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Abstract: Wood plastic composites (WPCs) specimens containing high-density polyethylene (HDPE)
and wood pruning waste were manufactured and evaluated for their mechanical properties. Pecan
waste was used as an accessible and sustainable source in this study, and the effects of its particle size
and concentration on WPC strengths were evaluated. Pecan waste was milled and sieved to various
particle sizes, and testing samples were fabricated by mixing them in a twin-screw extruder and
injection molding. A coupling agent was used to create a stable bond between the HDPE and wood.
Both tensile modulus and strength were increased with an increasing pecan flour concentration up
to about 60 weigh percent. A micromechanical model is proposed for predicting the mechanical
properties of the wood flour/fiber reinforce composite. This model uses a correction factor of an
elliptical of carried sizes and shapes. The preliminary results of the model have a high correlation
with the experimental values of the composite in all mesh sizes.

Keywords: tensile strength; sustainable; wood plastic composites; pecan waste; particle size; mi-
cromechanical modeling

1. Introduction

The use of composites containing natural fibers is growing rapidly around the world.
The combination of thermoplastic polymers (e.g., polyolefins) with natural fibers has been
used to develop wood plastic composites (WPCs) widely. WPCs have been developed from
a variety of agricultural and forest resources, including wood flour and other types of fibers
from plants [1,2]. In particular, the use of agricultural waste fibers has reached a production
of 140 billion metric tons annually around the globe [3]. A literature review [1,4] shows
an increased use of agro-waste as a reinforcement option in plastic composites. Many of
these composites are based on the use of waste from crops after harvesting. Some of these
natural materials are obtained from orchard pruning residues. Currently, this waste is
typically either burned or mixed in the soil as fertilizer. Using an agro-waste approach
can create composites that would be greener and less harmful to the environment. In the
manufacturing industry, there is an increase in environmental awareness and government
regulations forcing companies to look for environmentally friendly materials that can be
biodegradable, ecologically friendly, low cost with good physical properties and energy-
efficient [5]. Natural fibers, including agricultural waste, are considered to be a viable
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option to meet the manufacturing industry requirements [6]. Different waste sources have
been studied to characterize WPCs. For example, Fernandez-Garcia et al. [7] analyzed
the mechanical properties of palm tree pruning in particleboard. In the case study from
Merida, Mexico [8], Cruz-Estrada et al. studied the use of pruning waste from trees and
recycled HDPE [8]. In another study, conducted by Pinzón, Moreno and Saron [9], the
mechanical properties of low-density polyethylene with waste pinewood were analyzed.
An analysis by Valles-Rosales et al. [10] reviewed the potential use of chili stalks waste as a
fiber for polypropylene. In a study presented by Oliver-Ortega et al., waste from rapeseed
and polypropylene was used to fabricate specimens, which were tested for mechanical
properties for potential construction material [11]. Sutivisedsak et al. [12] developed WPCs
from three different nutshell flours such as almond, pistachio and walnut waste. Jorda-
Reolid et al. [13] analyzed the waste of argan nutshell with bio-based polyethylene. These
composites have properties to potentially be used in several areas such as building, con-
struction, automotive and furniture. Even so, the physical requirements on each application
are different; the composites have a wide variety of applications. Therefore, an evaluation
of the properties of WPCs with various materials is important.

