
Citation: Wang, J.; Du, Y.; Qin, J.;

Wang, L.; Meng, Q.; Li, Z.; Shen, S.Z.

Flexible Thermoelectric Reduced

Graphene Oxide/Ag2S/Methyl

Cellulose Composite Film Prepared

by Screen Printing Process. Polymers

2022, 14, 5437. https://doi.org/

10.3390/polym14245437

Academic Editor: Jie Cai

Received: 20 July 2022

Accepted: 9 October 2022

Published: 12 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

polymers

Article

Flexible Thermoelectric Reduced Graphene Oxide/Ag2S/Methyl
Cellulose Composite Film Prepared by Screen Printing Process
Jianjun Wang 1, Yong Du 1,* , Jie Qin 1, Lei Wang 1, Qiufeng Meng 1, Zhenyu Li 2 and Shirley Z. Shen 3

1 School of Materials Science and Engineering, Shanghai Institute of Technology, 100 Haiquan Road,
Shanghai 201418, China

2 The Center of Functional Materials for Working Fluids of Oil and Gas Field, Sichuan Engineering Technology
Research Center of Basalt Fiber Composites Development and Application, Southwest Petroleum University,
Chengdu 610500, China

3 CSIRO Manufacturing, Private Bag 10, Clayton South, Melbourne 3169, Australia
* Correspondence: ydu@sit.edu.cn

Abstract: As an organic−inorganic thermoelectric composite material, a flexible, reduced graphene
oxide (rGO)/silver sulfide (Ag2S)/methyl cellulose (MC) film was fabricated by a two-step method.
Firstly, a rGO/Ag2S composite powder was prepared by a chemical synthesis method, and then, the
rGO/Ag2S/MC composite film was prepared by a combined screen printing and annealing treatment
process. The rGO and rGO/Ag2S composite powders were evenly dispersed in the rGO/Ag2S/MC
composite films. A power factor of 115 µW m−1 K−2 at 520 K was acquired for the rGO/Ag2S/MC
composite film, which is ~958 times higher than the power factor at 360 K (0.12 µW m−1 K−2), mainly
due to the significant increase in the electrical conductivity of the composite film from 0.006 S/cm to
210.18 S/cm as the test temperature raised from 360 K to 520 K. The as-prepared rGO/Ag2S/MC
composite film has a good flexibility, which shows a huge potential for the application of flexible,
wearable electronics.

Keywords: reduced graphene oxide; silver sulfide; methyl cellulose; thermoelectric composites; flexible

1. Introduction

One of the main issues human beings face in this century is the energy crisis. Tra-
ditional fossil energy, e.g., oil, coal, and natural gas, are still the main sources of energy
used in the world. The consumption of the traditional fossil fuels inevitably produces
solid waste and causes environmental pollution. Furthermore, the traditional fossil fuels
are non-renewable, and, therefore, sustainable energy technologies have attracted more
and more attention [1]. Thermoelectric (TE) materials can convert heat energy and electri-
cal energy into each other [2,3]. TE devices have the virtues of being non-polluting and
maintenance-free as well as having a long service life. TE devices show a great potential
for relieving the energy crisis and environmental pollution [4]. So far, the TE generators
have been used in many areas, such as aerospace [5], industry [6], biomedicine [7], and
wearable electronics [8]. The low transformation efficiency of the TE generators is one of the
main factors that limited their wide application. The materials’ TE properties, determined
by the unitless figure of merit ZT (= S2σT/κ, where T is the absolute temperature and
S, σ, and κ are the Seebeck coefficient, electrical conductivity, and thermal conductivity,
respectively) [9–11], significantly influence the transformation efficiency of TE generators.

Compared with the traditional inorganic Bi−Te-based and Pb−Te-based alloys as TE
materials, which contain toxic and rare elements [12], silver sulfide (Ag2S) is a potential
TE material, due to its constituent elements that are non-toxic and naturally abundant [13].
Ag2S has three common forms: α—Ag2S (monoclinic), β—Ag2S (body-centered cubic), and
γ—Ag2S (face-centered cubic) [14,15]. The α—Ag2S can transform to the β—Ag2S at ~450 K,
and the β—Ag2S can turn to the γ—Ag2S at ~865 K [14,15]. For instance, Zhou et al. [16]
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fabricated an Ag2S bulk material by a spark plasma sintering method, and a ZT = 0.27
at 540 K was acquired. Duan et al. [17] prepared an Ag1.96S bulk material by a sintering
process at a pressure of 2.5 GPa, and a ZT = 0.62 at 560 K was acquired. Wang et al. [18]
fabricated an Ag2S ingot by a melting−annealing method, and a power factor (PF = S2σ) of
500 µW m−1 K−2 at 550 K was acquired.

