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Abstract: To improve the mechanical properties of polyurethane cross-linked poly (ethylene oxide-
co-tetrahydrofuran) (P(E-co-T)) elastomers at room temperature, using poly (ethylene oxide-co-
tetrahydrofuran) and high-molecular-weight polyethylene glycol (PEG) as raw materials and poly-
isocyanate N100 as curing agent, a series of polyurethane cross-linked blended polyether elas-
tomers were prepared by changing the elastomer-curing parameter R value (n(-NCO)/n(-OH)) and
P(E-co-T)/PEG ratio. Equilibrium swelling measurements showed that the chemical cross-linkage of
the elastomers tended to decrease with the decreasing R value, the average molecular weight (Mc)
of the network chain increased, and the density of the network chain (N0) decreased. Wide-angle
X-ray diffraction (WAXD) and differential scanning calorimetry (DSC) tests showed that PEG chain
segments within the elastomers crystallized at room temperature, while the crystallinity increased
with decreasing R value and increasing PEG content. The mechanical property tests showed that the
elongation at break tended to decrease with increasing R value; the tensile strength first increased and
then decreased. At R value 0.9, the elastomer presented good comprehensive mechanical properties.
In addition, the mechanical properties of polyurethane cross-linked P(E-co-T)/PEG blended polyether
elastomer showed an increasing trend with the increase in PEG content when the curing parameter
of 0.9 remained unchanged.

Keywords: polyurethane cross-linked elastomer; polyether blend; crystallinity; mechanical properties

1. Introduction

Polyurethane elastomer is a kind of polymer material made from polyisocyanate
and macromolecular polyol, which has good chemical and mechanical properties and
is widely used in many fields, such as the automobile industry, the printing industry,
the leather industry, and so on [1–3]. Among them, thermoset polyurethane elastomer
is a very important category of polyurethane elastomers, which has the advantages of
good topological structure stability, chemical resistance, wear resistance, and thermal
stability [3–5], and can be applied in the aerospace industry and other industries [6–8].

Until now, the mechanical properties of thermoset polyurethane elastomers have
been focused on the chemical crosslinking density of the elastomer [5,9–11], the chemical
structure of the cross-linking point [5,12,13], and the type of isocyanate curing agent
used [14–16]. Meiorin et al. [5] have used MDI (4,4′-diphenylmethane diisocyanate) as
the curing agent, and glycerol and trimethylolpropane as the cross-linking agents, and
prepared a series of polyurethane elastomers with different crosslinking density, mechanical
properties, and thermal stability. Zhai et al. [12] have prepared a series of polyurethane
crosslinked poly(3,3-bis(azidomethy)oxetane-tetrahydrofuran) elastomers with identical
chemical crosslinking networks and different chemical structures at the crosslinking points,
and the results show that the hydrogen bonding between the crosslinking points has an
important effect on the mechanical properties of the elastomers. Liu et al. [14] have used
isophorone diisocyanate and dicyclohexylmethane 4,4′-diisocyanate as curing agents to
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prepare thermoset polyurethane elastomers, and the results show that the structure of
the isocyanate curing agents has an important influence on the mechanical properties of
the elastomers. Kojio et al. [15] have used TEGDI (1,2-diisocyanatoethoxyethane) and
HDI (1,6-diisocyanatohexane) as curing agents, respectively, and prepared polyurethane
elastomers, and the results show that the elastomers prepared by TEGDI have lower tensile
modulus and higher elongation than HDI due to the flexible ether bond structure in the
TEGDI molecule. Additionally, recent studies have shown that polyurethane crosslinking
reaction kinetics is also an important factor affecting the chemical crosslinking network
and the macroscopic properties of elastomers [17,18].