Various studies have focused on the thermal, rheological and mechanical properties of
WPCs [11]. In particular, efforts have been devoted to obtaining good mechanical properties
for new WPCs [13]. For example, Maldas et al. [14] discussed the effect of additives on
fiber dispersion and mechanical properties in high-density polyethylene and peanut hull
and a 10% pecan shell particle composite. The study was conducted to analyze the effect
of maleate polyethylene (MAPE) and peroxide on mechanical characteristics. The results
indicated an improvement of fiber dispersion when MAPE was used. The mechanical
properties of tensile strength were significantly improved when maleate polyethylene
was used; however, the tensile modulus remained unchanged. In a study conducted by
Sutivisedsak et al. [12], WPCs were created from three different nutshell flours such as
almond, pistachio and walnut. The results obtained showed lower mechanical properties
than the base polymer matrix (polypropylene and poly lactic acid). In another study,
Adhikary, Pang and Staiger [15] investigated WPCs based on recycled and virgin HDPE
with wood flour, and they observed a significant an increase in tensile strength. Some
previous studies have also analyzed the effect of wood content and particle size. For
example, Gallagher and McDonald [16] evaluated the fiber size impact on the mechanical
properties of WPCs. They used maple flour and high-density polyethylene. The results
indicated that fiber size affects the modulus of elasticity (MOE) and the modulus of rupture
(MOR). The results of these investigations showed that fiber content may increase tensile
strength in WPCs. It is clearly shown that there is an ongoing interest to improve the tensile
strength of WPCs using thermoplastics and sustainable materials. It is also important to
mention that some of the polymers used were polypropylene (PP), polyethylene (PE), the
chemical structures of which are shown in Figure 1.
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Figure 1. (a) Polyethylene, (b) Polypropylene [17]. Figure 1. (a) Polyethylene, (b) Polypropylene [17].

These polymers have several advantages such as low cost, recyclable, high impact
and good strength, among other properties. These characteristics become an import asset
to the composites because they reinforce materials. Natural fibers, including from wood,
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have been used to impart good mechanical properties and to improve the sustainability of
these plastics. Figure 2 shows the chemical structure of cellobiose, which is a component of
wood [18]. Wood is made from three components composed of cellulose, hemicellulose
and lignin [19]. Pecan wood is a hardwood with content consisting of 70% holocellulose,
21% lignin and 9% others [19].
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As mentioned by Golofit et al. [20], composites from wood sources have been in-
creasingly studied in the past ten years with the purpose of positively impacting the
environment [21]. Within the development of WPCs, the analysis of wood degradation in
the polymer matrix has been one focus of attention [22]. Understanding the other properties
of WPCs is important since applications of the new developed material may be suitable for
new applications where it is necessary to evaluate electrical or physical properties [23].

The mechanical properties of composites have been predicted using several microme-
chanical models. Various studies [11,15,24–28] have analyzed tensile properties based on
experimental testing and theoretical modeling using models developed by Reuss, Vought,
Hirsch, Halpin-Tsai, Modified Bowyer and Bader, among others, where the predicted val-
ues of the composites did not fit the test data very well. Little research has been performed
on composites developed from tree pruning waste; specifically, reports from pecan trees
are very limited. No study has been published that used pecan tree pruning flour as
reinforcement in polyethylene. Some studies have reported on composites using pecan
shells [8,12,14,22,23,29,30], although with different responses. In these studies, the com-
posites were coupled with different types of coupling agents depending on the matrix
type, most of which were polyolefin and polylactic acid. No studies have been reported on
composites based on pecan wood flour or composites using pecan pruning waste. Due to
the lack of information on the mechanical properties of high-density polyethylene (HDPE)
and pecan wood flour composites, there is a need for assessing the mechanical properties
of such material for potential application in different uses in construction or automotive. In
this article, we developed and tested WPCs specimens based on pecan wood flour from
tree pruning waste as reinforcement for HDPE and a coupling agent to enhance the bond
between them. WPC specimens were fabricated using different weight ratios and particle
sizes to determine their effect on the resulting mechanical properties. Statistical analysis
was conducted to understand interaction effects on the mechanical response. Additionally,
a micromechanical model was developed to better predict the tensile strength based on the
shear interfacial strength.
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2. Materials and Methods
2.1. Materials

ExxonMobil HDPE HD 6733 (ExxonMobil, Spring, TX, USA) was used as a matrix.
This HDPE has good mechanical properties with a density of 0.950 g/cm3, melt index
of 33/10 min at 190 ◦C (ASTM D1238). The coupling agent used in the composite was
Polybond 3009 (Addivant, Danbury, CT, USA), which is a maleic anhydride modified high
density polyethylene with a maleic anhydride content of 0.8 to 1.2%.