The reduced graphene oxide (rGO) has the advantages of excellent electrical conduc-
tivity and mechanical properties. [19–21], which is always used as the filling phase for
both inorganic and/or organic matrixes, and, therefore, shows a huge potential for the
application of TE fields [22–26]. For example, Huang et al. [22] prepared a SnSe/rGO
bulk composite through a spark plasma sintering process, and a ZT = 0.91 at 823 K was
acquired for the bulk composite with a 0.3 wt% rGO. Gao et al. [23] prepared a tellurium
nanowires/rGO film by a vacuum filtration method, and a PF = 80 µW m−1 K−2 at
313 K was acquired for the composite with a 50 wt% rGO. Mitra et al. [24] prepared a
rGO/polyaniline composite by an in situ polymerization process, and a ZT = 0.0046 at
room temperature (RT) was obtained for the composite with a 50 wt% rGO. Li et al. [25] fab-
ricated a rGO/poly(3,4-ethylene-dioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS)
composite via an in situ reducing process, and a PF = 32.6 µW m−1 K−2 at RT was obtained
when the rGO content was 3 wt%.

The screen printing process has the virtues of economy, flexibility, strong adaptability,
and easy operation; additionally, the thicknesses of the as-prepared materials can be
adjusted in a wide range [27–30]. The screen printing process is always used for the
preparation of polymer and inorganic/polymer TE materials [31–36]. For instance, in
2014, Wei et al. [31] prepared PEDOT:PSS films by a screen printing process on a paper
substrate, and a PF = 34 µW m−1 K−2 at 473 K was achieved. In 2017, Shin et al. [32]
prepared Bi0.5Sb1.5Te3 (p-type) and Bi2Te2.7Se0.3 (n-type) TE layers on fiber glass fabrics
by a screen printing process using methyl cellulose (MC) as an additive. The printed
layer was cured for 30 min at 250 ◦C–300 ◦C to solidify the sample and burn off the
binders. After being hot pressed at 450 ◦C under 90 MPa for 5 min, a ZT = 0.65 (p-type)
and ZT = 0.81 (n-type) were obtained for the TE layers at RT. In 2021, Liu et al. [33]
fabricated an Ag2Se/polyvinyl pyrrolidone (PVP) composite film by a screen printing and
sintering process on a polyimide substrate, and a PF = 4.3 µW m−1 K−2 at 390 K with the
content ration of Ag2Se:PVP = 30:1 was achieved. In 2022, Amin et al. [34] prepared Bi2Te3
nanowires (NWs)/polyvinylidene fluoride (PVDF) composite films prepared by a combined
screen printing and annealing process on a Kapton substrate, and a PF= 36 µW m−1 K−2

at 225 K with a 10 wt% PVDF was achieved. In 2021, our group [35] prepared flexible
Bi0.4Sb1.6Te3/MC TE composite films on a mixed cellulose esters membrane by a screen
printing process, and a PF= 2.32 µW m−1 K−2 at RT was achieved for the composite film
with the volume fraction of 80% Bi0.4Sb1.6Te3. After being cold pressed, the PF enhanced to
10.07 µW m−1 K−2 at RT. In 2021, our group [36] also fabricated PEDOT:PSS/MC composite
TE films on the PVDF substrate via a screen printing process, and a PF = 2.1 µW m−1 K−2

at 360 K was achieved for the composite film with the 25.67 wt% MC. After being treated
using dimethyl sulfoxide, a PF = 16.2 µW m−1 K−2 at 340 K was obtained for the composite
film. These research results show that MC was a good choice as the polymer matrix for
the fabrication of the flexible TE composites via a screen printing process, and the screen
printing process shows a huge potential for the fabrication of flexible TE materials.

Considering MC has a low thermal conductivity and good flexibility, Ag2S exhibits a
high S, and rGO shows a high σ, in addition to the advantages of the screen printing process,
the preparation of the ternary composite films, using the MC as the matrix and Ag2S and
rGO as fillers via a screen printing process should deliver high TE properties. However,
so far, few works about the flexible rGO/Ag2S/MC composite film have been reported.
Herein, the rGO/Ag2S composite powder was prepared by a chemical synthesis method,
and the rGO/Ag2S/MC composite film was prepared by a combined screen printing and
annealing treatment process. The morphologies of the Ag2S powders and rGO/Ag2S/MC



Polymers 2022, 14, 5437 3 of 9

composite films as well as the TE properties of the rGO/Ag2S/MC composite films in the
temperature range of 360 K to 520 K were studied.

