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Abstract: A green monolithic starch cryogel was prepared and applied for the removal of methylene
blue (MB) using a batch system. The influence of various experimental parameters on MB adsorption
was investigated. High removal efficiency (81.58 ± 0.59%) and adsorption capacity (34.84 mg g−1)
were achieved. The Langmuir model better fitted the experimental data (determination coefficient
(R2) = 0.9838) than the Freundlich one (R2 = 0.8542), while the kinetics of MB adsorption on the
cryogel followed a pseudo-second-order model. The adsorption process was spontaneous and
endothermic with an activation energy of 37.8 kJ mol−1 that indicated physical adsorption. The starch
cryogel was used for MB removal from a wastewater sample collected from a local Batik production
community enterprise in Phuket, Thailand, and a removal efficiency of 75.6% was achieved, indicating
that it has a high potential as a green adsorbent for MB removal.

Keywords: dye removal; methylene blue; starch cryogel; batch adsorption

1. Introduction

Dyes are chemicals that can bind and impart color to different materials. Thus, they
are used in many industries, including textiles, pharmaceutics, painting, leather, clothing,
and printing [1–3]. Since their global production and consumption have increased, the
dye business is estimated to grow annually by about 2–3% [1]. Note that ~2% of the dyes
produced annually are discharged in effluents from manufacturing operations [4], which
can cause serious water pollution due to their nonbiodegradable, highly toxic, carcinogenic,
and mutagenic nature [2].

Methylene blue (MB), a thiazine cationic compound, is one of the most used dyes, espe-
cially for coloring and biological staining in many fields [1]. However, although MB can be
utilized also for medical and pharmaceutical applications [1], it can cause several issues to
human health, such as increased heart rate, vomiting, shock, cyanosis, jaundice, quadriple-
gia, and tissue necrosis [5,6]. Moreover, the discharge of MB effluents without proper
treatment into natural streams has generated many environmental problems by reducing
solar light penetration and hindering the photosynthetic activity of aquatic plants [7,8].
Therefore, highly effective and low-cost materials/methods should be developed to remove
MB from wastewater

The major challenge in the removal of dyes lies in their complex aromatic molecular
structures, which make them resistant to photodegradation, biodegradation, and oxidizing
agents [9]. Thus, dye removal by traditional wastewater treatment technologies, e.g., physic-
ochemical and biological processes, is difficult [1,3,10]. These methods also have other
drawbacks: high costs, high energy consumption, sludge production, and abundant toxic
byproducts [3,10]. Therefore, many researchers focused on the adsorption method due
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to its high efficiency, relatively facile operation, and low costs, as well as the abundance
and easy recycling of adsorbent materials [1,3,10]. Various adsorbents have been tested
for MB removal, including activated carbon [11,12], hydrogels [2], and biosorbents such
as banana, orange, and pineapple peels [13], wheat shells [7], fava bean peel waste [1],
and grape leaves [3]. Several studies have also been investigated to modify and convert
conventional textile fibers to be adsorbents for dye removal, e.g., polypropylene [14,15],
synthetic fiber [16], and chitosan polymer-coated cotton fibers [17]. Among them, cryogels
derived from natural polymers, such as hydroxypropyl methylcellulose and bacterial cellu-
lose nanocrystals [18] and alginate quasi-cryogels combined with clay [6,19] or graphene
oxide [20], have attracted great interest because of their low environmental impact, fast
response, and high efficiency.

In this study, a monolithic cryogel derived from starch was used as a green and low-
cost adsorbent for MB removal. The costs and environmental impact were reduced by
replacing commonly used synthetic polymers, such as polyvinyl alcohol [21], and toxic,
expensive cross-linkers, such as glutaraldehyde [21–24], with, respectively, a natural poly-
mer (starch) and limewater, achieving great removal efficiency. The effects of contact time,
adsorbent dose, initial dye concentration, pH, and temperature on MB adsorption were
investigated in a batch system. The adsorption mechanism, kinetics, and thermodynamic
parameters were estimated to understand the nature of MB adsorption on the cryogel
surface. Batch adsorption was selected as it is one of the most practical approaches used
to adsorb pollutants from the liquid solution for the purification of water samples [25]
with only a small amount of material required and less time consumption [26]. The study
of adsorption by equilibrium in batch mode could provide critical information about the
efficacy of a particular adsorbate-adsorbent system, enabling the prediction performance of
the adsorbent before application on a larger scale [26].