In addition to using the chemical crosslinking structures to modulate the mechanical
properties of polyurethane elastomers, using the crystallization behavior of macromolec-
ular soft segments is also an important method for preparing elastomers with excellent
mechanical properties [19–21]. Eceiza et al. [22] have reported that the strain-induced
crystallization of polycarbonate chain segments can strengthen the physical crosslinking
interaction between the chains and improve the mechanical properties of the elastomer.
Anokhin et al. [23] blended PCL (poly-ε-caprolactone) and PBA (poly(1,4-butylene adi-
pate)), whose crystallization behavior is different from PCL, and obtained a series of
polyurethane chain-extended PCL/PBA elastomers with different mechanical properties.
Given that the crystallinity is related to elastomer thermal history, Gorbunova et al. [24]
subjected polyurethane chain-extended PBA elastomers to different heat treatments to
modulate the crystallinity of PBA segments within the elastomers and achieved elastomers
with different mechanical properties. However, due to the different thermodynamic prop-
erties of macromolecule chains, the blended parts within thermoplastic elastomers would
show some de-mixing phenomena during long-term storage because of molecular chain
slow creep, causing the mechanical properties to change [25–27]. In contrast, within a
thermoset elastomer, the molecular chains are fixed into a crosslinked network structure
by a crosslinking agent, and even if the resultant material tends toward de-mixing ther-
modynamically, the de-mixing phenomena would not occur. In combination with the soft
segment crystallization mechanism of thermoplastic elastomers and the thermal stability
advantage of thermoset elastomers, the mechanical properties of thermoset elastomers
could be further improved.

Poly(ethylene oxide-co-tetrahydrofuran) is amorphous at room temperature, and
it is difficult to form effective crystallization physical crosslinking [28]; large molecule
polyethylene glycol has a regular molecular chain structure, is prone to crystallizing,
and forms physical crosslinks [29]. Given that P(E-co-T) and PEG have similar chemical
composition of chain segments and similar solubility parameters, they have good mutual
solubility [30]. In this paper, polyurethane cross-linked elastomers were prepared by
blending P(E-co-T) and PEG and the influence mechanism of the elastomer crystallization
behaviors on the mechanical properties was investigated in detail (Figure 1).Polymers 2022, 14, 5419 3 of 16 
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S1-3 0.90 17.6 2.4 1.582 0.001 
S1-4 1.00 17.6 2.4 1.757 0.001 
S1-5 1.10 17.6 2.4 1.933 0.001 
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2. Materials and Methods
2.1. Materials

Hydroxyl terminated poly (ethylene oxide-co-tetrahydrofuran) (P(E-co-T), Mn
4038 g mol−1, hydroxyl value 0.467 mmol g−1) and polyisocyanate cross-linker N100
(Mn 741 g mol−1, isocyanate concentration 5.36 mmol g−1) were provided by Luoyang
Liming Chemical Research Institute. Polyethylene glycol (PEG, Mn 4000 g mol−1, hydroxyl
value 0.5 mmol g−1,) was purchased from Aladdin Chemical Company. Curing catalyst
ditin butyl dilaurate (T12) was purchased from Maclin Chemical Company.

2.2. Preparation of Elastomers

Fixing PEG content at 12%, the formulations of blended polyether elastomers with dif-
ferent curing parameter R values (the molar ratios of the isocyanate group to the hydroxyl
group, n(-NCO)/n(-OH)) are listed in Table 1. According to Table 1, all components were
uniformly mixed at 65 ◦C, poured into Teflon molds, and degassed in a vacuum. The resul-
tant mixtures were cured at 65 ◦C until the isocyanate absorption peak at 2260 cm−1 disap-
peared by FTIR analysis. Thus, a series of polyurethane cross-linked blended polyether
elastomers S1-1~S1-5 were obtained.

Table 1. Formulation composition of elastomers with different R values.

Samples R Value P(E-co-T) (g) PEG (g) N100 (g) T12 (g)

S1-1 0.80 17.6 2.4 1.409 0.001
S1-2 0.85 17.6 2.4 1.494 0.001
S1-3 0.90 17.6 2.4 1.582 0.001
S1-4 1.00 17.6 2.4 1.757 0.001
S1-5 1.10 17.6 2.4 1.933 0.001

Fixing R value at 0.9, the elastomer formulations with different PEG contents are listed
in Table 2. Similarly, as shown in Table 2, all components were uniformly mixed at 65 ◦C,
poured into Teflon molds, and degassed in a vacuum. The mixtures were cured at 65 ◦C
until the isocyanate absorption peak at 2260 cm−1 disappeared by FTIR analysis. Thus, a
series of polyurethane cross-linked blended polyether elastomers S2-1~S2-4 were obtained.

