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Abstract: Polymer matrix composites based on ED-20 epoxy resin, hollandite K1.6(Ni0.8Ti7.2)O16 and
carbon nanotubes with a variable content of 0.107; 0.213 and 0.425 vol.% were obtained for the first time.
Initial components and composites produced were characterized by XRD, XRA, FTIR, SEM and Raman
spectroscopy. The dielectric properties of composite materials were measured by impedance spectroscopy
and determined by the volume ratio of the composite components, primarily by the concentration of
CNTs. At a CNT content of 0.213 vol.% (before percolation threshold), the maximum synergistic effect of
carbon and ceramic fillers on the dielectric properties of a composite based on the epoxy resin was found.
Three-phase composites based on epoxy resin, with a maximum permittivity at a minimum dielectric
loss tangent, are promising materials for elements of an electronic component base.

Keywords: three-phase composites; epoxy resin; hollandite; carbon nanotubes; dielectric proper-
ties; synergism

1. Introduction

Polymer matrix composites attract great attention in the scientific community and
industry due to the wide possibilities for regulating their properties (dielectric, mechanical,
etc.), depending on the potential field of application, by varying the qualitative and quanti-
tative composition of the composite material, which consists of choosing the type of matrix
and filler, as well as their mass/volume ratio.

When choosing a polymer matrix, as a rule, the choice is based on its flexibility/hardness
(determined by the intended area of use), a technologically simple process for obtaining
composites, as well as its acceptable dielectric parameters, primarily, a low dielectric loss value.

The type of filler, which can have a dielectric or conductive nature, is justified by its
electrophysical characteristics, primarily high values of permittivity, and good dispersibility
in the corresponding polymer.

Currently, two-phase composites are widely used. Ceramic fillers for polymer matrices
are simple and complex oxides of various compositions and structures [1–9]. Common
conductive additives for two-phase composites are a variety of metals [10–14] and carbon
materials [15–19]. The advantages of such composites are predictable dielectric properties,
relatively low dielectric losses, and ease of manufacture [20,21]. However, significant prob-
lems in their use are associated with the deterioration of the mechanical and technological
properties, since an increase in permittivity is achieved near the percolation threshold at
high concentrations of hard ceramic particles in the polymer matrix.

Hence, in recent years, three-phase composite materials have gained the greatest
popularity. In this case, by partially replacing ceramic particles with conductive ones it is
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possible to produce polymer matrix composites with a sharp increase in permittivity near
the percolation threshold of conductive particles. This effect was achieved using highly
conductive fillers in the form of metals and carbon nanotubes [12,14,22–25].

Epoxy resin, as one of the materials commonly used in the field of electronics and
electrical engineering, has insulating properties, resistance to thermal decomposition and
chemical stability. The best results were reported for epoxy systems doped with silver
flakes with a permittivity of 2000 [26]. However, such a noticeable increase in permittivity
is always accompanied by a significant increase in electrical conductivity and dielectric
losses due to the presence of an insulator–conductor interface. In this case, high sensitivity
of the permittivity value to the content of conductive fillers is observed. A small deviation
from the percolation threshold can lead to a serious drop in permittivity, which makes it
difficult to control the parameters of the composite preparation process.

Dielectric properties of two-phase composites based on epoxy resin with ceramic or
carbon filler are characterized by the permittivity from 100 to 200 at 1.5 vol.% of MWCNT
depending on frequency (102–106 Hz) [27] and 5.5–6.0 at 0.2 vol.% BaTiO3 as the most
studied ceramic material (10−1–106 Hz) [28].

The production of three-phase composites based on the epoxy resin is not widespread.
It is known that epoxy resin with hybrid carbon filler based on graphene nanoplates
and multi-walled nanotubes has high thermal conductivity [29]. MWCNT/TiO2-epoxy
nanocomposite demonstrates good mechanical properties under various stresses [30].

Studies of dielectric properties of epoxy three-phase composites with simultaneous
use of ceramic and carbon fillers are sporadic. From recent research, hybrid composites
based on epoxy with fixed MWCNT content above (0.09 vol.%) and below (0.58 vol.%)
percolation threshold and varied MnFe2O4 up to 10 vol.% demonstrated a permittivity of
up to 100 and 1000, respectively, at optimal MnFe2O4 concentration, room temperature and
129 Hz [31].

