielectric properties of nanocomposites, and the developed model
is promising to accurately predict the dielectric constant of polymer-based nanocomposites.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym14061121/s1, Figure S1: The dielectric constant of the
experimental data and modeling results based on the developed Knott model of three nanocomposites:
(a) PI-BTiO3 composite 1; (b) ER-Al2O3 composite 2; (c) PI-BTiO3 composite 3 [48,49].
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