2. Materials and Methods
2.1. Materials

Graphene oxide flakes (GO, size 0.5–5 µm) were bought from XFNANO Materials
Tech. Co., Ltd. (Nanchang, China). A nylon membrane (diameter and pore size were 47 mm
and 0.22 µm, respectively) was obtained from Millipore Co., Ltd. (Rockland, MA, USA).
The sodium sulfide nonahydrate (Na2S·9H2O, 99%+), silver nitrate (AgNO3, ≥99%+),
and methyl cellulose (MC, ≥ 99%+) were bought from Shanghai Titanchem Co., Ltd.
(Shanghai, China).

2.2. Preparation of rGO/Ag2S Composite Powders

The GO flakes were ground into powders in the mortar and then added into the
deionized water. After ultrasonication for 2 h, the Solution A was formed. An appropriate
Na2S·9H2O was added in the Solution A with stirring for 3 h to form a Solution B. An
appropriate AgNO3 was added to the Solution B with stirring for another 3 h, and the
black precipitation was achieved after centrifuging and washing 3 times at 9000× g rpm for
5 min using deionized water. The rGO/Ag2S powders were finally obtained after drying
at 70 ◦C for 12 h under a vacuum. The content of the rGO in the rGO/Ag2S powders was
0.02 wt%, which is the nominal composition. The rGO powders were prepared by the same
process without adding the Na2S·9H2O and AgNO3.

2.3. Preparation of rGO/Ag2S/MC Composite TE Films

An amount of 0.1 g of the MC was added into 2 mL deionized water with stirring
at 60 ◦C, and then 0.9 g rGO/Ag2S powders were added with stirring for 2 h to obtain
the rGO/Ag2S/MC composite slurry. The rGO/Ag2S/MC composite film was prepared
via a screen printing process, and the polyester screen mesh aperture was 200 mesh. The
as-prepared film was dried at 70 ◦C for 12 h under a vacuum. The mass fraction of the
rGO/Ag2S powders in the rGO/Ag2S/MC composite films was 90 wt%.

2.4. Post-Treatment of rGO/Ag2S/MC Composite TE Films

The rGO/Ag2S/MC composite film was cold pressed at 30 MPa for 5 min and then fur-
ther annealed at 290 ◦C for 1 h under Ar protection. After cooling to RT, the rGO/Ag2S/MC
composite film was achieved. Figure 1 shows the procedure for the fabrication and post-
treatment of the rGO/Ag2S/MC composite TE film. Steps 1–2 show the preparation process
of the rGO/Ag2S composite powders and rGO/Ag2S/MC composite films, respectively.
Step 3 shows the post-treatment process of the rGO/Ag2S/MC composite films.

2.5. Characterization and Measurement

The morphologies of the Ag2S powders and rGO/Ag2S/MC composite TE films were
observed by a scanning electron microscope (SEM, FEI Quanta 200 FEG, The Netherlands).
The morphologies of the rGO/Ag2S powders were observed by the SEM (Zeiss Gemini
300, Germany). The morphologies of the Ag2S powders were observed by a transmis-
sion electron microscope (TEM, FEI Talos F200S, USA). The phase composition of the
rGO/Ag2S/MC composite film was characterized by X-ray photoelectron spectroscopy
(XPS) (Thermo Fisher Scientific ESCALAB 250Xi, USA). The S and σ of rGO/Ag2S/MC
composite TE films were measured from 360 K to 520 K by an MRS-3 thin film TE test sys-
tem (Wuhan Giant Instrument Technology Co., Ltd, China). In order to avoid the oxidation
of the Cu contact electrode at a high temperature in the air, the samples were measured in a
low vacuum atmosphere (≤40 Pa).
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Figure 1. Schematic illustration of the fabrication and post-treatment process of the rGO/Ag2S/MC
composite TE film. Step 1: preparation of the rGO/Ag2S composite powders. Step 2: fabrication of
the rGO/Ag2S/MC composite TE films. Step 3: post-treatment of the rGO/Ag2S/MC composite
TE films.

