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Abstract: Noise pollution is the primary environmental issue that is increasingly deteriorated with the
progress of modern industry and transportation; hence, the purpose of this study is to create flexible
PU foam with mechanical properties and sound absorption. In this study, hollow ceramic microsphere
(HCM) is used as the filler of polyurethane (PU) foam for mechanical reinforcement. The sound
absorption efficacy of PU pores and the hollow attribute of HCM contribute to a synergistic sound
absorption effect. HCM-filled PU foam is evaluated in terms of surface characteristic, mechanical
properties, and sound absorption as related to the HCM content, determining the optimal functional
flexible PU foam. The test results indicate that the presence of HCM strengthens the stability of
the cell structure significantly. In addition, the synergistic effect can be proven by a 2.24 times
greater mechanical strength and better sound absorption. Specifically, with more HCM, the flexible
PU foam exhibits significantly improved sound absorption in high frequencies, suggesting that
this study successfully generates functional PU foam with high mechanical properties and high
sound absorption.

Keywords: flexible polyurethane foam (FPUF); hollow ceramic microsphere (HCM); sound absorptivity;
composites; functionality

1. Introduction

Noise pollution is of the major pollutions in the environment and increasingly escalat-
ing with the progress of industries and transportation. Noise is commonly divided into
structure-borne noise caused by engines or other objects when in contact with the ground
while air-borne noise caused by high-speed wind [1]. The main mechanism to reduce
noise pollution involves a rise in abrasion against air molecules, as well as the damping of
absorbent materials. Therefore, the sound absorption frequency is the main concern for the
design of sound absorbing materials. Playing a crucial role, the damping can absorb the
sound or delay the transmission of sound, during which the acoustic energy is transformed
into thermal energy, thereby achieving effective sound absorption and noise abatement [2].

Polyurethane (PU) elastomer has been the most frequently used industrial polymer [3],
so PU made of isocynate and polyol is the most popular material used in the construc-
tion, automobile, sports, navy, and furniture fields [4–7]. PU foam can be classified into
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rigid polyurethane foam (RPUF) and flexible polyurethane foam (FPUF). Composed of
more polyol than RPUF, FPUF demonstrates greater flexibility, which means that FPUF
outperforms RPUF in withstanding a high deformation. In addition, FPUF also possesses
excellent physical properties and cushioning effect, so it is pervasively used in different
regions; e.g., furniture, carpet, and vehicles [8,9].

There are a great number of studies on the modification of PU foam, including two
groups. One group focuses on the change of the inner chemical structure. For example,
Sung et al. confirmed that the sound absorptivity of materials was improved when the
foaming structure was changed [2]. Moreover, Tian et al. proved that the incorporation
of polyimide had a positive influence over the stability of the foaming materials [10]. The
other group emphasizes the incorporation of filler with foaming materials. Estravis et al.
indicated that the use of particulate material as filler provided PU foam polymer with a
basic function [4]. Moreover, Sung et al. reported that when used as a filler, hydroxide could
change the cell structure, strengthening the sound absorptivity of materials at different
frequencies [11]. There have been scholars using different fillers to change the properties of
the composites in recent years [12–18]. To summarize, either a change in chemical structure
of materials or a reinforcement of fillers can provide PU foam with a synergistic effect,
and the methods previously described are proved to be effective in attaining the functions
as expected.

Hollow ceramic microsphere (HCM) is a filler with a light weight [19], a low density,
a bioinert attribute, a good thermal conductivity, a great distribution, and an excellent
acoustic effect. Subsequently, HCM is a popular item used in the construction, aviation,
chemistry, and electronics industries [20–24], but there are few studies focusing on using
HCM in polyurethane foam. In this study, HCM is thus used as the filler for flexible
polyurethane foam (FPUF), thereby joining the hollow attribute with the cell-filled PU foam
while achieving a synergistic effect in sound absorptivity and mechanical reinforcement.
Finally, the surface characterization, mechanical property, and sound absorptivity of the PU
foam composites are evaluated as related to the content of HCM, determining the optimal
functional HCMF sound absorbent composites.

2. Materials and Methods
2.1. Materials

High density soft PU is made of agent A (polyol) and B (isocynate) that were purchased
from Kuang Lung Shing Co., Taipei, Taiwan. Hollow ceramic microsphere (HCM) was
purchased from Feng Chia University, Taiwan.

