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Abstract: This study aimed to explore a low cost and sustainable adsorbent to remove Sr2+ and
Co2+ ions, which are major radioactive ions in nuclear wastewater. The material properties of
the alkali-activated metakaoline as a function of soaking time at ambient temperature from 1 day
to 7 days were examined by XRD, XRF, SEM, and solid-state NMR. Adsorption isotherms were
used to evaluate the appropriate soaking time for the optimal sorption performance for both Sr2+

and Co2+ ions. The alkali-activated metakaolin soaked for 3 days (BK3) presented the maximum
adsorption capacities of 3.81 meq/g (167.5 mg/g) and 4.02 meq/g (118.5 mg/g) for Sr2+ and Co2+,
respectively. The sorption mechanisms for Sr2+ and Co2+ in the BK3 sample were investigated, and
the experimental results indicated that adsorption for Sr2+ was achieved via ion exchange. By contrast,
surface complexation in combination with ion exchange contributed to the sorption mechanisms
for the removal of Co2+. Competitive adsorption experiments revealed that the alkali-activated
metakaolin favored the adsorption for divalent ions (i.e., Sr2+ and Co2+), and it was less effective
for Cs+. Finally, the used adsorbent could be directly mineralized and vitrified by heat treatment to
immobilize the Sr2+ and Co2+ ions.

Keywords: metakaolin; strontium; cobalt; alkali activation; adsorption; competitive adsorption; min-
eralization

1. Introduction

Nuclear power is considered an efficient method of energy production, but a sus-
tainable solution for treating the radioactive waste is still an unsolved issue. 137Cs+ and
90Sr2+ are the most abundant nuclear fission products, and 60Co2+ is the product from
neutron activation in a nuclear reactor and must be removed from wastewater before being
released into seawater [1]. Ion exchange resins are one of the most used adsorbents for
the decontamination of industrial wastewater; however, their relatively low chemical and
thermal stabilities may result in secondary problems when used as absorbents for removing
radioactive ions. Natural zeolites, such as mordenite and clinoptilolite, are recognized
as good adsorbents for the removal of Cs+ from radioactive wastewater; however, their
sorption capacities to Sr2+ are relatively low [2,3]. In comparison with natural zeolites,
synthetic zeolites prepared via the hydrothermal reaction in the NaOH solution present
a better absorption capacity due to the effective ion exchange between Na+ and target
ions [4–7]. Chen et al. synthesized Faujasite-type zeolite (FAU) via the hydrothermal
reaction using metakaolin and fly ash as the starting materials mixed with NaOH solution,
and found that FAU exhibits excellent adsorption capacities for Cs+, Sr2+, and Co2+ ions [8].
The hydrothermal reaction is limited to small batch production, and a suitable method that
allows for mass production is essential for practical application in treating voluminous
wastewater. Alkali activation is known as an approach to obtain zeolites under ambient
pressure, and it is adaptable for mass production [9,10]. Alkali activation is used for prepar-
ing geopolymers using aluminosilicate-based precursor materials, such as metakaolin, fly
ashes, and slag, and it can be use to remove heavy metal ions [10–12].
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The present work aimed to explore a sustainable adsorbent for removing Sr2+ and Co2+

from nuclear wastewater. Metakaolin was selected as a precursor due to its abundance
in the Earth. Instead of the hydrothermal reaction, alkali activation treatment by NaOH
solution was carried out at ambient temperature in this work, indicating its potential
for low-cost mass production without the need for a heating facility. The structural and
compositional variations during the alkali activation process were characterized. The
isotherm and kinetics sorption behaviors in correlation with the polymerization degree
were investigated to understand the sorption mechanisms of Sr2+ and Co2+ ions. The
selective sorption among Cs+, Sr2+, and Co2+ was also discussed. Finally, mineralization to
the wasted adsorbents was attempted, and a preliminary leaching test was performed.

2. Materials and Methods
2.1. Material Preparation

Metakaolin was used as precursor by heating natural kaolinite (purchased from the
American Clay Minerals Society, Warren County, GA, USA) at 800 ◦C for 2 h. The as-
obtained metakaolin was placed in a 6 M NaOH aqueous solution with a fixed solid/liquid
ratio of 1/25 g/mL. Polymerization was conducted under agitation at ambient temperature
for 1, 3, and 7 days. The alkali-activated powders were washed using deionized water
several times until the solution became neutral in pH. The washed powders were then
dried in the oven at 100 ◦C overnight before use for the following investigations.