Table 2. Formulation composition of elastomers with different PEG contents.

Samples PEG (wt%) P(E-co-T) (g) PEG (g) N100 (g) T12 (g)

S2-1 8 18.4 1.6 1.577 0.001
S2-2 12 17.6 2.4 1.582 0.001
S2-3 16 16.8 3.2 1.586 0.001
S2-4 20 16.0 4.0 1.590 0.001

2.3. Characterization
2.3.1. FTIR

Elastomer samples were tested at 20 ◦C by using a Nicolet 6700 infrared spectrom-
eter (Thermo) with an attenuated total reflection (ATR) assembly for FTIR investigation.
The tests were carried out with a resolution of 2 cm−1, 32 scans, and a scan range of
4000–500 cm−1.

2.3.2. Density Test

The densities of elastomer samples were tested by AccuPyc II 1345 true density
analyzer (Micromeritics). Nitrogen was used as a test gas, and the test temperature was
20 ◦C. Before testing, nitrogen was purged 10 times. For each sample, the number of tests
was 10 times, and the average of the test results was taken as the density of the sample.
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2.3.3. Equilibrium Swelling Measurement

Equilibrium swelling measurements were performed in the solvent toluene at 20 ◦C.
The elastomer sample (about 6 × 5 × 3 mm3, ~0.1 g) was immersed in toluene, and the
sample was taken out at intervals, the residual solvent on the surface was swept and
weighed, and the sample was put back into the toluene solvent. The above-mentioned
steps were repeated until the mass difference between two consecutive steps was less than
0.001 g. The equilibrium volume-swelling ratio (qv) of the elastomer was calculated using
Equation (1) [31], where w0 is the initial mass of the sample, w is the mass after swelling,
ρ1 is the solvent density, and ρ2 is the elastomer density.

qv = 1 +
(

w
w0
− 1
)

ρ2

ρ1
(1)

2.3.4. DSC Test

Elastomer samples were tested by using F204 differential scanning calorimeter (DSC,
Netzsch). The instrument was temperature-corrected using indium standard
(Tm = 156.6 ◦C). All tests were conducted under dry nitrogen atmosphere. Samples of
5–10 mg were first heated to 100 ◦C at a heating rate of 30 ◦C min−1, then held for 5 min to
eliminate the thermal history. Then the samples were cooled to −50 ◦C at a cooling rate of
5 ◦C min−1 using liquid nitrogen. After that, the samples were heated again to 100 ◦C at a
heating rate of 10 ◦C min−1, and the data of the secondary heating were recorded.

2.3.5. Wide-Angle X-ray Diffraction Test

Wide-angle X-ray diffraction (WAXD) was performed on elastomer samples by using
a MiniFlex 600 X-ray diffractometer (Gigaku) with Ni-filtered Cu Kα radiation (40 kV,
40 mA). The test was conducted at 20 ◦C with a scanning speed of 2◦ min−1, and the 2θ
angle ranged from 5◦ to 40◦.

2.3.6. Mechanical Properties Test

Elastomer samples were tested by using a CMT4104 tensile tester (MTS). Elastomer
samples were cut into dumbbell-shaped specimens (central portion 4 mm × 3 mm, gauge
length 15 mm). The test temperature was 20 ◦C and the tensile rate was 20 mm min−1.
The stress–strain curves were recorded with a minimum of three valid values for each
group sample.