Within the framework of this work, it is planned to create polymer matrix composites
with an expected synergetic effect based on epoxy resin and a filler in the form of a complex
oxide K1.6(Ni0.8Ti7.2)O16 with a hollandite-like structure and with a conductive addition of
carbon nanotubes for the first time.

The efficiency of hollandite-like structures in the creation of polymer-matrix com-
posites with an optimal combination of dielectric properties was previously shown using
the example of systems [32–34]. Carbon nanotubes (CNTs) are known for their excellent
conductivity and, at a relatively low content, do not deteriorate the mechanical properties
of composites, which together opens up wide opportunities for the development of new
composite polymer matrix materials.

The aim of this work is to synthesize and study composite materials based on epoxy
resin, a ceramic material with a hollandite-like structure, and carbon nanotubes.

2. Materials and Methods

Ceramic material of K1.6(Ni0.8Ti7.2)O16 (KNTO) with hollandite-like structure was
synthesized by technique, described in the research [35,36].

To obtain polymer matrix composites, powders of a ceramic filler and carbon nan-
otubes (CNTs) (Taunit-M, OOO NanoTechCentre, Tambov, Russia) were pre-mixed to
produce ceramic-CNT composite with the subsequent introduction into ED-20 epoxy resin
(GOST 10587-93, CHS-Epoxy 520, Usti nad Labem, Czech Republic). The hardener is
triethylenetetramine (TETA, TU 6-02-1099-83). The qualitative characteristics of ED-20 and
TETA as the hardener are presented in Table 1.
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Table 1. Properties of ED-20 and TETA.

Characteristics Value

ED-20

Content of epoxy groups, % 20.0–22.5
Viscosity, Pa·s 13–20

Epoxy equivalent, g/mol 195–216
Density at 25 ◦C, kg/m3 1166

TETA

Molecular mass, g/mol 230–250
Viscosity, Pa·s 0.60–0.90

Density at 25 ◦C, kg/m3 1020
Amine number, mg KOH/g 1250

Nitrogen content, % by weight 30.0

Ceramic-CNT composites with fixed KNTO content and different content of CNTs
were prepared by mixing of components dispersion in ethanol, stabilized using ultrasonic
treatment for 1 h (step 1 Figure 1). The solvent was evaporated with constant stirring
while heating on a magnetic stirrer and followed by drying in an oven at 100 ◦C (step 2
Figure 1). Obtained ceramic-CNT composites were added into ED-20 epoxy resin (step 3
Figure 1) and homogenized with magnetic stirrer (15 min, step 4 Figure 1) and ultrasonic
homogenizer (1 h, step 5 Figure 1). Then, the hardener triethylenetetramine (TETA, TU
6-02-1099-83) (about 15% of the ED-20 mass) was added to the homogeneous mixture and
stirred for several minutes (step 6 Figure 1). The mixture was degassed under vacuum at
25 ± 5 ◦C for 30 min (step 7 Figure 1). The resulting homogeneous mixture was poured
into a cylindrical shape with a diameter of 11 mm (step 8 Figure 1), left to cure at room
temperature, and then in an oven at 100 ± 5 ◦C for 2 h (step 9 Figure 1). Then, the samples
were removed from the mold (step 10 Figure 1), and tablets with a diameter of 11 mm
were obtained using cut-off machine Accutom-5 from Struers (Copenhagen, Denmark),
and polished on a grinding machine Tegramin-20 from Struers to a thickness of 1.5 mm.
A schematic representation of the obtained three-phase composites based on epoxy resin,
KNTO and CNTs is shown in area 11 in Figure 1.

To compare the dielectric characteristics, two-phase composites based on epoxy resin
and carbon nanotubes were also obtained. The content of carbon nanotubes was 0.107,
0.213 and 0.425 vol.% (CNTs density of 1.9 g/cm3 was used to recalculate mass fraction to
volume fraction [37]), the content of K1.6(Ni0.8Ti7.2)O16 towards epoxy-CNT was 20.1, 19.5,
18.9 vol.%. The used composite components and obtained composites are designated short
names (Tables 2 and 3).