2. Materials and Methods
2.1. Materials

MB was supplied by Merck (Darmstadt, Germany). The cryogel was synthesized
from natural precursors consisting of rice flour (Erawan Brand, Nakhon Pathom, Thailand),
tapioca starch (Jaydee Brand, Nakhon Pathom, Thailand), and limewater prepared from
food-grade red lime purchased at a local supermarket in Kathu (Phuket, Thailand). Ethanol
(95%, commercial grade) was supplied by High Science Co., Ltd. (Songkhla, Thailand).
Ultrapure water from a water purification system (Merck, Darmstadt, Germany) was used
for preparing all standard solutions.

2.2. Cryogel Preparation and Characterization

The starch cryogel was prepared as reported in our previous works [22,27–29]. Rice
flour (12.5 g) and tapioca starch (3.75 g) were dispersed in limewater (130 mL) and heated
under stirring for gelatinization until obtaining a clear and viscous solution. This solution
was then cooled down at room temperature before being transferred (80 g) into a plastic
syringe (50 mL, diameter of 3 cm and length of 10 cm) and frozen overnight at −20 ◦C.
The resulting product was then thawed at room temperature for 3 h and underwent
3 freeze/thaw cycles. The obtained cryogel was removed from its container and cut into
1 cm lengths. The cryogel was soaked in 95% ethanol for 24 h, dried in an oven at 100 ◦C
until achieving stable weight, and then stored in zip-lock plastic bags placed in a desiccator
before usage.

The topography, before and after MB adsorption, and elemental composition of the
cryogel were investigated using a field emission scanning electron microscopy (FESEM)
system equipped with an energy-dispersive X-ray spectroscopy (EDX) detector (FEI, Eind-
hoven, The Netherlands). A Fourier-transform infrared spectroscopy (FTIR) instrument
(Bruker, Bremen, Germany) was used to investigate the functional groups by the KBr
technique.
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2.3. Batch Adsorption and Determination of MB Content

Several experiments were conducted to investigate the adsorption characteristics of
MB on the prepared cryogel, including the effects of adsorbent dose (1–6 pieces, 0.5–3.0 g),
initial MB concentration (2.5–100 mg L−1), contact time (0–24 h), pH (4–9), and temperature
(298, 308, and 318 K). As initial conditions determined with a preliminary study, one
piece of cryogel (0.5 g) was placed into MB aqueous solutions (300 mL, 25 mg L−1) and
magnetically stirred for 1 h at 298 K. The MB content was measured for three replicates using
a spectrophotometer and a reported linear calibration curve at 664 nm [6] (1–25 mg L−1,
y = (0.11x ± 0.01) + (0.22 ± 0.08), with determination coefficient (R2) = 0.9912), which was
single-point recalibrated daily. The MB removal percentage was calculated as follows:

%Removal =
Ci−Ce

Ci
× 100 (1)

where Ci (mg L−1) and Ce (mg L−1) are the initial and equilibrium concentrations of MB,
respectively [1,29].

The amount of adsorbed MB at time t (qt: mg g−1) was estimated as the difference
between Ci [30] and the MB concentration at t (Ct: mg L−1) as follows:

qt =
(C i−Ct)

W
×V (2)

where V is the solution volume (L) and W is the dry mass of the adsorbents (g) [1,29].

2.4. Adsorption Isotherm

The MB adsorption isotherms on the proposed cryogel were investigated to under-
stand the adsorption mechanism by varying Ci in the range of 5–50 mg L−1 while keeping
constant the other conditions at their optimum values. The isotherms were constructed
by plotting the adsorbed MB per mass unit of the adsorbent at equilibrium (qe, mg g−1)
versus Ce, followed by fitting with typically used Langmuir and Freundlich models. Both
nonlinear and linear fitting methods were applied, and the goodness of the equilibrium
model fitting was considered in terms of the sum of squared errors (SSE), residual standard
deviation (RSD), and R2 [29].