Pecan pruning waste was obtained from orchards in the region of Las Cruces, NM,
USA. The pecan pruning waste was shredded as a first step, and then milled in a commercial
hammer mill (Model 250E10-5780-12, Meadows Mill Inc., North Wikesboro, NC, USA).
Flour was milled using a 1

4 -inch screen as the initial step. The pecan wood flour was milled
and sieved at 10, 20, 40 and 60 mesh. The flour from pecan wood was processed using a
commercial sieve shaker.

2.2. Specimen Fabrication

In this study, specimens were fabricated in three steps. As a first step, pecan flour
was sieved with 10-, 20-, 40- and 60-mesh screens (2000, 841, 400 and 250 microns) and
dried for 24 h at 90 ◦C in an oven. In a second step, the composite blends were mixed in a
twin extruder extrusion machine of 15 cc twin co-rotating screws, Xplore model DSM 15 cc
capacity (DSM Research, Sittard, The Netherlands).

The extruder temperatures were set to 180 ◦C in all temperature zones; motor speed
was set to 50 rpm with a maximum force of 8500 N; acceleration speed was set to 1000 rpm/min.
Once the highest value of force was reached, a valve was opened to fill the injection mold-
ing cylinder. The third step was the injection molding process using a machine Xplore
DSM 12 cc heating chamber, model Micro 12 cc (DSM Research, Sittard, The Netherlands).
The injection molding machine was set with the mold temperature at 45 ◦C; the molding
temperature was set at 190 ◦C; the three-stage injection process was set with the first stage
at 9 bars for 5 s, the second stage at 11 bars for 5 s, and the third stage at 11 bars for 5 s.
The coupling agent (CA) concentration was set between 3 and 5% [11,15]. Our preliminary
testing results found that the value of 3.5% gave good results in the tensile response. Com-
posites with pecan flour contents of 10, 30, 40, 50 and 60% were created, and a total of 6
type-V (ASTM D638-14 ASTM International, West Conshohocken, PA, USA.) specimens
per test condition were injection molded (see Figure 3).
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2.3. Mechanical Testing

A tensile test was performed using a universal tester Instron machine, model 5882.
This machine has a built-in software called Blu hill used for data collection in the CSV
format. The procedure was based on the ASTM D638-14 standard method to test the tensile
strength of reinforced and unreinforced polymers using the type-V specimen. The head
speed was set up at 1 mm/min. The modulus of elasticity was determined from the slope
of the linear portion of the stress–strain plot.
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2.4. Analysis of Variance

Testing data were analyzed to determine statistical effect of the factors mentioned for
the pecan waste composite. A two-way analysis of variance (ANOVA) was used in order to
determine the effect of each factor and their interactions. Minitab software was used for the
analysis. The following results section provides more details about the resulting ANOVA.

3. Results and Discussion

Injection molded tensile samples were produced using HDPE and various concentra-
tions of pecan wood particles. Experiments were conducted with specimens made of four
mesh sizes, 10, 20, 40 and 60, and five weight contents, 10, 30, 40, 50 and 60%, which gives
a total of 20 experimental runs. Polybond 3009 at a 3.5% weight was used as a coupling
agent. Table 1 shows all the runs performed.

Table 1. Wood plastic composite experimental test runs (Weight percent).

Composite
Code Mesh Hdpe Pecan Wood Polybond

3009

HDPE 0 100 0 0
HDPE90P10 10 86.5 10 3.5
HDPE70P30 10 66.5 30 3.5
HDPE60P40 10 56.5 40 3.5
HDPE50P50 10 46.5 50 3.5
HDPE40P60 10 36.5 60 3.5
HDPE90P10 20 86.5 10 3.5
HDPE70P30 20 66.5 30 3.5
HDPE60P40 20 56.5 40 3.5
HDPE50P50 20 46.5 50 3.5
HDPE40P60 20 36.5 60 3.5
HDPE90P10 40 86.5 10 3.5
HDPE70P30 40 66.5 30 3.5
HDPE60P40 40 56.5 40 3.5
HDPE50P50 40 46.5 50 3.5
HDPE40P60 40 36.5 60 3.5
HDPE90P10 60 86.5 10 3.5
HDPE70P30 60 66.5 30 3.5
HDPE60P40 60 56.5 40 3.5
HDPE50P50 60 46.5 50 3.5
HDPE40P60 60 36.5 60 3.5