3. Results and Discussion

Figure 2a,b shows the SEM and TEM images of the Ag2S powders. The morphology
of the as-prepared Ag2S powders was uniform, and the size of the Ag2S powders was
~80–200 nm. Figure 3a shows the XPS analysis of the C 1s spectrum of the GO and rGO
powders. The C-O peak occurred at 286.6 eV as the GO was significantly reduced, indicating
that the GO was reduced to rGO [37,38]. Figure 3b shows the SEM image of the rGO/Ag2S
composite powers. It can be clearly seen that the rGO with the size of several micrometers
exists in the rGO/Ag2S composite powers.
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Figure 3. XPS analysis of the C 1s spectrum of the GO and rGO (a); SEM image of the rGO/Ag2S
composite powers (b).

Figure 4a,b shows the SEM surface and fracture surface images of the rGO/Ag2S/MC
composite TE films. It can be seen that after a combined cold-pressing and annealing
treatment, the surface of the rGO/Ag2S/MC composite TE film was smooth, and some
pores existed (see Figure 4a). The fracture surface image indicates the thickness of the
rGO/Ag2S/MC composite film was intact and uniform, with an average thickness of
4.3 µm (see Figure 4b). Figure 4c–f shows the SEM image and corresponding SEM−EDS
mapping of the rGO/Ag2S/MC composite film, which contains C, Ag, and S elements.
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Figure 4. SEM surface image (a) and SEM fracture surface image (b) of the rGO/Ag2S/MC composite
films; SEM image of the rGO/Ag2S/MC composite film (c); SEM−EDS mapping of the C element (d),
S element (e), and Ag element (f) corresponding to (c).

The TE performance of the rGO/Ag2S/MC composite film was tested at a variable
temperature, and the results are shown in Figure 5. When the temperature ≤ 440 K, the σ of
the rGO/Ag2S/MC composite film was < 0.20 S/cm, mainly because MC is an insulating
polymer, and the σ of α—Ag2S is also very low near RT [39]. When the temperature
increased to 480 K, the σ of the rGO/Ag2S/MC composite film reached a maximum value
of 228.78 S/cm, mainly due to the transformation from α—Ag2S to β—Ag2S and the fact
that β-Ag2S has a higher σ [40].
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Figure 5. Temperature dependence of σ and S (a) and PF (b) of the rGO/Ag2S/MC composite film.

With the increased testing temperature from 360 K to 520 K, the absolute value of
the Seebeck coefficient (|S|) of the rGO/Ag2S/MC composite film shows a huge change
tendency. A maximum |S| was 439.74 µV/K at 360 K. When the temperature was ≤440 K,
the |S| of the rGO/Ag2S/MC composite film was > 172 µV/K, and when the temperature
increased to 480 K, the |S| significantly reduced to 66.50 µV/K; this might also be due to
the transformation from α—Ag2S to β—Ag2S [41].

The TE performance of flexible materials is usually expressed by the PF. When the
temperature < 440 K, the PF of the rGO/Ag2S/MC composite film was <0.5 µW m−1 K−2,
mainly due to the low σ (< 0.2 S/cm), although it had a high |S| (> 172 µV/K). When the
temperature > 440 K, the PF of the rGO/Ag2S/MC composite film increased significantly,
and a maximum PF = 115 µW m−1 K−2 at 520 K was obtained. This value (115 µW m−1 K−2

at 520 K) is ~958 times higher than that of the PF at 360 K (0.12 µW m−1 K−2), mainly due
to the significant increase in the σ of the composite film from 0.006 S/cm to 210.18 S/cm as
the temperature rises from 360 K to 520 K. This value is also much higher than that of PE-
DOT:PSS films prepared by a screen printing process on a paper substrate (34 µW m−1 K−2

at 473 K [31]); a Ag2Se/PVP composite film prepared by a screen printing and sintering
process on a polyimide substrate (4.3 µW m−1 K−2 at 390 K [33]); a Bi2Te3 NWs/PVDF
composite film prepared by a combined screen printing and annealing process on a Kapton
substrate (36 µW m−1 K−2 at 225 K) [34]; a Bi0.4Sb1.6Te3/MC TE composite film prepared by
a combined screen printing and cold pressing treatment process on a mixed cellulose esters
membrane substrate (10.07 µW m−1 K−2 at RT [35]); a PEDOT:PSS/MC composite TE film
on the PVDF substrate prepared by a combined screen printing and dimethyl sulfoxide treat-
ment process (16.2 µW m−1 K−2 at 340 K [36]); and a Bi3.2Sb1.8/Epoxy A composite thick
film (14 µW m−1 K−2 at RT [42]). This value is much lower than that of the Bi0.5Sb1.5Te3
(p-type) and Bi2Te2.7Se0.3 (n-type) TE layers on flexible fiber glass fabrics prepared by a
combined screen printing and hot-pressing process (2791 µW m−1 K−2 for p-type and
2077 µW m−1 K−2 for n-type at RT [32]), mainly due to the polymeric binders burning off
and the Bi0.5Sb1.5Te3 and Bi2Te2.7Se0.3 TE layers being more dense after treatment with the
hot-pressing method. Table 1 showed the σ, |S|, and PF of the rGO/Ag2S/MC composite
TE film and those of previously reported TE composite materials.