The Langmuir isotherm equation can be expressed as [1,10,29,31]

qe =
qmaxkLCe

1 + kLCe
(3)

and
1
qe

=
1

kLqmax
(

1
Ce

)+
1

qmax
(4)

where qmax is the MB amount per mass unit of adsorbent at complete monolayer coverage
(mg g−1) and kL is the Langmuir constant relating to the adsorption strength (L mg−1);
qmax and kL can be derived from the slope and intercept of the linear plot between 1/qe and
1/Ce, respectively. The Langmuir isotherm was also investigated based on a dimensionless
constant, known as the equilibrium parameter (RL), as follows: [29].

RL =
1

1 + kLCi
(5)

The Freundlich isotherm was also applied to the experimental data as follows:

qe= kFCe
1
n (6)

and
logqe= logkF +

1
n

logCe (7)
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where kF and n are the Freundlich constants related to adsorption capacity and intensity,
respectively. The kF and 1/n values were derived from the intercept and slope of the linear
regressions fitted to log qe versus log Ce.

2.5. Adsorption Kinetics

Three models were used to investigate the adsorption kinetics of MB on the pro-
posed cryogel: the Lagergren pseudo-first-order model [32,33], a pseudo-second-order
model [32,34], and an intraparticle diffusion [29,32], 2011. The MB adsorption on cryogel
was studied at different contact times (0−24 h), and the adsorption data were fitted with
each model.

The Lagergren pseudo-first-order model was expressed as

dqt
dt

= k1(qe− qt) (8)

which can be integrated for the boundary conditions t = 0, qt = 0 and t = t, qt = qt to get

ln(q e− qt) = lnqe−k1t (9)

where k1 is the pseudo-first-order kinetic rate constant (min−1) derived from the slope of
the linear plot between ln

(
qe − qt

)
and t.

The pseudo-second-order model was expressed as

dqt
dt

= k2 (q e− qt
)2 (10)

and
t
q
=

1
k2q2

e
+

1
qe

t (11)

where k2 is the second-order kinetic rate constant (min−1) derived from the slope of the
linear plot between t/qt and t.

The intraparticle diffusion model was expressed as [29,32].

qt= kpt1/2+c (12)

where kp is the intraparticle diffusion rate constant (mg g−1 min−1/2) derived from the
slope of the plot between qt and t1/2, and c is the intercept related to the thickness of the
boundary layer. Intraparticle diffusion is the only rate-controlling step if the plot trendline
is linear and passes through the origin.

2.6. Adsorption Thermodynamics

The adsorption of MB (100 mg L−1) on cryogel was investigated at 298, 303, and
318 K to observe the changes in thermodynamic factors, including Gibbs free energy (∆G◦),
enthalpy (∆H◦), and entropy (∆S◦). ∆G◦ can explain the spontaneity and feasibility of an
adsorption process, ∆H◦ informs about its nature (exothermic or endothermic), and ∆S◦ in-
dicates the degrees of freedom in the system or the extent of molecular order/disorder [29].
∆G◦ can be determined with the classical Van’t Hoff equation at any temperature (K) as
follows:

∆G0= −RTlnkd (13)

where R is the gas constant (8.314 J mol−1 K−1) [35] and kd is the thermodynamic equilib-
rium constant (L g−1), which can be expressed as

kd =
Ca

Ce
(14)

where Ca is the concentration of MB adsorbed on the cryogel at saturation (mg L−1).
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Since ∆H◦ and ∆S◦ are linked to ∆G◦ as

∆G0 = ∆H0 − T∆S0 (15)

they can be derived from the slope and intercept as follows:

lnkd =
∆S0

R
− ∆H0

R
(

1
T
) (16)

2.7. Real Sample Application

A real water sample was collected from the wastewater of local small and medium
sized enterprises producing Batik clothing in Thalang, Phuket. It has a blue color (pH 6.23)
with a maximum adsorption wavelength of 664 nm corresponding to the MB standard
solution at a concentration of 3.85 mg L−1. Three pieces of cryogel (1.5 g) were placed into
a 300 mL sample and magnetically stirred for 45 min at 298 K for batch adsorption.