2.2. Preparation

In this study, the hollow ceramic microsphere (HCM) was used as a filler to produce
the sound absorbent soft PU foam. HCM (0, 5, 10, 15, and 20 wt%) was separately added
to the agent A for a 10-min pre-mix, after which PU curing agent was added for another
10-s mixing. The blends were infused into a mold for the 3-h foaming at normal tem-
perature. After curing, the PU foam was demolded to yield HCM-contained flexible PU
foam (FPUF) composites. Next, the surface observation, mechanical properties, and sound
absorption measurements were conducted in order to obtain the optimal HCM/FPUF
sound absorbent composites. Figure 1 and Table 1 shows the preparation method and
sample code, respectivey.
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A stereomicroscope (SZ-CTV, YUANYU Group CO., Ltd., Taipei Taiwan) and a field 
emission scanning election microscope (SEM, S-4800, HITACHI, Tokyo, Japan) were used 
for the morphology observation.  

The stereomicroscope was used to observe the macro cell structure of samples that 
are dyed in advance. The difference in the cell diameter was compared using Image Pro 
Plus that was provided by Feng Chia University, Taiwan, and analyzed accordingly. By 
contrast, the SEM was used to compare the micro-structure of the sound absorbent com-
posites, as well as the damage rate of the cell structure as related to the content of HCM. 
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tested for the impact effect. Samples were trimmed into pieces of 10 cm × 10 cm, after 
which the impactor was released from a specified height of 307 cm to impact the sample. 

Figure 1. Illustrative diagram of the preparation process HCMF composites.

Table 1. Denotation and specification of HCMF composites.

HCMF0 HCMF5 HCMF10 HCMF15 HCMF20

PU-A 80 77.5 75 72.5 70
PU-B 20 17.5 15 12.5 10
HCM 0 5 10 15 20

2.3. Characterization
2.3.1. Surface Observation

A stereomicroscope (SZ-CTV, YUANYU Group CO., Ltd., Taipei Taiwan) and a field
emission scanning election microscope (SEM, S-4800, HITACHI, Tokyo, Japan) were used
for the morphology observation.

The stereomicroscope was used to observe the macro cell structure of samples that are
dyed in advance. The difference in the cell diameter was compared using Image Pro Plus
that was provided by Feng Chia University, Taiwan, and analyzed accordingly. By contrast,
the SEM was used to compare the micro-structure of the sound absorbent composites, as
well as the damage rate of the cell structure as related to the content of HCM. Magnification
for the stereomicroscope was 10 × 0.67 and 10 × 4.00, while the magnification for SEM was
8.00 mm × 50 and 8.00 mm × 500.

2.3.2. Compressibility Test

As specified in ASTM D1621-10 (Standard Test Method for Compressive Properties of
Rigid Cellular Plastics), HCMF composites were compressed to 25% of the thickness at a
test rate being 1 mm/min, thereby examining the compression strength. Six samples for
each specification were used, and the sample size was 50 mm × 50 mm × 20 mm.

2.3.3. Drop Weight Impact Test

As specified in ASTM D4168-95 (2008) E1 (Standard Test Methods for Transmitted
Shock Characteristics of Foam-in-Place Cushioning Material, HCMF composites were tested
for the impact effect. Samples were trimmed into pieces of 10 cm × 10 cm, after which
the impactor was released from a specified height of 307 cm to impact the sample. The
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impact force and impact resistance were then recorded to evaluate the impact performance
of samples.

2.3.4. Sound Absorptivity Test

As specified in ASTM E1050-12 (Standard Test Method for Impedance and Absorption
of Acoustical Materials using a Tube, Two Microphones and a Digital Frequency Analysis
System) as Figure 2, the sound absorption coefficient of HCMF composites in a frequency
range of 125–4000 Hz was evaluated. The temperature was 24 ◦C while the relative humidity
was 50%. Samples were trimmed into cylindrical pieces with a diameter of 38 mm, and
three samples for each specification were used. A sample was inserted into the impedance
tube for the first measurement, after which the microphones were switched in position for
the second measurement, thereby rectifying the difference between two microphones. The
sound absorption coefficient-frequency curves were plotted automatically afterwards.
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Figure 2. Diagram of two microphones method for sound absorption coefficient measurement.

3. Results and Discussion
3.1. Stereomicroscopic Observation

Figure 3 shows the stereomicroscopic images where HCMF composites exhibit a cell
density that becomes compact with a rise in the HCM content, the results of which are in
conformity with the SEM observation in Figure 4. The SEM images clearly demonstrate
that the cell size distinctively appears consistent with the increasingly greater HCM content.
Hence, it is substantiated that the presence of HCM is correlated with the cell structure and
morphology, stabilizing the cell morphology [25,26]. In addition, sound absorptivity of
composites is dependent on the difference in the cell structure.