3. Result and Discussion
3.1. FT-IR of Elastomers with Different R Values

The infrared spectra of elastomers S1-1~S1-5, which were prepared according to
Table 1, are shown in Figure 2. It can be seen that there existed some typical group absorp-
tion peaks, among which: ~2900 cm−1 absorption peak corresponds to the C-H stretching
vibration of -CH2- on the polyether chain of P(E-co-T) and PEG, and the absorption peak at
~1100 cm−1 is the stretching vibration of the ether bonds. All infrared spectra of elastomers
S1-1~1–5 had no obvious absorption peaks at ~2260 cm−1, indicating that the isocyanate
curing agent had completely reacted with the terminal hydroxyl of the blended polyether
P(E-co-T)/PEG, having formed the carbamate structure. As a result, all infrared absorption
spectra of elastomer S1-1~1–5 gave a characteristic peak at ~1700 cm−1 that was attributed
to the formed carbamate group.
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3.2. Chemical Crosslinking Networks of Elastomers with Different R Values

The chemical crosslinking network is one of the most important factors affecting
elastomer mechanical properties. Elastomers S1-1~S1-5 were tested for swelling behaviors,
and the relationship of equilibrium volume-swelling ratio (qv) dependent on R value
is shown in Figure 3. Obviously, the equilibrium volume–swelling ratio of elastomers
S1-1~S1-5 decreased monotonically with the increasing R value. Based on the Flory–
Huggins theory [32], the apparent average molecular weight (Mc) of the cross-linked
elastomer network chain and the network chain density (N0) can be estimated using
Equations (2)–(6) [28,31], where ρ is the density of the elastomer, g cm−3; V is the molar
volume of the solvent toluene, 106.4 mL mol−1; v2m is the volume fraction of the elastomer;
χ1 is the Flory–Huggins interaction parameter between elastomer and solvent, which
was obtained using the Bristow–Watson equation (Equation (4)) [33]; the solvent toluene
solubility parameter (δs) is 18.241 (J cm−3)1/2 [30]; the PEG solubility parameter (δPEG) is
18.473 (J cm−3)1/2 [34]; the P(E-co-T) solubility parameter (δP(E-co-T)) is 18.357 (J cm−3)1/2;
the solubility parameter of P(E-co-T)/PEG blended polyether elastomer (δP) is obtained by
weighting PEG and P(E-co-T) solubility parameters according to Equation (5), where p is
the mass fraction of PEG in P(E-co-T)/PEG blended polyether.

Mc = −Vρ
(

v1/3
2m −

v2m

2

)
/
[
ln(1− v2m) + v2m + χ1v2

2m

]
(2)

v2m =
1
qv

(3)

χ1 = 0.34 +
V
RT
(
δp − δs

)2 (4)

δp = p× δPEG + (1− p)× δPET (5)

N0 =
ρ

Mc
(6)
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The network structure parameters of elastomer S1-1~S1-5 are listed in Table 3. With the
increase in R value, the apparent average molecular weight Mc of the elastomer S1-1~S1-5
decreased monotonically from 16416 g mol−1 to 3086 g mol−1, and the network chain
density N0 increased monotonically from 0.0645 mmol cm−3 to 0.3437 mmol cm−3. This
was because, under the condition of higher R value, the terminal hydroxyl groups of the
blended polyether and the curing agent isocyanate had completely reacted; meanwhile,
the excessive isocyanate group could further react with the resultant carbamate group to
form a urea group. The elastomer network formed more chemical cross-linking points and
the network chains presented lower average molecular weight Mc and higher network
chain density N0. At lower R value, the terminal hydroxyl group of blended polyether
could not react completely with the isocyanate curing agent, so that there existed a lot of
suspended chains within the elastomer network. Consequently, the elastomer exhibited a
higher apparent average molecular weight Mc and a lower network chain density N0 [12].

Table 3. Network structure parameters of elastomers with different R values.

Samples ρ (g cm−3) δp
(
J·cm−3) 1

2 χ1 qv v2m Mc (g mol−1) N0 (mmol cm−3)

S1-1 1.0594 18.371 0.341 8.2806 0.1208 16,416 0.0645
S1-2 1.0609 18.371 0.341 6.1976 0.1614 9087 0.1168
S1-3 1.0623 18.371 0.341 5.5454 0.1803 7178 0.1478
S1-4 1.0577 18.371 0.341 4.5106 0.2217 4549 0.2325
S1-5 1.0604 18.371 0.341 3.8050 0.2628 3086 0.3437