2.2. Material Characterization

The morphology of the obtained samples was observed by scanning electron mi-
croscopy (SEM, SU8000, Hitachi High-Technologies Co., Tokyo, Japan). The structural
properties were analyzed using an X-ray diffractometer (XRD, DX-2600, Haoyuan Instru-
ment Co., Ltd., Dan-dong, China). The coordination states of materials were inspected
by solid-state nuclear-magnetic resonance (NMR, Avance 400, Bruker BioSpin GMBH,
Rheinstetten, Germany) under 104.26 MHz, 79.5 MHz, and 105.84 MHz for 27Al, 29Si, and
23Na measurements, in which AlClO4, Si(CH3)4, and NaCl were used for the standard
samples, respectively. The elemental composition was measured by X-ray fluorescence
spectroscopy (XRF, NEX CG, Rigaku Co., Tokyo, Japan). The specific surface area was
measured using BET (Flow Prep 60, Micromeritics Instrument, Norcross, GA, USA). The
chemical bonding states were characterized by X-ray photoelectron spectrometry (XPS,
K-Alpha, Thermo Fisher Scientific Inc., Waltham, MA, USA).

2.3. Adsorption Experiments

The isotherm batch adsorption experiments were carried out by placing 0.1 g of pow-
der sample in 10 mL of Sr2+, Co2+, and Cs+ standard solutions in various concentrations
from 10 mg/L to 3000 mg/L, prepared using SrCl2, CoCl2, and CsCl. Isotherm adsorption
was performed in a constant-temperature oscillator at 25 ◦C for 24 h to ensure complete
sorption equilibrium. Note that the pH of the isotherm adsorption condition ranged from
5.3–4.4 with increasing the concentration of the standard solutions from 10 to 3000 mg/L.
The filtrates were collected using the centrifugal technique, and the concentrations of Sr2+,
Co2+, and the released Na+ ions were measured using an atomic absorption spectrometer
(AAS, Perkin Elmer Analyst 100). Kinetic adsorption experiments were conducted by
agitating 10 mL of Sr2+ and Co2+ solutions in 100, 1000, and 3000 mg/L with 0.1 g of
powder sample at 25 ◦C. At appropriate time intervals, the filtrates were obtained via the
centrifugal method and then analyzed by AAS. The powder samples after the adsorp-
tion experiments were collected for the XRF analyses. Finally, the competitive adsorption
experiments were carried out using Sr2+, Co2+, and Cs+ ternary solutions in equal concen-
trations from 10 mg/L to 3000 mg/L to study the behavior of the three different ions. The
experimental conditions were identical to that employed for the batch isotherm adsorption
described above.
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2.4. Preliminary Immobilization Test

The samples after the batch adsorption experiment at 3000 mg/L Sr2+ and Co2+

were collected and dried at 100 ◦C overnight to obtain dried powders. Mineralization of
the post-adsorption samples was carried out via heat treatment at 1300 ◦C for 2 h. The
mineralized samples were characterized by XRD. A leaching test was applied following the
International Stand ISO 6961-MCC 3 process [13]. The mineralized powders were placed
in water with a surface area of solid sample to water ratio at 1, and stirred at 70 ◦C for
30 days. The concentration of the leaching ions was measured using AAS as a function of
the reaction time.

3. Results and Discussion
3.1. Material Characterizations

Alkali activation was performed by soaking the metakaolin powders in NaOH solution
for 1, 3, and 7 days at ambient temperature, and the samples were labeled BK1, BK3,
and BK7, respectively. The elemental compositions of these alkali-activated samples in
comparison with the original metakaolin are listed in Table 1. The metakaolin was mainly
composed of SiO2 and Al2O3, where the Al/Si atomic ratio was 1.04 with slight amounts
of TiO2, and other oxide (i.e., Fe2O3, ZrO2, and K2O). By increasing the soaking time, the
impurity compounds were gradually dissolved by NaOH, while the amount of Na2O
increased to 9.5%. The Al/Si ratios remained unvaried despite the soaking time. In
addition, the specific surface area (SBET) increased from 20.3 m2/g to 56.4 m2/g for BK1,
corresponding to the dissociation of the metakaolin structure. The surface area decreased
to 48.9 m2/g as Na2O increased to 22.4% for BK3, showing that the aluminate and silicate
units were connected through the condensation reaction, while Na+ ions played a key role
as a binder [14]. The cation-exchange capability (CEC) taking into account the content
of Na2O were 3.91, 6.89, and 6.99 meq/g for BK1, BK3, and BK7, respectively. The XRD
patterns of metakaolin revealed a semi-crystalline structure with a broad band located at
15◦–27◦, while a slight amount of quartz and anatase TiO2 coexisted as impurities. BK1
and BK3 samples revealed similar broad features, however the location shifted to 19◦–22◦