Figure 6a shows the digital photo of the rGO/Ag2S/MC composite TE film. It can
be seen that the rGO/Ag2S/MC composite TE film can be bent and cut into different
configurations, indicating the rGO/Ag2S/MC composite TE film has a good flexibility.
Figure 6b shows the rGO/Ag2S/MC composite film with a size of 1 × 2 cm2 can lift a
weight of 270 g. This work further indicates that the screen printing technology can be used
for the fabrication of cost-effective, flexible TE materials and generators [43], and, therefore,
has a huge potential for the applications of wearable electronics.
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Table 1. The σ, |S|, and PF of the rGO/Ag2S/MC composite TE film and those of previously
reported TE composite materials [31–36,42].

Author Years Methods Post-
Treatment Materials Type σ a

(S/cm)
|S|

(µV/K)
PF

(µWm−1K−2) Temperature Reference

Wei
et al. 2014 Screen

printing PEDOT: PSS film P 550 25 34 473 K [31]

Shin
et al. 2017 Screen

printing

Sintering
and hot-
pressing

treatment

Bi0.5Sb1.5Te3 P 639 209 2791 RT [32]

Shin
et al. 2017 Screen

printing

Sintering
and hot-
pressing

treatment

Bi2Te2.7Se0.3 N 763 165 2077 RT [32]

Liu
et al. 2021 Screen

printing
Sintering
treatment

Ag2Se/PVP
composites with the

content ratio of
Ag2Se:PVP = 30:1

N ~12.56 58.5 4.3 390 K [33]

Amin
et al. 2022 Screen

printing
Annealing
treatment

Bi2Te3 NWs/PVDF
composite films with a

10 wt% PVDF
N 9.8 192 36 225 K [34]

Niu
et al. 2021 Screen

printing
DMSO

treatment

PEDOT:PSS/MC
composite film with a

25.67 wt% MC
P 316.8 22.6 16.2 340 K [36]

Li
et al. 2021 Screen

printing

Cold-
pressing

treatment

Bi0.4Sb1.6Te3/MC
composite film with 80
vol.% of Bi0.4Sb1.6Te3

powders

P 4 158.5 10.07 RT [35]

Cao
et al. 2016 Screen

printing
Annealing
treatment

Bi3.2Sb1.8/
Epoxy A N ~6.85 143.5 14 ~RT [42]

Wang
et al. 2022 Screen

printing

Cold-
pressing

and
annealing
treatment

rGO/Ag2S/MC
composite film with 90

wt% rGO/Ag2S
composite powders

N 210.18 73.96 115 520 K This work

a Some parameters were estimated according to the data in photograph or table in the References.
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Figure 6. Digital photo of the rGO/Ag2S/MC composite film (a); the size of a 1 × 2 cm2

rGO/Ag2S/MC composite film can lift a weight of 270 g (b).

4. Conclusions

A flexible rGO/Ag2S/MC thermoelectric film was prepared by a combined screen
printing process and annealing treatment. The power factor of the rGO/Ag2S/MC com-
posite TE film increased dramatically from 0.12 µW m−1 K−2 to 115 µW m−1 K−2 as the
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measured temperature increased from 360 K to 520 K, mainly due to the significant in-
crease in the electrical conductivity from 0.006 S/cm to 210.18 S/cm of the composite film
as the temperature increased. A maximum electrical conductivity, absolute value of the
Seebeck coefficient, and power factor of 228.78 S/cm at 480 K, 439.74 µV/K at 360 K, and
115 µW m−1 K−2 at 520 K, respectively, was gained for the rGO/Ag2S/MC thermoelectric
film. The as-prepared rGO/Ag2S/MC composite film shows good flexibility, which can
be bent and cut into different configurations; therefore, it has a huge potential for the
applications of flexible, wearable electronics.
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