3.3. Aggregation of Elastomers with Different R Values

In addition to the chemical crosslinking, a physical crosslinking of the elastomers is
also one of the important factors affecting the macro-mechanical properties. Figure 4 shows
the wide-angle X-ray diffraction spectra of elastomers S1-1~S1-5 at room temperature. It
can be seen that elastomers S1-1~S1-5 showed different X-ray diffraction characteristics.
Elastomers S1-5 just showed a halo peak without sharp diffraction spikes. In contrast, the
diffraction spectra of elastomers S1-1~S1-4 showed obvious diffraction spikes at 2θ angles
19.4◦ and 23.4◦; moreover, the intensity of diffraction spikes gradually decreased with the
increasing curing parameter R value. Given that the characteristic diffraction spikes of
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polytetrahydrofuran crystals appeared at 2θ angle 19.8◦~20.0◦ and 24.1◦~24.6◦ [35], while
PEG crystals appeared at 2θ angle 19.2◦~19.5◦ and 23.4◦~23.6◦ [36], at room temperature,
the diffraction spikes presented in elastomers S1-1~S1-4 should originate from the PEG
crystalline structure.
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In addition, the thermal scans of elastomers S1-1~S1-5 were performed using DSC,
and the secondary heating DSC curves are shown in Figure 5. It can be seen that two
obvious endothermic peaks appeared during the secondary heating process for all samples.
Given that the crystalline melting point of tetrahydrofuran micro-blocks occurred in the
low-temperature region [9], while the crystalline melting point of polyethylene glycol
occurred in the high temperature region [37], combined with the X-ray diffraction spectra
of elastomer S1-1~S1-5 at room temperature (Figure 4), it can be inferred that, in Figure 5 the
endothermic peak in the low-temperature region originated from the crystalline melting of
the tetrahydrofuran micro-block on the P(E-co-T) chains [28], while the endothermic peak in
the high-temperature region originated from the crystalline melting of polyethylene glycol.

Comparing the crystalline melt peaks in the high-temperature region, it was also
found that the endothermic melting peaks of elastomers S1-3, S1-4, and S1-5, which were
prepared by using higher curing parameter R values, was characteristic of a significantly
wide distribution. Considering the high R value causing high network cross-linked density,
the movement of PEG segments within the elastomers was limited, making them difficult
to completely form thermodynamically stable aggregated structures. In the elastomer
matrices, both PEG microcrystals and PEG structural intact crystal grains coexisted [37–40].
During heating, the PEG microcrystals first melted, followed by the structural intact
crystal grains at higher temperatures, so the elastomers gave a wider distribution of
endothermic peaks in the high-temperature region. As the R value decreased, the restriction
of chain segment movement weakened, and PEG segment mobility increased, forming
more thermodynamically stable and structurally intact crystal grains. Correspondingly, the
PEG crystalline melting peak became narrower and shifted toward higher temperatures. In
contrast, the microcrystalline structure formed by tetrahydrofuran micro-blocks exhibited
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only a single melting peak at low temperature. This indicates that, at room temperature,
elastomers S1-1~S1-5 were all semi-crystalline aggregations caused by PEG crystallization.
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3.4. Crystallinity of Elastomers with Different R Values

To further reveal the effect of crystallization physical crosslinking on the mechanical
properties of elastomers S1-1~S1-5, the crystallinities have been quantitatively analyzed.
As can be seen from Figure 5, the crystallization enthalpies of tetrahydrofuran micro-
blocks and PEG gradually decreased with the increasing R value. The crystallization
enthalpy of tetrahydrofuran micro-blocks decreased from 17.33 J g−1 for elastomer S 1-1 at
R value of 0.80 to 2.38 J g−1 for elastomer S1-5 at R value of 1.10, while the crystallization
enthalpy of PEG decreased from 6.70 J g−1 to 3.61 J g−1. Based on that polytetrahydrofuran
crystallization enthalpy ∆H100% is 172.0 J g−1 [41], PEG crystallization enthalpy ∆H100%
156.98 J g−1 [38], for P(E-co-T)/PEG blended polyether elastomers, the crystallinities of
tetrahydrofuran micro-blocks and PEG can be estimated using Equation (7), where ∆Hm is
the melting enthalpy per unit mass of the elastomer.