and 25◦–28◦, respectively (Figure 1). This indicated that the geopolymeric structure was
modified due to the rearrangement of aluminosilicate framework, as the Na+ ions were
intercalated during the condensation reaction. Obvious sharp XRD peaks associated to
Linde Type A zeolite (LTA) and faujasite (FAU) were found in BK7. The extraordinarily
high specific surface area (454.3 m2/g) was fairly consistent with the appearance of zeolite
phases. SEM images of metakaolin, BK1, BK3, and BK7 are demonstrated in Figure 2. The
metakaolin exhibited a sheet-like structure (Figure 2a) that was gradually destroyed in
BK1 and BK3 (Figure 2b,c). The sheet-like feature completely disappeared for BK7 and the
product morphology corresponded well to typical LTA and FAU zeolites [15].

Table 1. Elemental composition and specific surface area (SBET) of metakaolin and the alkali-
activated samples.

Content (At.%)
CEC

(meq/g) Al/Si
SBET

(m2/g)SiO2 Al2O3 Na2O TiO2
Other

Oxides

Metakaolin 56.5 29.4 - 9.9 4.1 - 1.04 20.3

BK1 58.9 27.9 9.5 3.1 0.5 3.91 0.95 56.4

BK3 50.6 24.1 22.4 2.6 0.3 6.80 0.95 48.9

BK7 49.8 23.4 24.7 1.7 0.4 6.99 0.94 454.3
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3.2. Polymerization Process

To further understand polymerization in the alkali activation process, 27Al, 29Si, and
23Na NMR analyses were employed, and the results are shown in Figure 3. In metakaolin,
Al exhibited AlO4 (AlIV), AlO5 (AlV), and AlO6 (AlVI) coordination, which was in agree-
ment with the reported typical metakaolin structure [16]. Alkali activation effectively
transformed Al into AlIV coordination with resonance centered at 62 ppm due to the Na+

balanced Si-O-AlIV [17]. The coordination of Al remained unchanged with increasing the
soaking time. The 29Si NMR spectra of metakaolin exhibited broad resonance centered
at −102 ppm, which was assigned to Q4(1Al). A resonance centered at around −80 ppm
emerged along alkali activation, which was associated with Qn(mAl) (0 ≤ m ≤ n ≤ 4) [18].
The polymerization process was not yet completed in BK1, as a part of Si persisted in
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Q4(1Al) form as the pristine metakaolin. The Si in coordination with Q4(1Al) nearly disap-
peared and turned into Qn(mAl), showing that a higher amount of Al was substituted in
the aluminosilicate-based polymeric framework. The 29Si NMR spectrum of BK7 became
obviously sharp, and two splitting resonances located at −80 and −90 ppm contributed
to the crystallized structure of FAU and LTA, respectively [19,20]. The 23Na resonances
located on −4.2 and −3.3 ppm were found in BK1 and BK3, respectively, which were
attributed to Na+ associated with Al-centered tetrahedral as a charge-balancing role that
was a typical form of Na+ in alkali-activated aluminosilicate [21]. The Na resonance shifted
to a higher frequency, indicating a decrease in coordination number and shortening in the
average Na-O interatomic distance [19]. The 27Al and 29Si NMR investigations revealed
that a higher amount of Al in participation within the polymeric framework may be the
reason for the decrease in Na+ coordination number, which shortened the Na-O interatomic
distance. Na+ resonance in BK7 obviously shifted to 2 ppm, which was generally observed
in the hydrated Na+ in the zeolite structure [20,22].
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3.3. Adsorption Capacity of Sr2+ and Co2+

The adsorption isotherms of Sr2+ and Co2+ on metakaolin and alkali-activated metakaolin
according to the batch adsorption experiments are shown in Figure 4a,b. The adsorption
capability of metakaolin was very low for Sr2+ nor Co2+ and was obviously enhanced by alkali
activation treatment. The adsorption efficiency of Sr2+ basically increased with the soaking
time, and that of Co was optimal for BK3. The adsorption isotherm characteristics are often
evaluated through the Langmuir isotherm model (Equation (1)), as described in Equation (1).