3. Results
3.1. Cryogel Characterization

The FESEM observation of the prepared starch cryogel (Figure 1) revealed a surface
morphology containing macropores with an interconnected polymer network, consistent
with our previous works [22,27–29] and cryogels prepared from synthetic polymers [36].
Micropores were also observed on the material wall (Figure 1b), providing many active sites
for MB adsorption. Moreover, the cryogel surface seemed homogeneous due to its in-situ
preparation without any composite with other materials. The formation of macroporous
structure in polymeric cryogel is thus based on ice crystals without any implementation
of other additives or filler [37]. It may also be attributed to the absence of microphase
separation occurring during the dry cryogel preparation for the FESEM observation the
same as reported in other hydrogels [38,39]. After adsorption, the observed pores were
filled by MB molecules (Figure 1c,d). Thus, the cryogel surface became smoother and
saturated, similar to what is reported for other materials [40,41].

Polymers 2022, 14, x FOR PEER REVIEW 6 of 18 
 

 

 
Figure 1. Field emission scanning electron micrographs of starch cryogel (a,b) before and (c,d) after 
adsorption of methylene blue. 

 
Figure 2. (a,b) Energy-dispersive X-ray spectra of starch cryogel before (a) and after methylene blue 
(MB) adsorption (b). (c) Fourier-transform infrared spectra of starch cryogel before and after MB 
adsorption. 

Figure 1. Field emission scanning electron micrographs of starch cryogel (a,b) before and (c,d) after
adsorption of methylene blue.



Polymers 2022, 14, 5543 6 of 15

The EDX analysis (Figure 2a,b) showed a decrease in the calcium content from 0.9 to
0.2 wt% after MB adsorption, along with a slight reduction in the carbon content (from 50.0
to 49.1 wt%) and an increase in the oxygen one (from 49.1 to 50.7 wt%). Since limewater
was used as the cross–linker for cryogel preparation, excess calcium ions might have been
trapped within the material and consequently released into the aqueous solution during
the adsorption process, reducing the calcium content after MB adsorption. The high content
of carbon in the prepared cryogel (~50.0%) allowed efficient adsorption due to its porous
structure, similar to carbonaceous materials [42].
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The FTIR spectrum of the cryogel showed an absorption band at 3443 cm−1 attributed
to O–H stretching from the starch molecules interacting with the calcium ions in their sur-
roundings (Figure 2c). MB adsorption leads to the increase of signal intensity at 3442 cm−1

due to the overlapping with –NH/–OH of MB [43]. Another peak was observed at 2921
and 2923 cm−1 before and after MB adsorption, respectively; it was assigned to the C–
H stretching in the starch molecules and is also commonly observed in MB spectra at
2924 cm−1 [43]. The absorption band at 1645 and 1641 cm−1 before and after MB adsorp-
tion, respectively, was attributed to H–O–H bending from water molecules and/or C–O
bending in amylopectin [44–46]. This peak was more intense after MB adsorption since it
likely overlapped with the N–H bending vibration generally detected at 1599 cm−1 [42].
The peak observed at 1419 cm−1 and those in the 1081–931 cm−1 range were assigned
to C–H symmetrical scissoring of the CH2OH moiety and C–O bonding in amylopectin
of the starch molecules [44–46]. The spectrum after MB adsorption revealed remarkable
intensity changes with little wavenumber variation (<10 cm−1), which indicates that the
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MB adsorption mechanism may consist of physical interactions, such as hydrogen bonding,
electrostatic force, van der Waals force, or hydrophobic interactions [40,47].

3.2. Batch System
3.2.1. Adsorbent Dose

Increasing the cryogel dose from one to six pieces (0.5 to 3 g) enhanced the MB removal
efficiency from 16.90 ± 3.11% to 58.27 ± 3.03% (Figure 3a) due to the increased number of
active sites of sorbent [48]. The adsorbent dose for three pieces (~1.5 g) was selected as the
optimum condition.
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removal efficiency and capacity of starch cryogel.