3.1. Tensile Properties
3.1.1. Tensile Strength

Pecan branches were shredded and milled with bark of 16% of the wood weight [31].
The reinforcement gave a 16 to 44% average increase in the tensile strength of the matrix. A
similar tensile response was reported by Adhikary et al. [15], as the pecan wood flour acted
more as a reinforcement than a filler due to the effect of Polybond 3009 as coupling among
pecan flour and HDPE. In their study, they used pinewood with ratio of 60% and found
tensile results lower than the results in the present article. Furthermore, the study did
describe that the composite had the highest tensile at a 40–50% ratio, whereas, in our study,
higher values were at 50 and 60%. In another study by Facca et al. [24], they conducted
experiments with a wood weight ratio of up to 60%. However, the tensile strength data
reported do not agree with the tensile strength data of this study, as their values are lower.
Table 2 displays the results of the analysis of variance (ANOVA) for tensile tests in all the
pecan runs. Data of results in Appendix A.
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Table 2. Resulted Analysis of Variance (ANOVA) analysis of tensile strength of Pecan wood plastic
Composites (WPCs) from Minitab® 21.1 Software.

Source of
Variation

Degrees of
Freedom

Seq Sum of
Squares Contribution

Adjusted
Sums of
Squares

Adjusted
Mean Squares

Test Statistic
F-Value for
the Model

Significance
Level p-Value

Mesh size 3 433.3 11.39% 433.3 144.448 30.28 5.18 × 10−16

Weight fraction 4 2557.6 67.20% 2557.6 639.395 134.04 1.1 × 10−18

Mesh size * Weight 12 338.0 8.88% 338.0 28.166 5.90 1.15 × 10−7

Error 100 477.0 12.53% 477.0 4.770
Total 119 3805.9 100.00%

* The asterisk meaning is interaction effect between the two factors.

Minitab® 21.1 software was used to conduct the analysis of variance and to create
Table 2. A significance level p-value was compared to an α-value = 0.05. Therefore, Table 2
shows that the p-value is less than the significance level for factors such as mesh size,
weight fraction and the combination of mesh size and weight, and it is concluded that
the mesh size and weight fraction have a significant effect on the response and tensile
strength properties. Moreover, analyzing each p-value, the weight fraction of pecan has a
major effect on the tensile properties. Figure 4 complements the above statement where a
machined composite sample specimen with a 60-mesh size and 40% pecan wood weight
fraction shows a good mix between HDPE and pecan wood.
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These results are in good agreement with those by Stark and Berger [32] and others
in which tensile strength increases with an increasing wood weight ratio. Table 3 shows
the results of the tensile strength of 40-mesh pecan flour at different weight ratios and a
coupling agent content of 3.5%. Table 4 lists the average tensile strength values of all the
mesh sizes by weight ratio and the equivalent volume fraction values that were estimated
based on the density of HDPE and pecan wood. The tensile strength of the composites was
increased by as much as 45%. The increase in tensile strength observed is dependent mainly
on the pecan wood weight ratio. On average, the tensile values reached the maximum
value at a 0.5 ratio and then decreased at a 0.6 ratio. The data related to tensile strength
are shown in Figure 5 where the strength of the pecan composite increases as the weight
increases until 50%. This result agrees with other studies from [11,15], where the maximum
tensile strength reaches 50%. Other studies [24,26,27,32,33] observed the maximum tensile
strength at 40% weight; however, Facca et al. [24] observed maximum values at 40% wood
content for 40-mesh hardwood with HDPE. Furthermore, the stress values reported are
lower than those reported in this article.
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Table 3. Average tensile strength of pecan WPCs for 40 mesh.