Ce

qe
=

Ce

qmax
+

1
KLqmax

(1)

where qe is the equilibrium adsorption capacity at various concentrations, qmax is the
maximal adsorption capacity, KL is the constant adsorption equilibrium, and Ce is the
equilibrium concentration of the target ion in the solution. According to the plots Ce/qe
versus Ce, as shown in Figure 4c,d, the Sr2+ and Co2+ adsorption isotherm data fitted the
Langmuir model with correlation coefficients (R2) close to 1. The adsorption parameters
according to the fitting results are listed in Table 2.
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Table 2. Adsorption parameters of BK samples from the Langmuir isotherm model.

Sample R2 KL
qmax

(mg/g)
qmax

(meq/g)

Sr2+

BK1 0.998 0.053 93.5 2.13
BK3 0.998 0.206 167.5 3.81
BK7 0.999 0.555 180.2 4.10

Co2+

BK1 0.984 0.023 63.1 2.14
BK3 0.999 0.080 118.5 4.02
BK7 0.999 0.189 98.0 3.30

The maximum adsorption capacity (qmax) increased with the soaking time for both
Sr2+ and Co2+. The values of qmax of Sr2+ were 2.13, 3.81, and 4.10 meq/g for BK1, BK3,
and BK7, which were equivalent to 93.5, 167.5, and 180.2 mg/g, respectively. The Sr2+

adsorption capacity was basically proportional to the CEC value (Table 1). Note that the
active surface area is commonly proposed to be an important parameter for adsorption
application; nonetheless, SBET of BK7 was about 15-fold higher than that of BK3, but qmax of
BK7 was only slightly higher, indicating that the specific surface area was not the dominant
factor determining the adsorption capacity of Sr2+. The adsorption capacities of Co2+ were
2.14, 4.02, and 3.30 meq/g for BK1, BK3, and BK7, equivalent to 63.1, 118.5, and 98.0 mg/g,
respectively. The qmax of Co2+ and Sr2+ were generally identical for BK1, but quite different
for BK3 and BK7. The qmax value of Sr2+ in BK7 was higher than that in BK3, but this was
opposite for Co2+. The limit of adsorption capacity of Co2+ found in BK7 was suggested
to be the molecular sieve effect due to the presence of LTA and FAU. The inherent pore
apertures in LTA and FAU were 0.41 and 0.74 nm, respectively [23]. The hydrated radii of
Sr2+ and Co2+ were 0.412 and 0.432 nm, respectively [24]. The small pore aperture size of
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the LTA phase may have imposed a transport barrier for the diffusion of Co2+ and obstruct
the contact with the active sorption sites that eventually resulted in a decrease in adsorption
capacity due to this geometric limitation. According to the adsorption isotherm results,
BK7 showed a good adsorption efficiency to Sr2+; however, the LTA phase appeared to
restrict the adsorption capacity to Co2+ due to the molecular sieve effect. BK3 exhibited a
semi-crystalline structure that eliminated the molecular sieve effect; therefore, it showed a
good adsorption ability and was considered an optimal adsorbent for the removal of Sr2+

and Co2+.