3.2.2. Influence of Initial MB Concentration

The MB removal capacity of the prepared cryogel increased along with Ci (Figure 3b),
suggesting that the initial MB concentration is an important factor in the adsorption process.
The low removal capacity at low Ci (0.28 ± 0.01 mg g−1 at 2.50 mg L−1) was attributed
to the unsaturation of the cryogel adsorption sites, which would increase until reaching
a critical point with no more significant changes in removal capacity due to a saturation
MB concentration on them. These results suggest that the maximum adsorption capacity
of the prepared cryogel can be achieved at Ci > 100 mg L−1, where the removal efficiency
reached 81.58 ± 0.59%. The removal efficiency slightly decreased with increasing MB
concentrations from 2.50 to 25 mg L−1, but then increased at higher initial concentrations.
Since the initial dye concentration provides the driving force to overcome the resistance to
the mass transfer of dye between the aqueous and the solid phase, thus the higher the initial
concentration, the higher the driving force, and thus the higher amount of dye that can be
adsorbed while saturation takes place very fast [49]. At a short contact time, e.g., 45 min
used in this experiment, the lower amount of dye was expected to be absorbed on the
adsorbent at lower initial concentration leading to a lower removal efficiency. A small
decrease in removal efficiency with increasing MB concentrations from 2.50 to 25 mg L−1

may attributed to the competition of dye to attach on vacant adsorbent sites at the range of
concentrations with 45 min contact time [49].

3.2.3. Influence of pH

The pH of a dye solution is an essential factor that can influence the adsorption process
since it may affect the charge on the adsorbent surface. The point of zero charge (pHpzc) of
the prepared cryogel was thus investigated as reported in the literature [29,50]. The cryogel
showed the pHpzc at pH ~6.4 (Figure 4a), which means that the cryogel surface will be
positively charged at pH < 6.4 and negatively charged at pH > 6.4.
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Figure 4. (a) Point of zero charge of starch cryogel. (b) influence of initial pH on the MB removal
efficiency and capacity of starch cryogel.

Since MB is a cationic dye with pKa 3.8 [51] and the cryogel pHpzc was 6.4, high adsorp-
tion efficiency was expected at an MB solution pH above 6.4 due to electrostatic interactions
between the positively charged MB and the negatively charged cryogel. Increasing the
pH of the MB solution from 4 to 5 improved the removal efficiency from 77.08 ± 1.02% to
80.31 ± 0.84%, which then remained constant from pH 5.1 (without pH adjustment) to pH
7 (Figure 4b); in the same pH range (4–7), the removal capacity increased from 22.82 ±
0.13 to 23.39 ± 0.44 mg g−1. The removal efficiency remained constant, while the removal
capacity decreased at pH 8 (21.16 ± 0.62 mg g−1 and 76.86 ± 1.33%, respectively) and pH 9
(19.71 ± 0.31 mg g−1 and 76.86 ± 1.20%, respectively), although the adsorbent could still
be considered highly efficient. Since the cryogel was prepared by ionic cross-linking of
starch with limewater, Ca2+ and/or OH− ions could be released into the solution during
the adsorption process, affecting the solution pH. Thus, the final pH of the MB solution
(pHfinal), i.e., after the adsorption process (insert of Figure 4b), was also considered.

The lower adsorption efficiency observed at pH 4 (pHfinal = 4.9) may be attributed
to the repulsion between the positively charged cryogel surface and positively charged
MB. However, it can still be considered highly efficient (~77%) due to hydrogen bond-
ing between cryogel and MB, which is a dominant adsorption mechanism under acidic
conditions [42]. Hydrogen bonding might have still occurred at pH 5 (pHfinal = 5.2) and
5.1 (pHfinal = 5.3) with lower electrostatic repulsion since the cryogel pHpzc was ~6.4, re-
sulting in higher adsorption efficiency than at pH 4. At pH 6 and 7 (pHfinal = 6.4 and 7.6),
most of the cryogel surface should have been neutral and, thus, the constant adsorption
efficiency may be due to hydrophobic–hydrophobic interactions. The reduction in the
removal capacity at pH > 8 might have contributed to the charge screening effect of excess
Na+ ions that prevented effective electrostatic attractions between CO– on the cryogel
surface and positively charged MB [2,52], and the Ca2+ ions released from the cryogel
might have supported this screening effect.