Xc =
∆Hm

∆H100%
× 100% (7)

The crystallinities of elastomers S1-1~S1-5 are listed in Table 4. It can be seen that,
within the P(E-co-T)/PEG elastomer, tetrahydrofuran micro-block crystallinity decreased
from 10.08% for elastomer S1-1 at R value 0.80 to 1.38% for elastomer S1-5 at R value of
1.10, and PEG crystallinity decreased from 4.27% to 2.30%. The crystallinities of elastomers
S1-1~S1-5 decreased with the increase of the curing parameter R value. As is consistent
with XRD analysis. Considering that the crystalline melting peak of tetrahydrofuran micro-
block is far lower than room temperature, while the melting peak of PEG is higher than
room temperature, it can be inferred that PEG crystallinity, which dominates elastomer
physical crosslinking degree at room temperature, would have a significant influence on the
mechanical properties of P(E-co-T)/PEG blended polyether elastomer at room temperature.
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Table 4. Melting enthalpy and crystallinity of elastomers with different R value.

Samples T1 (◦C) ∆H1 (J/g) Xc (%) T2 (◦C) ∆H2 (J/g) Xc (%)

S1-1 −11.5 17.33 10.08 42.3 6.70 4.27
S1-2 −13.3 15.72 9.14 41.4 5.26 3.35
S1-3 −16.6 14.97 8.70 35.1 5.07 3.23
S1-4 −18.7 5.36 3.12 29.1 4.63 2.95
S1-5 −20.6 2.38 1.38 30.6 3.61 2.30

3.5. Mechanical Properties of Elastomers with Different R Values

At room temperature, the typical stress–strain curves of P(E-co-T)/PEG blended
polyether elastomer S1-1~S1-5 are shown in Figure 6. The tensile moduli (E) of elastomer
S1-1~S1-5 gradually increase with the increase in R value, indicating that, under the
condition that P(E-co-T) and PEG content remain unchanged, the elastomer tensile modulus
mainly depended on the elastomer curing parameters. Higher curing parameters and
higher chemical crosslinking density are favorable to the elastomer tensile modulus. As to
the elongation at break (εb) and the tensile strength at break (σb) of the elastomers, the εb
gradually decreased as the curing parameter increased, while the σb first increased and
then decreased.
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Table 5 lists the mechanical property results of elastomers S1-1~S1-5. Clearly, elas-
tomers S1-2 and S1-3 had similar tensile strength at break as elastomer S1-5, but had higher
elongation. Combined with the crystallinity of the elastomers at room temperature (Figure 4
and Table 4), it can be inferred that, within elastomer S1-2 and S1-3 matrices, the physical
crosslinking structure formed by PEG crystallization compensated for the adverse effect of
the lower curing parameter R value on the mechanical properties of the elastomers, making
elastomers S1-2 and S1-3 simultaneously give excellent elongation at break and tensile
strength at break.
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Table 5. Mechanical properties of elastomers with different R values.

Samples R Value εb (%) σb (MPa) E (MPa)

S1-1 0.80

630 0.738 0.356
617 0.738 0.348
588 0.727 0.362

612 ± 5 0.73 ± 0.01 0.36 ± 0.01

S1-2 0.85

408 0.972 0.663
448 0.972 0.675
496 1.018 0.614

451 ± 7 0.99 ± 0.03 0.65 ± 0.03

S1-3 0.90

312 0.980 0.809
367 1.096 0.863
370 1.111 0.880

349 ± 6 1.06 ± 0.07 0.85 ± 0.03

S1-4 1.00

169 1.173 1.411
177 1.185 1.376
185 1.258 1.453

177 ± 3 1.20 ± 0.04 1.41 ± 0.03

S1-5 1.10

81 0.980 1.700
88 1.018 1.616
100 1.101 1.717

90 ± 3 1.03 ± 0.06 1.68 ± 0.05

Mechanical properties are a macroscopic manifestation of elastomer microstructure
characteristics. To confirm the micro-aggregation thermal stability of elastomers S1-1~S1-5,
the elastomers were heated and aged at 60 ◦C for 7 days, and then the mechanical prop-
erties were tested at room temperature. Table 6 lists the mechanical property results of
the elastomers after aging. Comparing with Table 5, there was no obvious difference
in mechanical properties of the elastomers before and after aging. This suggests that
the micro-aggregation of elastomers S1-1~S1-5 had not noticeably changed after long-
term high-temperature aging, and the micro-aggregation of polyurethane crosslinked
P(E-co-T)/PEG elastomer had good thermal stability.