3.4. Adsorption Kinetics

In this section, the adsorption kinetics of BK3 to Sr2+ and Co2+ were investigated to
understand the sorption mechanism. Three different initial concentrations, namely, 100,
1000, and 3000 mg/L, were used, and the results are shown in Figure 5a,b. For the initial
solution of 100 mg/L, Sr2+ and Co2+ adsorption was completed in a very short time. Two
adsorption steps were clearly observed in the solutions of a high concentration. Very rapid
adsorption was found in the first few minutes for both Sr2+ and Co2+, and then slowed
down until reaching the adsorption equilibrium. The pseudo-first-order (PFO) and the
pseudo-second-order (PSO) kinetic models were used to fit the adsorption kinetic data, as
listed in Equations (2) and (3).

ln
(

qt
qe − qt

)
= kt (2)

t
qt

=
t

qe
+

1
kqe

2 (3)

where qe and qt are the adsorption capacities at equilibrium and at time t, respectively,
and k is the rate constant corresponding to the PFO and PSO models. The linear graphs of
ln(qe − qt) and t/qt against time (t) corresponding to the PFO and PSO models are shown
in Figure 5c–f. The fitting parameters are listed in Table 3. The experimental data fitted the
PSO model better based on the correlation coefficient (R2) of linear regression instead of the
PFO model in comparison with their correction constants (R2). The PFO model considers
that adsorption and desorption processes generally adapt to a high initial concentration,
whereas the PSO model involves a complex function that is adapted for a low solution
concentration [25]. However, the adsorption kinetics observed in the present work and the
experimental data all fitted the PSO model, regardless of the initial concentration, implying
that no obvious desorption occurred. The PSO model is based on the assumption that the
rate-limiting-step is chemisorption, involving a sharing or exchange of electron between the
adsorbent and adsorbate [25–28]. In addition, the rate constant was dependent on the initial
concentration, which was another characteristic of the chemical exchange reaction [22].
Regarding the fitting parameters listed in Table 3, the rate constants (k) of Sr2+ adsorption
derived from the PSO model were found faster than those of Co2+ adsorption. This may be
related to the larger hydrated radii of Co2+ that led to a slower diffusion rate and retarded
the reaction rate. Note that qe obtained at 3000 mg/L (167.8 mg/g) was identical to the
maximum adsorption capacity (qmax) derived from the Langmuir isotherm (167.5 mg/g).
Thus, the adsorption of Sr2+ primarily occurred at the surface of BK3, because the Langmuir
model is based on the monolayer sorption on distinct localized sorption sites at the surface
of the adsorbent. The equilibrium capacity (qe) for Co2+ at 3000 mg/L (122.4 mg/g) was
similar to that calculated from the Langmuir isotherm (118.5 mg/g), showing that the
sorption of Co2+ was also related to the chemisorption that occurred at the localized site on
the BK surface.



Polymers 2022, 14, 992 8 of 14

Polymers 2022, 14, 992 8 of 14 
 

 

from the Langmuir isotherm (167.5 mg/g). Thus, the adsorption of Sr2+ primarily oc-
curred at the surface of BK3, because the Langmuir model is based on the monolayer 
sorption on distinct localized sorption sites at the surface of the adsorbent. The equilib-
rium capacity (qe) for Co2+ at 3000 mg/L (122.4 mg/g) was similar to that calculated from 
the Langmuir isotherm (118.5 mg/g), showing that the sorption of Co2+ was also related 
to the chemisorption that occurred at the localized site on the BK surface.  

 
Figure 5. (a,b) Kinetic adsorption; (c,d) PFO model and (e,f) PSO plots of Sr2+ or Co2+. 

  

Figure 5. (a,b) Kinetic adsorption; (c,d) PFO model and (e,f) PSO plots of Sr2+ or Co2+.

Table 3. Kinetic adsorption parameters of BK3 by PFO and PSO models.

Concentration
Sr2+ Co2+

k qe R2 k qe R2

Pseudo-First-Order Model (PFO)

1000 mg/L 195.9 35.0 0.978 6 43.5 0.845

3000 mg/L 156.6 64.6 0.970 3.14 113.0 0.861

Pseudo-Second-Order Model (PSO)

1000 mg/L 30.46 100.0 0.999 1.71 88.3 0.997

3000 mg/L 1.09 167.8 0.998 0.83 122.4 0.994

Unit of k: 10−3; qe: mg/g.
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3.5. Sorption Mechanism