The particle size distribution of a complex oxide with a hollandite-like structure
was obtained using an ANALYSETTE 22 MicroTec plus laser particle size analyzer from
FRITSCH (Idar-Oberstein, Germany). X-ray phase analysis of a complex oxide with a
hollandite-like structure was obtained using diffractometer ARL X’TRA Thermo Scientific
(Reinach, Switzerland). Morphology and elemental composition of hollandite, as well as the
distribution of fillers and structural features of polymer matrix composites, was investigated
using a scanning electron microscope ASPEX Explorer with annex for the energy dispersive
X-ray analysis (Framingham, USA). Fourier-transform infrared spectroscopy (FTIR) was
carried out using FTIR spectrometer FT-801 (Novosibirsk, Russia). Raman spectroscopy
was carried out using NTEGRA Spectra NT-MDT (Amsterdam, Netherlands).

The dielectric characteristics of composite materials based on epoxy resin were in-
vestigated using a Novocontrol Alpha AN impedance meter (Montabaur, Germany). The
measurements were carried out in the frequency range from 100 Hz to 1 MHz at room
temperature with a measuring signal of 1 V. To prepare the samples for examination, con-
ductive glue «Kontaktol» (Keller) was applied to them on both sides, followed by drying at
room temperature for 24 h.
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Figure 1. Scheme of three-phase composites based on ED-20, KNTO and CNTs.

Table 2. The used composite components.

Initial Components
Component Content in Composites, vol.%

Full Name Short Name

Epoxy resin Epoxy
K1.6(Ni0.8Ti7.2)O16 KNTO 20.1 19.5 18.9
Carbon nanotube CNT 0.107 0.213 0.425

Table 3. The obtained and studied composites.

ED-20 KNTO CNT

20.6 Epoxy-KNTO 0.107 (Epoxy-CNT
0.107%)-KNTO 20.1%

0.213 (Epoxy-CNT
0.213%)-KNTO 19.5%

0.425 (Epoxy-CNT
0.425%)-KNTO 18.9%

ED-20 CNT

0.107 Epoxy-CNT 0.107%

0.213 Epoxy-CNT 0.213%

0.425 Epoxy-CNT 0.425%

3. Results and Discussion

An increase in permittivity in three-phase composites is achieved, first of all, due to
the introduction of a ceramic filler, the function of which in the system under study is
performed by a complex oxide of the composition K1.6(Ni0.8Ti7.2)O16 with a hollandite-like
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structure. Polarization processes in such materials are caused by the mobility of K+ ions in
quasi-one-dimensional channels of the tunnel structure, accompanied by a redistribution
of electrons in the structural lattice due to the variable valence of titanium and nickel in the
hollandite composition [36].

Single-phase ceramics with a hollandite-like structure based on nickel potassium
titanate with comparable dielectric properties with hollandites of different chemical com-
positions are characterized by simplicity and a variety of synthesis methods, including a
solid-phase reaction [38] and citrate–nitrate modification of the sol-gel technology [39,40],
as well as the approach of thermal treatment of an X-ray amorphous precursor, potassium
polytitanate, chemically modified in an aqueous solution of a nickel salt, which is also used
within the framework of this work.

The typical morphology of particles of hollandite-like materials is columnar, which
complicates charge transfer and necessitates the use of conducting particles, which are
chosen as carbon nanotubes.

The structure of the obtained complex oxide was confirmed by X-ray phase analysis
(Figure 2).
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Figure 2. X-ray diffraction pattern of K1.6(Ni0.8Ti7.2)O16 with structure refinement by the Rietveld method.

The diffraction pattern identifies a single crystalline phase of a complex oxide with a
hollandite-like structure, characterized by the space group I4/m. To refine the parameters
of the crystal lattice of the obtained ceramic filler, the Rietveld method was used. The
Figure shows the difference (blue line) of the experimental (black balls) and calculated (red
line) diffraction patterns. A slight discrepancy is observed in the case of some reflexes with
the highest intensity (profile factor Rp = 12.86%, weighted profile factor wRp = 17.36%).
The structural parameters of the unit cell were determined: a = 10.1510 Å, b = 10.1510 Å,
c = 2.9659 Å, α = β = γ = 90◦, the unit cell volume is 305.61 Å3, the theoretical density is
3.86 g/cm3. The goodness of fit (GOF = 4.03) is rather low and indicates a high level of
agreement between theoretical and experimental data. An elementary cell constructed
from the obtained data is also shown in Figure 2.