Therefore, the adsorption experiments were performed using the MB solution without
pH adjustment (pH 5.1) to save the cost of chemicals required for such a treatment in real
applications. Hydrogen bonding between MB and the cryogel surface is thus proposed
as the dominant adsorption mechanism, which agrees well with the FTIR results where
N–H bending at 1599 cm−1 [42] may overlap with H–O–H bending from water molecules
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and/or C–O bending in amylopectin at 1641 cm−1 [44–46], resulting in a more intense peak
after MB adsorption.

3.2.4. Influence of Contact Time

Figure 5a illustrates the effect of contact time on adsorption capacity and removal effi-
ciency. The MB adsorption increased rapidly up to 76.19 ± 0.66% within the first 5 min and
reached the equilibrium (81.96 ± 0.08%) within 30 min. This behavior may be attributed to
the porous network structure with high permeability and easily accessible adsorption sites
of the starch cryogel, which could accelerate the intraparticle diffusion of MB on its sur-
face [2]. The adsorption capacity also increased during the time from 16.73 ± 0.28 mg g−1

at 5 min to 22.51 ± 0.44 mg g−1 at 12 h and remained constant afterward. This indicates
that the MB adsorption capacity of the prepared cryogel mainly depends on its specific
surface area.
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3.2.5. Influence of Temperature

Since temperature is an important parameter for controlling the strength of adsorp-
tive forces between adsorbent and adsorbate molecules, its influence was investigated
at 298, 308, and 318 K. The adsorption capacity increased a little (from 17.08 ± 0.23 to
18.43 ± 0.51 mg g−1) when increasing the temperature (Figure 5b). Adsorption processes
are generally exothermic, i.e., the adsorption capacity decreases with increases in the tem-
perature. However, some of them are endothermic, i.e., the adsorption capacity increases
along with the temperature because the adsorbate molecules need the energy to move
around and penetrate deeper into the adsorbent at increasing temperatures [42]. Thus,
the results presented here indicate that the MB adsorption on the prepared cryogel is
an endothermic process where the MB molecules need the energy to move around and
penetrate deeper into its wall micropores at increasing temperatures [42], and this was
most likely due to physical rather than chemical adsorption [35].

3.3. Adsorption Isotherm

The Langmuir and Freundlich models were used to fit the experimental data obtained
by varying Ci to study the MB adsorption behavior of the prepared cryogels (Figure 6a,b).
The Langmuir and Freundlich parameters, SSE, SD, and R2 estimated with both non-
linear and linear fitting methods are listed in Table 1. The experimental results were
better fitted with the Langmuir model in linearized forms than with the Freundlich model
with the higher R2 (0.9838) and lower SSE (0.14). This indicates a homogeneous surface
for monolayer adsorption of MB, in agreement with the FESEM results and previous re-
ports on MB adsorption by other materials, such as a magnetic graphene oxide/carbon
nanotube composite (qmax = 24.88 mg g−1 for magnetic graphene oxide) [8], magnetic
Fe3O4/C core–shell nanoparticles (qmax = 31.18 mg g−1) [53], cross-linked porous starch
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(qmax = 9.46 mg g−1) [54], and grape leave waste (qmax = 0.2 mg g−1) [3], but with a higher
maximum adsorption capacity of 34.84 mg g−1. The RL values ranged from 0.08 to 0.77,
indicating a favorable adsorption process, which confirms that the Langmuir model is
suitable for describing MB adsorption on monolithic starch cryogel.
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Table 1. Parameters derived from applying the Langmuir and Freundlich models to the batch
adsorption data.