The adsorption behaviors of Sr2+ or Co2+ onto BK3 satisfied Langmuir adsorption
and the pseudo-second-order (PSO) model for chemisorption. To further understand
the chemisorption mechanisms, the released amount of Na+ ions at the batch adsorption
experiments were measured to confirm if ion exchange occurred. The concentrations of
Na+ (Ce-Na) in comparison with the equilibrium adsorption capacities (qe) at various
initial concentrations are shown in Figure 6. For Sr2+ adsorption, the concentrations of
Na+ were generally proportional to the equilibrium adsorption capacities of Sr2+ (qe-Sr).
This result showed that the sorption of Sr2+ was accompanied with a release of Na+,
confirming that ion exchange was the main mechanism. The ion exchange between Na+

and Co2+ was not evident at concentrations below 1000 mg/L and became more significant
at high concentrations. Thus, a certain amount of the Co2+ was removed from the solution
via mechanisms independent of the ion exchange reaction, particularly at low initial
concentrations. The relevant discussions are further described by XPS analyses in the
next section.
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The chemical states of the post-adsorption samples, which were agitated at 3000 mg/L
for 24 h, were collected and their XPS spectra, are shown in Figure 4. The Sr-3d core
level XPS spectrum (Figure 7a) could be deconvoluted into two Gaussian separated peaks
located at 134.1 and 135.9 eV, which were assigned to Sr-3d5/2 and Sr-3d3/2, respectively.
The binding energies of these two characteristic peaks were observed in Sr containing oxide
compounds [27,28], but were also found in Sr2+ ions replacing the Na+ ions in CHA-type
zeolite [29]. Therefore, Sr-O bonds were formed. Sr2+ adsorption was confirmed to proceed
via the ion-exchange mechanism. The Co-2p XPS spectrum shown in Figure 7b could be
deconvoluted into four Gaussian peaks. The peaks at 781.2 and 797.1 eV were the main
peaks of Co-2p3/2 and Co-2p1/2 of Co(OH)2 or Co(OH)+ accompanying the satellite peaks
at 785.6 and 802.8 eV due to the simultaneous excitation of electrons and charge transfer
from the ligand to metal [30–33]. The precipitation of Co(OH)2 is a pH-sensitive reaction
that occurs at a pH above 7, whereas Co(OH)+ possibly exists at acid environments below
6 [34,35]. As the adsorption experiment was performed at an environment ranging from
5.7 to 4.4, the precipitation of Co(OH)2 should not be the reaction for the removal of Co2+

from the solution. Co2+ adsorbed onto the BK3 surface via surface complexation in the
form of Co(OH)+ was suggested to be a sorption mechanism. In combination with the
results shown in Figure 6b, the surface complexation preferentially occurred at the lower
concentrations and was independent of the release of Na+ ions. As the hydroxyl groups on
the BK3 surface were completely consumed, ion exchange, accompanying a dissociation of
Na+ ions into the solution, was at a high concentration.
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3.6. Competitive Adsorption of Sr2+, Co2+ and Cs+

The adsorption isotherms of BK3 using single ion and ternary ions solutions containing
Sr2+, Co2+, and Cs+ and their adsorption isotherm are shown in Figure 8a,b. According
to the plots Ce/qe versus Ce, as shown in Figure 8c,d, the Sr2+, Co2+ and Cs+ adsorption
isotherm data both in single and tenary solute solutions fitted the Langmuir model with
correlation coefficients (R2) close to 1. The adsorption parameters are shown in Table 4. In a
single-solute system, the maximum adsorption capacities (qmax) of Sr2+, Co2+, and Cs+ were
167.5, 118.5, and 190.2 mg/g, equivalent to 3.82, 4.02, and 1.43 meq/g, respectively. The
adsorption isotherm revealed that the alkali-activated metakaolin preferred the adsorption
of divalent ions (Sr2+ and Co2+) prior to the monovalent Cs+. The maximum adsorption
capacities (qmax) of Sr2+, Co2+, and Cs+ in the ternary-solute system all decreased down
to 76.6, 68.4, and 61.2 mg/g (equivalent to 1.74, 2.32, and 0.46 meq/g), indicating that
adsorption was hindered by the presence of other ions. In particular, the decrease in
adsorption capacity of Cs+ was more significant than that of Sr2+ and Co2+. The adsorption
selectivity was in the order Co2+ > Sr2+ >> Cs+. The competitive adsorption behavior
between Sr2+ and Cs+ in Na-based zeolites was strongly related to the Al/Si ratios [33].
In general, Cs+ has a higher sorption ability prior to Sr2+ in high-silica zeolites, [36,37]
and Sr2+ has a higher sorption selectivity at alumina-rich zeolites [38,39]. The adsorption
selectivity in monovalent and divalent is designated to dielectric theory, in which the
decrease in Al/Si ratio lowers the charge density and dielectric constant of the framework
that favors the exchange of monovalent cations [40,41]. In addition, the Al−Al distance
distribution shifted to a lower value with increasing the Al/Si ratio, which allowed for
bridging two ion-exchange sites for the exchange of divalent cations [36]. Those mentioned
above concerned the ion exchange behaviors of Cs+ and Sr2+ in crystallized zeolites, but
could also be adapted for the semi-crystalline BK3 sample. The adsorption capacities of
Sr2+ and Co2+ both decreased in the ternary solute system, but the sum of their maximum
adsorption capacities was almost the same as their corresponding qmax in a single-solute
solution. Therefore, Sr2+ and Co2+ occupied the same adsorption sites, but were less
affected by the presence of Cs+ ions.
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Table 4. Adsorption parameters of Sr2+, Co2+, and Cs+ in single solute and ternary solute solution
from the Langmuir isotherm model.