Table 6. Mechanical properties of aged elastomers with different R values.

Sample R Value εb (%) σb (MPa) E (MPa)

S1-1 0.80

635 0.730 0.350
622 0.731 0.346
614 0.721 0.339

624 ± 4 0.73 ± 0.01 0.35 ± 0.01

S1-2 0.85

459 0.988 0.664
497 0.963 0.657
489 0.964 0.652

482 ± 5 0.97 ± 0.02 0.66 ± 0.01

S1-3 0.90

331 0.999 0.787
359 0.981 0.851
376 1.055 0.780

355 ± 5 1.01 ± 0.03 0.81 ± 0.04

S1-4 1.00

180 1.214 1.411
192 1.198 1.379
176 1.186 1.396

183 ± 3 1.20 ± 0.01 1.40 ± 0.02

S1-5 1.10

114 1.034 1.680
97 0.991 1.608
86 1.011 1.721

99 ± 3 1.01 ± 0.02 1.66 ± 0.05
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3.6. Aggregation of Elastomers with Different PEG Contents

To further explore the effect of PEG content on the mechanical properties of
P(E-co-T)/PEG blended polyether elastomers, fixing the curing parameter at 0.9 and
varying the PEG content according to Table 2, elastomers S2-1~S2-4 with different PEG
contents were prepared and analyzed by using X-ray diffraction. Figure 7 shows the X-ray
diffraction spectra of elastomer S2-1~S2-4 at room temperature. Obviously, there emerged
noticeable diffraction spikes around 2θ angle 19.2◦ and 23.2◦, and the intensity gradually
increased as PEG content increased from 8% of S2-1 to 20% of S2-4. Referring to Figure 4, it
can be inferred that the diffraction spikes originated from the crystalline structure of PEG
segments within P(E-co-T)/PEG blended polyether elastomer.
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3.7. Crystallinity of Elastomers with Different PEG Contents

The secondary heating DSC curves of elastomers S2-1~S2-4 are shown in Figure 8. All
elastomer samples presented two obvious endothermic peaks. Similarly, the endothermic
peak below room temperature is attributed to the crystalline melting of the tetrahydrofu-
ran micro-block on the P(E-co-T) chain, while the one above room temperature was the
crystalline melting of PEG. As in Figure 5, both crystalline melting peak temperatures
showed an overall trend toward higher temperatures with increasing PEG content. This
indicates that more structural intact crystal grains were formed within P(E-co-T)/PEG
blended polyether elastomer as the PEG content increased, leading to a shift of the crys-
talline melting peak toward higher temperatures. Additionally, within P(E-co-T)/PEG
blended polyether elastomer matrices, increasing PEG content contributed to the integrity
of the crystalline structure.
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Based on the melting enthalpy of Figure 8, the crystallinity of P(E-co-T)/PEG elas-
tomers S2-1 to S2-4, which were calculated using Equation (7), are shown in Table 7. It can
be seen that the crystallinity of tetrahydrofuran micro-block was in the range of 8.10–8.76%
with the increase in PEG content; in contrast, the crystallinity of PEG rose from 1.58%
of elastomer S2-1 to 6.30% of elastomer S2-4, having increased by ~300%. This indicates
that, within P(E-co-T)/PEG blended polyether elastomers, fixing curing parameter R value,
increasing PEG content could significantly enhance the physical crosslinking degree of the
elastomer at room temperature.

Table 7. Melting enthalpy and crystallinity of elastomers with different PEG contents.