The synthesized ceramic filler in the form of a complex oxide of the composition
K1.6(Ni0.8Ti7.2)O16 with a hollandite-like structure was studied by the method of laser
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diffraction after synthesis (Figure 3a) and after additional treatment during ceramic-CNT
composite production (Figure 3b). According to the differential histogram, after synthesis
the ceramic powder consists of three fractions: nanosized particles (<0.1 µm), small ag-
glomerates (~2 µm) and larger aggregates (~20 µm) of particles, while the fraction of the
particles smaller than 1 µm is approximately 14 vol.%, which is established by the integral
curve (Figure 3a). Consequently, obtained ceramic material consists of nanosized particles
prone to agglomeration. This is confirmed by the result that after additional treatment the
fraction of the particles smaller than 1 µm increases up to 28 vol.%. The average particle
size is reduced to 2 µm (Figure 3b).
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The presence of structure-based chemical elements in the composition of the ceramics
synthesized was confirmed using energy dispersive X-ray analysis (Figure 4).
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Figure 4. EDX spectra of ceramic filler K1.6(Ni0.8Ti7.2)O16 with hollandite-like structure.

The EDX measurements show the contents of K, Ti and Ni in synthesized ceramics
with a hollandite-like structure. Consequently, the introduction of nickel in the structure of
potassium titanate has happened.

Raman spectrum confirms the typical characteristics of carbon nanotubes, which were
used as carbon filler in three-phase composites (Figure 5).
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Figure 5. Raman spectra of carbon filler CNT.

There are three peaks at 1360 cm−1, 1600 cm−1 and 2700 cm−1, which is traditionally
called the D-band, G-band and 2D peak. The presence of impurities or disorder in the
carbon-based structure is indicated by the D-peak. The G-peak appears as a result of
carbon–carbon bond stretching. The 2D peak is common in most of the carbon samples
and its width, intensity and location give information about the number of sample layers.
The ratio of intensities of the D-band and G-band is calculated and has a value of 1.027.

Ceramic-CNT composites based on KNTO and carbon nanotubes were obtained before
adding to the epoxy resin to produce three-phase composites. Their electron micropho-
tographs in comparison to the initial ceramics are shown in Figure 6.

Hollandite-like material, after synthesis and before additional treatment for ceramic-
CNT composite production, has irregularly shaped particles that form agglomerates with a
size of 10 microns or more. From Figure 6b it can be seen that the size of the KNTO particles
in the ceramic-CNT composite composition decreased. Additionally, carbon nanotubes
around KNTO particles are clearly detectable on SEM.

FTIR spectrum analysis was employed to characterize the raw materials and inter-
mediate composites as well as analyze the changes in the structure of polymer and fillers
during composite production. The FTIR spectra for the initial epoxy resin and composites
with different compositions are shown in Figure 7.

The FTIR spectra of the pure polymer matrix and polymer matrix composites have
adsorption bands of functional groups that are typical for epoxy resin: C-H band at
2935 cm−1 (methoxyl groups); C-H band at 1605 cm−1 and 1500 cm−1 (aromatic ring); C-O
band at 1230 cm−1 and 1100 cm−1 (aromatic ring). Additionally, characterization evidence
of the epoxy resin was observed in the bands of oxirane ring at ~800 cm−1 and ~600 cm−1.
Ceramic filler has typical Ti–O–Ti bands at ~750 cm−1 and ~600 cm−1 in the FTIR spectrum.
The FTIR spectrum of carbon filler does not have adsorption bands of functional groups. It
can be seen that new functional groups did not appear and existing ones did not disappear.
That is why initial composite components save their structure and do not have a destructive
effect on each other.