3.2. Effects of HCM on Cell Size of Flexible PU Foam

Figure 5 shows that with 5wt% of HCM, the PU foam exhibits a more unstable cell size
distribution than the groups with 10–20 wt% of HCM. The 5wt% group has a cell size that
is distributed between 300 µm and 1000 µm. The greater the HCM content, the denser the
cell diameter distribution. When there is a higher HCM content, there is a greater amount
of HCM embedded in the cell walls, so HCM are distributed more evenly. A low content of
HCM hampers an even HCM distribution over the cell walls, which means that the cell
size exhibits instability; namely, cell size has a great range. This phenomenon subsequently
affects the mechanical property and sound absorptivity [16,27,28]. Furthermore, Figure 6
also indicates that when the HCM content exceeds 5wt%, the cell size of the flexible PU
foam (FPUF) is also decreased, which supports the description for Figure 5. In general,
the cell size of FPUF is correlated with the HCM content, as exemplified by the decreasing
error range in Figure 6. To summarize, a low HCM content adversely affects cell growth,
resulting in a greater range of cell size, while a high HCM content helps stabilize the cell
size, strengthening the density of FPUF.
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3.3. SEM Observation

According to Figure 7A–E, the cell size of composites has a decreasing trend with a
rise in the HCM content. The SEM images indicate that the composites acquire better cell
integrity with the presence of more HCM. When the HCM content is increased, HCM can
be better distributed over FPUF, improving the quality of the cell walls. During the foaming
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reaction, a better quality of cell walls generates a greater number of smaller cells, instead of
the occurrence of over-foaming. In other words, cell walls with better quality help improve
the cell density. Figure 7F–J shows that a greater HCM content equivalently means a better
distribution of HCM, which is consistent with the findings in Figures 5 and 6.
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3.4. Effect of HCM Content over Compressibility of Composites

Figure 8 shows the compression strength of HCMF composites that is in direct pro-
portion to the HCM content. Specifically, with 20wt% of HCM, the composites exhibit
2.24-times greater compression strength than the control group, which suggests that the
presence of filler has a significantly positive influence over the compression strength of
HCMF composites. HCM is inorganic ceramic that absorbs and disperses much of a com-
pression force. When FPUF is incorporated with HCM, the latter of plays a role of hard
chain segments when being embedded in the cell walls of PU foam during the foaming
and curing process [16,17,25]. A high HCM content means a greater amount of HCM. In
particular, 20wt% of HCM provides the composites with a maximal compression strength
as HCM reaches the critical value of withstanding a compression force. The distinct im-
provement in compression strength can apply a comparable fluid mechanism of shear
thickening fluid (STF). When STF encounters a stress, the fluid particles agglomerate to
generate a thickening phenomenon that can bear a higher stress (Figure 9) [29].

These conclusions were confirmed with the Mohammed Imran work. Notably, scholars
have yet to use HCM as form fillers to improve the material property (detailed information
can be found in introduction). As a result, the suggested relationship between HCM and
mechanical performance could be one directive principle for designing desired durable
form materials [17].

Before being exerted as a force, the microspheres of STF are dispersed as Figure 9a, and
then in response to an external force, STF demonstrates agglomeration that resists an impact
force or a stab force, as in Figure 9b. Although HCM in this study is unlike STF that reacts
with agglomeration against an impact force, a high content of HCM still causes a higher
filler density that achieves even distribution over cell walls. In the meanwhile, a high HCM
content strengthens the density of composites, which contributes to an agglomeration-like
effect that strengthens the compression resistance. Comparing HCMF0 and HCMF20 in
terms of being exerted by an external force, as in Figure 10a,b, the filler (i.e., HCM) is
stacked as STF when being compressed, thereby distributing the compression force that
HCM bears. Hence, the compression strength of composites is improved when there is a
greater content of HCM.
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3.5. Effect of HCM Content over Impact Resistance of Composites

Figure 11 shows the impact strength of HCMF composites, which is 2579.96 N for
HCMF0, 3018.03 N for HCMF5, 2760.45 N for HCMF10, 1969.47 for HCMF15, and 1932.64 N
for HCMF20, respectively. As the impact force is exerted over the composites vertically, the
lower the impact force, the better the impact strength. When the content of HCM is higher,
the proposed materials demonstrate a lower impact strength—namely, a better impact
resistance. The presence of HCM is substantiated to have a positive influence over the
impact resistance of composites. As described in Figure 10, HCM that is distributed over
the cell walls is able to disperse an impact force, which indicates that HCMF composites
exhibit a significantly lower impact strength when composed of a greater amount of HCM.
Sujon et al. reviewed and commented that the incorporation of nanoparticles improved
the volume of interfacial area, which subsequently improved the energy dissipation. The
deformation, relaxing, and regeneration molecular chain networks cause the viscoelasticity
damping, which suggests a significant correlation between frequency and molecular motion.
Hence, the molecular structure of polymer bonds particles fulfill the function of elastic
material that constrain particles inside the material from bouncing [30]. This finding further
proves that the incorporation of HCM as the filler provides damping of structures.