Model Parameter Linear Non-Linear

Langmuir qm (mg g−1) 34.84 370,735
KL (L mg−1) 0.12 0.000001

R2 0.9838 0.6041
SD 0.19 4.96
SSE 0.14 98.30

Freundlich KF (mg1−nLng−1) 0.20 0.000002
1/n 1.21 5.27
R2 0.8542 0.6327
SD 0.20 4.43
SSE 0.15 78.54
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3.4. Adsorption Kinetics

The experimental data obtained from varying the contact time from 5 to 1440 min
at different temperatures (298–313 K) were fitted with the Lagergren pseudo-first-order
model [32,33] and the pseudo-second-order model [32,34] to understand the sorption
kinetics (Figure 6c,d). The high degree of linearity (R2 = 0.9999) obtained from the pseudo–
second–order model demonstrated its ability to describe the kinetics of MB adsorption,
similar to previous reports [2,3,8,54]. Furthermore, the adsorption capacity measured at
298 K (qe exp = 17.08 mg g−1) was close to the equilibrium adsorption capacity calculated
with the pseudo–second–order model (qe cal = 18.02 mg g−1) (Table 2). The adsorption
kinetics of MB on the starch cryogel surface can therefore be best described by the pseudo-
second-order model. The k2 value increased from 0.02 to 0.05 g mg−1 min−1 with increasing
the temperature, indicating that a higher temperature enhances the adsorption with an
endothermic process. The estimated k2 value for starch cryogel (0.0005 g mg−1 h−1) was
lower than for epichlorohydrin cross-linked porous starch (0.0035–0.0093 g mg−1 h−1) [54],
possibly due to the higher surface area of cross-linked porous starch granules. The half-life
of adsorption (t1/2), i.e., the time needed to adsorb 50% of MB at the equilibrium, was
estimated as [29,35].

t1/2 =
1

k2qe
(17)

Table 2. Parameters derived from applying the Lagergren pseudo-first-order model and the pseudo-
second-order model to the batch adsorption data.

Model Parameter
Temperature (K)

298 308 318

Pseudo-first-order
qe (mg g−1) 1.22 1.24 2.88
k1 (min−1) 0.0014 0.0046 0.0271

R2 0.7576 0.6224 0.8054

Pseudo-second-order
qe (mg g−1) 18.02 18.28 18.48

k2 (g mg−1 min−1) 0.0193 0.0296 0.0472
R2 0.9999 0.9999 0.9999

It decreased from 2.88 min at 298 K to 1.15 min at 318 K, indicating faster adsorption at
higher temperatures, which might be attributed to the increased mobility and mass transfer
rate of MB towards the cryogel surface and its internal pores.

Since the adsorption process may involve intraparticle diffusion, the intraparticle
diffusion model [29,32] was also investigated to better understand the adsorption kinetics
of MB on the prepared cryogel. The qt vs. t1/2 plot was not linear (R2 = 0.6033), suggesting
that intraparticle diffusion does not play an important role in the adsorption process of MB
on the starch cryogel. Moreover, the intercept did not pass through the origin, indicating
that intraparticle diffusion is not the only rate-controlling step.

3.5. Adsorption Thermodynamics

The activation energy (Ea: kJ mol−1) of MB adsorption on the prepared cryogel could
be estimated as

lnk2 = lnk0 –
Ea
RT

(18)

where k0 is a factor independent of temperature. In general, the sorption process is classified
as physical adsorption when Ea < 40 kJ mol−1 [29,35], film-diffusion controlled if Ea < 16 kJ
mol−1, particle-diffusion controlled if Ea is 16–40 kJ mol−1 [55], and chemical adsorption
when Ea > 40 kJ mol−1 [29,35]. Here, the estimated Ea value of 37.8 kJ mol−1 indicates the
physical adsorption of MB on the prepared cryogel with particle diffusion control, although
the value is very close to chemical adsorption.
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The ∆G◦, ∆H◦, and ∆S◦ values derived from the experimental data are summarized
in Table 3. The positive ∆S◦ value of 23.14 J mol−1 K−1 suggests the disorder degree and
an increase in particle randomness at the cryogel/liquid interface during the adsorption
process [29,35]. The negative ∆G◦ values of −3.72, −3.96, and −4.19 kJ mol−1 obtained at
298, 308, and 318 K, respectively, indicate that MB adsorption on the prepared cryogel is
spontaneous and more favorable at higher temperatures. Moreover, the small values of
∆G◦ in the range from −20 to 0 kJ mol−1 suggest a physical adsorption process, similar
to what is reported for epichlorohydrin cross-linked porous starch [54]. The positive ∆H◦

values indicate physisorption and endothermic process. These results agree well with
the FTIR results and the observed pH, confirming physical adsorption as the dominant
mechanism of MB adsorption on the starch cryogel.