Sample R2 KL
qmax

(mg/g)
qmax

(meq/g)

Single Solute

Sr2+ 0.999 0.206 167.5 3.82
Co2+ 0.999 0.080 118.5 4.02
Cs+ 0.949 0.555 190.2 1.43

Ternary Solute

Sr2+ 0.998 0.019 76.6 1.74
Co2+ 0.999 0.083 68.4 2.32
Cs+ 0.996 0.014 61.2 0.46

3.7. Mineralization

To prevent secondary pollution, the adsorbed ions must be immobilized for waste
management. The waste BK3 containing the adsorbed Sr2+ or Co2+ was calcined at 1300 ◦C
for 2 h, and the XRD patterns of the as-calcined wasteforms are shown in Figure 9. The
as-calcined Sr2+-containing wasteform was crystallized into the slawsonite (SrAl2Si2O8)
phase, while the Co2+-containing wasteform remained in the amorphous state. Note that
the volume of the waste was largely reduced, as demonstrated in Figure 9. A preliminary
leaching test was performed by merging the calcined wasteforms in deionized water at
70 ◦C for 90 days, and no ions were detected. This result was consistent with the standard
requirement of the leaching rate below 10−5–10−6/cm2 day. This preliminary leaching test
indicated that Sr2+ or Co2+ were immobilized in the calcined wasteforms.
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4. Conclusions

Alkali-activated metakaolin was prepared at ambient temperature for 1, 3, and 7 days.
Polymerization proceeded with the soaking time while the Na+ ions gradually intercalated
into the as-obtained products and finally formed FAU and LTA after soaking for 7 days. The
adsorption behavior of Sr2+ and Co2+ both fitted the Langmuir adsorption and the pseudo-
second-order kinetics models corresponding to a rate-controlling step by chemisorption
mechanism. Sr2+ adsorption was generally proportional to the content of Na+ in the product.
However, the adsorption efficiency for Co2+ was limited by the presence of zeolite phases
in BK7 due to the molecular sieve effect. The BK3 demonstrated an optimal adsorption
ability for both Sr2+ and Co2+, and their maximum adsorption capacity reached 3.81 and
4.02 meq/g, respectively. The investigation further confirmed that Sr2+ adsorption in BK3
was carried out by the ion exchange mechanism, whereas Co2+ adsorption was achieved
by ion exchange and partial surface complexation in the form of Co(OH)+ onto the surface
of BK3. The alkali-activated metakaolin with a high Al/Si ratio (approximately 1) showed
a good competitive adsorption on Sr2+ and Co2+ and less effective adsorption on Cs+. The
adsorbed Sr2+ and Co2+ could be immobilized in the used adsorbent via heat treatment
at 1300 ◦C for 2 h in the form of crystallized slawsonite (SrAl2Si2O8) and Co-consisting
glass. The present work proposes an eco-friendly process using kaolinite as a raw material
to prepare a highly efficient adsorbent for removing Sr2+ and Co2+, and the final waste
product could be directly mineralized and vitrified via heat treatment to immobilize the
Sr2+ and Co2+ ions with a high degree of volume reduction. The alkali-activated metakaolin
exhibited a high adsorption efficiency to remove Sr2+ and Co2+ from the aqueous solution,
so it is promising for decontamination application in nuclear wastewater.
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