On the other hand, the incorporation of filler is also pertinent to the viscoelasticity
of PU foam [26], so the viscoelasticity of cell walls is dependent on the presence of HCM.
Furthermore, a rise in the content of filler may lead to agglomeration that interferes with
the impact resistance of the composites as previously described.
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3.6. Effect of HCM on Sound Absorption Coefficient of Composites

Figure 12 shows that HCMF composites demonstrate an unstable sound absorption
coefficient when the sound waves are at frequencies of 125–1000 Hz. Consisting of a lower
content of HCM, HCMF5 and HCMF10 acquire a sound absorption coefficient that is
comparatively higher than that of HCMF15 and HCMF20 that are composed of a greater
content of HCM, as well as the control group of HCMF0. When the frequency exceeds
1500 Hz, sound absorbent composites show an increasing trend in the sound absorption
coefficient with the content of HCM being increased. When at 2000 Hz, HCMF20 has a
higher sound absorption coefficient than HCMF0, and when at 3500 Hz, HCMF15 also has
a higher sound absorption coefficient than HCMF0. To summarize, it is a small amount
of HCM that affects the sound absorptivity of sound absorbent composites in the range
of 125–1500 Hz, while it is a great amount of HCM that affects the sound absorptivity of
sound absorbent composites in the range of 2000–4000 Hz.

The major factor of sound absorption coefficient is a steady increase in the HCM
content that improves the cell walls of PU foam. It is part of the process that when HCM is
embedded into the cell walls to eventually fill the cells of PU foam, the sound absorptivity
of composites changes accordingly. The average sound absorptivity is comparatively lower
when composites are composed of a small amount of HCM. This result may be ascribed
to a sporadic distribution of HCM in the PU foam, which in turn causes a greater range
of cell size, as shown in Figure 3. This specific group also has a comparatively wider cell
size distribution than the control group, as well as the other groups containing a greater
amount of HCM.

When the filler content increased, this study became similar to the previous work
(Baek, Seung Hwan [25]) in sound absorption property. The sound absorption frequency
increases in medium high frequency with further increments of filler content.

Since the HCM content increases by degrees, PU foam starts to obtain a higher cell
density and a more stabilized cell structure, which benefits the corresponding sound ab-
sorptivity. Also, the HCMF sound absorbent composites that are composed of a greater
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amount of HCM are proved to exhibit higher sound absorption coefficients at high fre-
quencies. Therefore, the incorporation of HCM as the filler for PU foam is effective in
improving the sound absorptivity of composites in this study, exemplifying a synergistic
mechanism [13–15,18,25,31]. Similarly, Sung et al. studied the difference in the sound
absorptivity of PU foam, which was found to be dependent on the addition of hollow
ceramic microspheres, as well as the resulting structural resonance. The findings also
confirmed the difference in sound absorptivity that was caused by the different damping
with corresponding structure [11].
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4. Conclusions

In order to obtain functional hollow ceramic microsphere/flexible polyurethane foam
composites, this study examines the proposed HCMF sound absorbent composites in terms
of surface observation, cell size analysis, compression force, and sound absorptivity. As for
the morphology observation, the presence of HCM changes the cell structure of composites,
and the cell size shows a significant decreasing trend when the content of HCM is increased.
According to the SEM observation, the higher the HCM content, the greater the HCM
amount embedded in the cell walls. As for the maximal compressibility of composites, it
reaches 317.62 N, which is 2.24 times higher than that of HCMF0, while the sound absorp-
tion coefficient of composites is higher than 0.45 at high frequencies. Moreover, HCMF5
demonstrates an optimal impact resistance as high as 3018.03 N. To summarize, the incor-
poration of HCM helps improve the cell structure, mechanical properties, and functions
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of HCMF sound absorbent composites, which suggests that this study has successfully
produced the functional composites made of a hollow ceramic microsphere and flexible
polyurethane foam.
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