Table 3. Thermodynamic parameters for adsorption of MB on starch cryogel derived from the batch
adsorption data.

∆H◦ (kJ/mol) ∆S◦ (J/(mol.K))
∆G◦ (kJ/mol)

298 K 303 K 318 K

3.17 23.14 −3.72 −3.96 −4.19

3.6. Real Sample Application

The monolithic cryogel was used for MB removal from a wastewater collected from
the local Batik production community enterprise in Phuket, Thailand. The concentration
of MB was reduced from 3.85 to 0.94 mg L−1 after batch adsorption, indicating a removal
efficiency of 75.6%.

Therefore, the starch cryogel could be used as a green adsorbent for MB removal
without the need for any active material and/or filler, although its removal capacity may
be less than other composites (Table 4). The preparation of the cryogel is also simpler
with fewer chemicals required and less waste generated, making it more environmentally
friendly.

Table 4. Comparison of various parameters of starch cryogel and other cryogel materials for MB
removal.

Parameter [18] [19] [20] [6] This Work

Supporting
material

Hydroxypropyl
methylcellulose Alginate Alginate Alginate Starch

Composite Bacterial cellulose
nanocrystals Montmorillonite Graphene oxide Montmorillonite -

Chemical required

Bacterial cellulose
CHCl3,

H2SO4/HCl,
HPMC, Citric acid,

Sodium
hypophosphite

Sodium alginate,
Montmorillonite,

CaCl2, NHS, MES,
Cys, EDC

Sodium alginate,
Graphene oxide,

CaCl2

Sodium alginate,
Montmorillonite,

CaCl2

Rice flour,
Tapioca starch,

Limewater

Preparation Complicate Complicate Easier Easier Easier
Adsorption system Batch Batch Batch Batch Batch

qe (mg/g) - 559.7 g/g 122.26 181.8 34.84
Cost/g most expensive more expensive expensive expensive cheap (0.003 USD)

Real sample x x x x X

HPMC: Hydroxypropyl methylcellulose; NHS: N-Hydroxysuccinimide; MES: 2-(N-Morpholino) ethane sul-
fonic acid hydrate; Cys: Cystamine hydrochloride; EDC: N-(3-Dimethylaminopropyl)-N′-ethyl carbodiimide
hydrochloride.

4. Conclusions

Starch cryogel can be used as a green adsorbent for MB removal with high efficiency
in the batch system (removal efficiency > 80% in synthetic MB solution and >75% in real
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sample). The MB adsorption on the starch cryogel was dependent on pH, initial dye con-
centration, contact time, and temperature. The adsorption experiments can be performed
without pH adjustment (pH 5.1) at ambient temperature to save the cost of chemicals and
electricity required for such a treatment in real applications, while MB adsorption can reach
the equilibrium within 45 min due to the porous network structure with high permeability
and easily accessible adsorption sites of the starch cryogel. The experimental data were
better fitted with the Langmuir model (R2 = 0.9838) indicating a homogeneous surface for
monolayer adsorption of MB, while the kinetics of MB adsorption on the cryogel followed
a pseudo-second-order model. The adsorption process was spontaneous and endothermic
with an activation energy of 37.8 kJ mol−1, indicating a physical process. A starch cryogel
can be used for MB removal without the need for any active material and/or filler, although
its removal capacity (adsorption capacity 34.84 mg g−1) may be less than other composites.
The preparation of the cryogel is also simpler with fewer chemicals required and less waste
generated, making it more environmentally friendly.
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