The structure of the initial epoxy resin, assessed by an electron micrograph of the cleav-
age (Figure 8a), is characterized by a large number of voids, which noticeably deteriorates
the properties of the resulting composite.
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Figure 6. Electron micrographs of (a) initial ceramic filler K1.6(Ni0.8Ti7.2)O16 and (b) ceramic-
CNT composite.

However, a comparison of the samples shows that when the epoxy resin is mixed with
carbon nanotubes (Figure 8c), no voids were found. In this case, an inhomogeneous, highly
developed cleavage surface is observed.

Additionally, it was found that in the absence of CNTs, hollandite particles are poorly
distributed in the polymer matrix and form rather large agglomerates (Figure 8b). As can
be seen from Figure 8d, the addition of CNTs has a positive effect on the distribution of
ceramic filler particles.

It should be noted that the CNT content for composite production was selected before
and after the percolation threshold, where a sharp increase in the conductivity was observed
at low frequency (f = 50 Hz) suggesting the formation of a tunneling conductive network.
This area is grayed out in Figure 9.
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The dielectric properties of the obtained composites were investigated in compari-
son with the pure polymer matrix in the frequency range of 100 Hz to 1 MHz at room
temperature (Figures 10–12).
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for similar three-phase composite [42].

It was found that the permittivity of the pure polymer matrix in the entire frequency
range has a value of about 5. After the addition of carbon nanotubes in an amount of
0.107 vol.% in two-phase composites the value of ε′ increases to 10. A further increase
in the concentration of conducting particles in the composition of two-phase composites
based on the epoxy resin of 0.213 and 0.425 vol.% leads to an increase in permittivity; this
is especially noticeable in low-frequency areas. It should be noted that composites with
high CNT concentrations exhibit a frequency-dependent behavior unlike epoxy resin and
composite with a low carbon nanotubes content. However, for a composite of Epoxy-CNT
0.213 vol.%, a frequency-independent section is observed in the high-frequency region.
In the case of Epoxy-CNT 0.425 vol.%, the frequency-independent section shifts to the
region of lower frequencies. The numerical simulation of possible ε′ value in the studied
frequency range for two-phase composites with similar compositions from research [41]
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is plotted in Figure 10a by two different color areas for two different composites. It
can be seen that experimental data have good agreement with the simulation results.
The introduction of ceramic filler in the amount of 20.6 vol.% into an epoxy resin in the
absence of a carbon additive causes an increase in permittivity by several units (from
5 to 14 (inset in Figure 10b)), similar to the three-phase composite of (Epoxy-CNT 0.107%)-
KNTO 20.1%. The addition of carbon nanotubes in the amount of 0.213 vol.% to the
three-phase composite provides a permittivity from 21.4 to ~23.6 units at 1 MHz and 1 kHz,
respectively. In the case of a composite with the highest CNT concentration (0.425 vol.%),
a significant increase in ε′ in comparison with the initial polymer matrix and composites
with different compositions is associated with an increase in the conductivity of the system
after overcoming the percolation threshold, which is also confirmed by the frequency
dependences of the conductivity (Figure 11). The obtained permittivity values of (Epoxy-
CNT 0.213%)-KNTO 19.5% and (Epoxy-CNT 0.425%)-KNTO 18.9% are comparable to
the results for the composite with the composition Au–BaTiO3/PVDF (grey section in
Figure 10b) [42].

The obtained composites, as well as the pure polymer matrix, are characterized by
a similar form of the frequency dependence of conductivity in logarithmic coordinates,
which has a rectilinear character, indicating a power law of the dependence of conductivity
on frequency. An exception re the epoxy-CNT 0.425% and (Epoxy-CNT 0.425%)-KNTO
18.9% composites, which demonstrate an almost constant conductivity value in the entire
investigated frequency range. Therefore, they exhibit the properties of a conductor, which
confirms the overcoming of the percolation threshold and the formation of a conductive
CNT network.