Pecan Weight
Ratio

Volume
Fraction Tensile (MPa) Std Deviation Tensile%

Increase

0 0 24.50 0 0
0.1 0.134 24.503 0.893 0.010
0.3 0.374 32.380 1.337 32.160
0.4 0.482 35.480 1.466 44.820
0.5 0.582 38.220 2.950 56.000
0.6 0.676 36.710 2.990 49.840

Table 4. Tensile strength average values for all mesh sizes.

Weight Volume Fraction Tensile (MPa) Tensile% Increase

0 0 24.500 0
0.1 0.134 24.505 0.0
0.3 0.374 28.590 16.7
0.4 0.482 33.050 34.9
0.5 0.582 35.670 45.5
0.6 0.676 35.440 44.5
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In addition, as observed in Figure 5, there is some variability in the tensile strength
with respect to the mesh size, especially for the weight ratio at 50% and higher. For high
weight ratios, WPCs produced from 10 mesh pecan flour were observed to have the lowest
tensile strength; the poor bonding seems to be due to the volumetric particle size.

3.1.2. Elastic Modulus

The tensile modulus of elasticity (MOE) was estimated using the stress–strain rela-
tionship from the tensile test data. An analysis of variance was performed for MOE and is
shown in Table 5. The effect of mesh size is not statistically significant, whereas the effect
of weight ratio is quite significant (small p-value). Figure 6 and Table 6 show a significant
increase in the MOE with respect to the pecan loading levels. The MOE values for all the
mesh sizes with the same weight ratio showed an increase of 26 to 209%. This is highly
significant, as other studies [33,34] reported an increase of up to 100%. The results from the
MOE show inconsistent variability with respect to each mesh size.
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Table 5. ANOVA analysis of Elastic Modulus of pecan WPCs.

Source of
Variation SS DF MS F p-Value F Crit

Mesh Size 0.11899 3 0.039665 0.537574 0.665421 3.490295
Weight Ratio 5.91306 4 1.478267 20.03492 3.03 × 10−5 3.259167

Error 0.88541 12 0.073785
Total 6.91747 19
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Figure 6. Modulus of Elasticity of Pecan composite.

Table 6. Elastic modulus results for pecan wood composite (average).

Weight Volume
Fraction

Elastic Modulus
(E) (GPa)

Standard
Deviation E% Increase

0 0 0.75 0 0
0.1 0.1343 0.946 0.096 26.2
0.3 0.3745 1.475 0.321 96.7
0.4 0.4822 2.054 0.183 173.8
0.5 0.5828 2.362 0.284 214.9
0.6 0.6769 2.318 0.152 209.1

The MOE experimental results show a similar behavior between tensile stress and
weight ratio. The MOE increases as the weight increases, as described above. The incorpo-
ration of the pecan flour particles in the matrix improved the mechanical performance of
the composite. Composites at high weight fractions of pecan flour were observed to have
increased viscosity and volatiles, making the molding process more complex, requiring
adjustments to the processing conditions.

3.2. Micromechanical Analysis

Several models have been developed to predict the mechanical properties of a com-
posite. Some of the models proposed (e.g., [35,36]) do not consider the effect of the rein-
forcement particles shape and size in evaluating the composite properties shown in the
following equation:

σc = c1σ1 + c2σ2 (1)
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where σc is the composite tensile strength, σ1 is the fiber tensile strength, σ2 is the matrix
tensile strength and c1 and c2 are the volume fractions of fiber and matrix. This equation is
known as the Voight equation, also called “the series model” [25]. A similar model was
also proposed by the following Reuss equation. Fibers are parallel to the stress direction in
this model.