Samples T1 (◦C) ∆H1 (J/g) Xc (%) T2 (◦C) ∆H2 (J/g) Xc (%)

S2-1 −15.1 13.94 8.10 34.4 2.48 1.58
S2-2 −16.6 14.97 8.70 35.1 5.07 3.23
S2-3 −12.8 15.07 8.76 45.7 8.58 5.47
S2-4 −8.9 14.07 8.18 45.3 9.89 6.30

3.8. Mechanical Properties of Elastomers with Different PEG Contents

The mechanical properties of elastomers S2-1~S2-4 were tested at room temperature,
and the typical stress–strain curves are shown in Figure 9. At the beginning of the straining,
the stress–strain curves of elastomers S2-1~S2-4 all exhibited a typical tensile behavior
of amorphous polymer elastomers, and the tensile modulus gradually decreased with
increasing strain. In addition, combined with Table 7, it can be inferred that high crys-
tallinity increased the physical crosslinking density of the elastomers. This made the tensile
modulus of elastomers S2-1~S2-4 gradually increase with the increase in PEG content.

At the late strain stage, the tensile modulus of elastomer S2-4 showed a significant
upturn trend with increasing strain. This indicates that, within P(E-co-T)/PEG blended
polyether elastomers, when PEG content increased to 20%, the elastomer network chains ori-
entated and further crystallized during the strain process, increasing the physical crosslink-
ing density and causing the modulus increase. At the same time, the oriented crystallization
allowed the network chains to further relax, making elastomers S2-4 have a higher strain
and tensile strength at break.
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Table 8 lists the mechanical property results of elastomers S2-1~S2-4. The tensile
modulus increased from 0.78 MPa for elastomer S2-1 to 0.93 MPa for elastomer S2-4, and
the elongation at break increased from 237% for elastomer S2-1 to 443% for elastomer S2-4,
and the tensile strength at break increased from 0.80 MPa for elastomer S2-1 to 1.49 MPa
for elastomer S2-4. The initial tensile modulus, elongation at break, and tensile strength
all gradually increased with the increase in PEG content. The introduction of crystal-
lizable PEG to polyurethane cross-linked P(E-co-T) elastomers could change the micro-
aggregation structure of the elastomers at room-temperature, and significantly improve the
mechanical properties.

Table 8. Mechanical properties of elastomers with different PEG contents.

Samples ε (%) σ (MPa) E (MPa)

S2-1

264 0.872 0.820
224 0.771 0.777
223 0.746 0.735

237 ± 5 0.80 ± 0.07 0.78 ± 0.04

S2-2

312 0.980 0.809
367 1.096 0.863
370 1.111 0.880

331 ± 7 0.84 ± 0.02 1.03 ± 0.03

S2-3

339 1.170 0.962
349 1.157 0.931
394 1.259 0.881

361 ± 5 1.20 ± 0.06 0.92 ± 0.04

S2-4

427 1.428 0.918
449 1.467 0.921
454 1.563 0.943

443 ± 4 1.49 ± 0.06 0.93 ± 0.01
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4. Conclusions

The polyurethane cross-linked P(E-co-T)/PEG blended polyether elastomers with
different curing parameter R values and different PEG contents were prepared by us-
ing N100 as the curing agent. When PEG content was 12%, polyurethane cross-linked
P(E-co-T)/PEG blended polyether elastomer presented a semi-crystalline structure at room
temperature, and the crystallinity gradually increased with the decrease in curing pa-
rameter R value. At R value 0.9, the elastomer exhibited both good tensile strength and
elongation at break. Fixing the curing parameter R value at 0.9, all the elastomer tensile
strength, tensile modulus, and elongation at break gradually increased with increasing
PEG content. Introducing crystallizable PEG into polyurethane cross-linked P(E-co-T)
elastomers could effectively adjust elastomer micro-aggregation at room temperature and
improve the elastomer mechanical properties.

Apart from utilizing prepolymer molecular weight, curing agent type, and curing
parameters to regulate the mechanical properties of thermoset elastomers, introducing
crystallizable prepolymers and using the crystallization physical crosslinking are important
ways to regulate the mechanical properties of amorphous thermoset elastomers.
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