High values of the permittivity and the conductivity of the composites Epoxy-CNT
0.425% and (Epoxy-CNT 0.425%)-KNTO 18.9% are also accompanied by undesirably high
dielectric losses (Figure 12). A small addition of carbon nanotubes (0.107 vol.%), both
alone and in combination with a ceramic filler, practically does not affect the dielectric
loss tangent of relatively pure epoxy resin, especially at high frequencies. The introduc-
tion of K1.6(Ni0.8Ti7.2)O16 without a conductive additive and with CNTs in an amount of
0.213 vol.% in the epoxy resin gives the same trend in the frequency dependences of the
dielectric loss tangent, exceeding the value of tanδ of ED-20 only in the low-frequency
range (~102 Hz). Dielectric losses of the obtained three-phase composites with low CNT
content are in the range typical for similar composite Au–BaTiO3/PVDF (grey section in
Figure 12b) [42].

Of greatest interest is the combination of high permittivity and low dielectric losses.
The presence of a synergistic effect when using ceramic and conductive fillers in the
production of three-phase polymer-matrix composites is known, which in the study [43]
was estimated by the difference in the values of the permittivity of the composite and
individual components.

The synergetic effect in composites obtained in this research is assessed by comparing
the change of ε′ and tanδ for the epoxy after adding fillers one by one and together
(Figure 13).

In the case of the composite (Epoxy-CNT 0.107%)-KNTO 20.1%, synergy was not
observed. This is presumably caused by the lack of contact between the CNT and KNTO
particles. On the contrary, the composite (Epoxy-CNT 0.425%)-KNTO 18.9% is character-
ized by a high concentration of fillers, which is why part of the microcapacitors in this
composite are closed. This causes an increase in electrical conductivity and not an accu-
mulation of capacitance, and, as a result, an increase in the permittivity of the composite.
In the case of a composite material with a maximum concentration of carbon nanotubes,
the synergistic effect is small with the maximum percentage contribution to ε′ from the
conductive additive. This can be explained by the formation of a percolation network,
accompanied by a change in the insulating and semiconducting properties of the composite
to the conductive, which is confirmed by the data on conductivity. The high permittivity of
the three-phase composite (Epoxy-CNT 0.213%)-KNTO 19.5% is associated with the forma-
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tion of a large number of microcapacitors in the form of ceramic dielectric particles of the
composition K1.6(Ni0.8Ti7.2)O16 with CNTs as electrodes with the existence of an extensive
phase boundary between the polymer and fillers, which contributes to the appearance of a
better effect of interfacial polarization. Additionally, the decrease in dielectric losses as a
positive synergetic effect was observed at concentrations of carbon nanotubes of 0.213 and
0.425 vol.%.
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Therefore, based on the foregoing, taking into account the maximum value of the per-
mittivity at relatively low dielectric losses, the optimal solution for three-phase composites
based on epoxy resin and ceramic filler K1.6(Ni0.8Ti7.2)O16 can be considered as the addition
of CNTs in the range of 0.213 vol.% to the percolation threshold.

4. Conclusions

Three-phase composites prepared on the basis of epoxy resin (ED-20), a ceramic
filler in the form of a complex oxide with a hollandite-like structure of the composition
K1.6(Ni0.8Ti7.2)O16, and a conductive additive, for which carbon nanotubes were used,
were studied by Fourier-transform infrared spectroscopy, scanning electron microscopy
and impedance spectroscopy in comparison with the pure polymer matrix and two-phase
composites without a ceramic filler. The structure and parameters of the crystal lattice
of the oxide material were confirmed and refined using X-ray phase analysis and the Ri-
etveld method. According to the data of scanning electron microscopy, fillers are evenly
distributed throughout the entire volume of the polymer matrix. The dielectric properties
(permittivity, conductivity, dielectric loss tangent) of composite materials noticeably de-
pend on both the composition and the ratio of the components of the composites and the
frequency. With a carbon additive of 0.425 vol.%, two- and three-phase polymer matrix
composites show a sharp change in their characteristics, exhibiting the properties of a con-
ductor in contrast to other composites, which is explained by the formation of a continuous
conducting CNT network. The minimum concentration of carbon nanotubes (0.107 vol.%)
in the composites does not cause a significant increase in dielectric characteristics. The
maximum synergistic effect of carbon nanotubes and hollandite K1.6(Ni0.8Ti7.2)O16 on the
dielectric properties of a composite based on the epoxy resin was found for the composite
(Epoxy-CNT 0.213%)-KNTO 19.5%.
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