σc =
σm ∗ σf

σmV f + σf Vm
(2)

where σc is the composite tensile strength, σf is the fiber tensile strength, σm is the ma-
trix tensile strength and Vf and Vm are the volume fractions of fiber and matrix. Other
models consider factors such as fiber geometry, distribution and loading conditions to
estimate the mechanical properties of a composite. These are sown in the Halpin-Tsai
Equations (3) and (4), which provide a value of E and tensile in a composite with discontin-
uous fibers.

σc = σc

(
1 +

AnV f
1 − nV f

)
(3)

n =

(
σf
σm

)
+ 1(

σ f
σm

)
+ A

(4)

In Equation (3), σc is the composite tensile strength, σf is the fiber tensile strength, σm
is the matrix tensile strength, Vf and Vm are the volume fractions of fiber and matrix, n
is a factor for fiber orientation, and A is determined from the Einstein coefficient K. The
Hirsch model in equation 5 considers a correcting factor in a model that combines series
and parallel models. The correcting factor x is based on the fiber alignment, which is 0.4 for
longitudinal and 0.1 for randomly oriented fibers [19].

σc = x(σmVm + σ f V f ) + (1 − x)
(

σmσ f
σmV f + σ f Vm

)
(5)

The preliminary results of the experimental data indicate that there is a significant
effect of fiber size on mechanical properties. In this article, we used a modified micro me-
chanical model from Rosler, Harders and Baeker [37]. Figure 7 depicts the micromechanical
model used in this study. In Figure 7, a fiber element dx with an ellipse shape is proposed,
the tensile stress σ f acts along the x axis and shear stress τi in the surface; this analysis was
used to determine a correction factor for shape and size on fiber stress.
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The correction factor for fiber normal stress was determined from the differential
equation of stress equilibrium shown in Figure 7 and in the stress fiber Equation (6). In this
equation, σf is the tensile stress of fiber and τi is the interfacial shear stress of fiber, a is the
major axis and b is the minor axis of fiber, and l is the fiber length. Combining this factor
and using the equation from [24], a micromechanical model was developed considering
elliptical fibers.

σf = τi ∗

√
1
2 ∗ a2 + b2

a ∗ b
∗ l (6)

The equation proposed to calculate the tensile stress in a composite containing fibers
with ellipse cross-sections is the following:

σc = τV f

(√
1
2
∗ (a2 + b2)

)
∗ l

a ∗ b
+ σm(1 − V f ) (7)

where σc, τ, σm, Vf, l, a and b are the tensile of the composite, the shear stress of the fiber,
the tensile of the matrix, volume fraction of fiber, the length of the fiber and the major
axis of the ellipse and the minor axis, respectively. This equation is the series or Voight
equation modified by using a correction factor, which will adjust the response based on the
elliptical shape while varying the length of the fiber. The parameters a and b in the equation
represent a theoretical size of each particle and these approximate values were used to fit
the mesh size. The tensile stresses were estimated using Equation (7). The results predicted
by Equation (7) were more accurate than those obtained by the Vought, Reuss, Halpin-Tsai
and Hirsch equations (see Figures 8–11) for 10, 20 40 and 60 meshes.
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Furthermore, the results from Vought, Reuss, Halpin-Tsai and Hirsch have a minimum
difference in all the experimental runs since there is no correction factor for the fiber size
and shape; the predicted results from the proposed micromechanical model are more
consistent with the experimental data. Each set of experimental data with different mesh
sizes shows non-monotonic behavior.

It was observed from three of four data sets that tensile strength increases as the weight
ratio increases; then it decreases at the 50% weight ratio. The micromechanical models
do not follow a similar trend in the experiment, i.e., the strength decreases at the 50%
weight ratio. Moreover, as is observed, the models such as Halpin-Tsai or Hirsch do not fit
the experimental data very well in all the weight ratios. The proposed micromechanical
model, however, fits well in general and approximates the data near the 50% and 60%
weight ratios.

4. Conclusions

Wood plastic composites were successfully produced from HDPE and milled pecan
pruning waste flour. The tensile strength of the sample specimens obtained from this
process were up to 46% higher than that of the HDPE matrix. The WPCs were fabricated
using a 10 to 60% weight ratio of pecan flour and a coupling agent at 3.5%. The mesh sizes
analyzed were 10, 20, 40 and 60 mesh. On each of the mesh sizes, the tensile strength was
observed to increase with an increase in weight. These results are in agreement with those
of other studies that use different waste sources. The data presented in this study clearly
demonstrate that the WPCs produced with pecan pruning waste possess good mechanical
properties. The Modulus of Elasticity values increased up to 200% compared to the matrix
base value. The WPCs analyzed show that pecan wood acted not just as a filler, but also as
a reinforcement; thus, the mechanical behavior was significantly improved.

A micromechanical model was proposed for predicting the mechanical properties of
wood flour and fiber-reinforced composites. Some micromechanical models by Halpin Tsai,
Voight, Reuss and Hirsch were also used to estimate tensile strength, and the difference in
accuracy between these models and the proposed model was studied in comparison with
the experimental data. The micromechanical model proposed uses the correction factor for
elliptical fibers of varied sizes and shapes and provided a good fit to experimental the data
obtained from the composite in all mesh sizes.



Polymers 2022, 14, 504 13 of 17

The tensile strength results for the WPCs material using pruned waste from pecan
orchards indicates that it can be suitable for various applications that need to be further
studied, such as in construction materials or interior automotive panels. Further efforts will
be made to better asses the suitability of the WPC composite material in diverse applications
and environments.
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Appendix A. Data of the Study from Excel Format

Pecan Waste Stress Data

Mesh Weight(%) Tensile (MPa)

10 10 21.278

10 10 21.499

10 10 22.735

10 10 20.523

10 10 23.982

10 10 24.616

10 30 32.119

10 30 27.018

10 30 29.187

10 30 25.849

10 30 25.986

10 30 26.761

10 40 26.097

10 40 28.236

10 40 27.889

Molviw.org
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10 40 31.306

10 40 31.196

10 40 28.624

10 50 33.003

10 50 33.940

10 50 33.527

10 50 34.417

10 50 33.259

10 50 33.380

10 60 22.703

10 60 27.681

10 60 34.677

10 60 27.512

10 60 35.691

10 60 33.429

20 10 23.687

20 10 21.485

20 10 23.083

20 10 24.590

20 10 23.142

20 10 24.292

20 30 26.173

20 30 25.883

20 30 27.679

20 30 26.054

20 30 24.199

20 30 26.076

20 40 29.720

20 40 30.501

20 40 29.349

20 40 30.977

20 40 30.103

20 40 30.696

20 50 31.618

20 50 37.457

20 50 31.536

20 50 35.139

20 50 36.394

20 50 33.753

20 60 37.505

20 60 34.012

20 60 40.334
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20 60 40.303

20 60 40.657

20 60 37.903

40 10 22.865

40 10 24.936

40 10 25.435

40 10 24.640

40 10 24.236

40 10 24.908

40 30 32.880

40 30 31.346

40 30 32.696

40 30 33.782

40 30 30.238

40 30 33.369

40 40 36.338

40 40 34.491

40 40 36.383

40 40 37.522

40 40 34.345

40 40 33.819

40 50 40.644

40 50 40.156

40 50 36.398

40 50 40.570

40 50 33.350

40 50 38.242

40 60 34.302

40 60 38.961

40 60 34.907

40 60 38.401

40 60 40.588

40 60 33.118

60 10 23.665

60 10 24.488

60 10 24.174

60 10 23.863

60 10 24.411

60 10 25.130

60 30 31.768

60 30 27.668

60 30 28.188
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60 30 27.362

60 30 29.310

60 30 23.615

60 40 39.040

60 40 36.378

60 40 38.624

60 40 37.550

60 40 35.671

60 40 37.830

60 50 37.126

60 50 38.760

60 50 36.135

60 50 38.641

60 50 34.714

60 50 36.205

60 60 35.448

60 60 35.381

60 60 39.456

60 60 34.553

60 60 40.417

60 60 33.938
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