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Abstract: A Density Functional Theory is employed to study depletion interactions between nanopar-
ticles mediated by semiflexible polymers. The four key parameters are the chain contour length and
the persistence length of the polymeric depletant, its radius of gyration, and the nanoparticle radius.
In the Density Functional Theory calculation of the depletion interaction between the nanoparticles
mediated by semiflexible polymers, the polymer gyration radius is kept constant by varying the
contour length and the persistence length simultaneously. This makes it possible to study the effect
of the chain stiffness on the depletion potential of mean force between the nanoparticles for a given
depletant size. It is found that the depletion attraction becomes stronger for stiffer polymer chains
and larger colloids. The depletion potential of mean force is used as input to compute the phase
diagram for an effective one-component colloidal system.
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1. Introduction

Spherical colloidal particles dispersed in a solution of nonadsorbing polymers play an
important role in various systems of biological and technological interest. Accordingly, a de-
tailed understanding of the phase behavior and stability of such dispersions is of primary
importance for the development of various industrial applications. As a result, colloidal
dispersions in polymer solutions have been actively studied both experimentally [1,2]
and theoretically [3–6]. Despite these extensive studies, several aspects of this problem
have remained relatively unexplored. First, most theoretical studies have been limited
to fully flexible polymers. At the same time, all realistic polymeric systems involved in
numerous practical applications are characterized by some degree of the chain stiffness.
Accordingly, the first important research question to be addressed in the present study
concerns the effect of the polymer stiffness on the depletion interaction between the col-
loids. Second, to the best of our knowledge, a direct link between microscopic depletion
interaction and phase diagram has not been established yet for semiflexible depletants.
Hence, the second research question deals with establishing such a connection by using
the depletion interaction calculated from a microscopic model as input for computing
a comprehensive colloid–polymer phase diagram. The importance of these two related
research questions stems from the fact that a reliable theoretical approach for studying
realistic colloid–polymer mixtures and their phase behavior would be of great utility for
analyzing the existing experimental data and making suggestions for future experiments.
In order to further highlight the novel aspects of the present work and put it in broader
context, we next briefly review the existing literature in this field.

From a microscopic perspective, the polymer-induced depletion attraction between
two colloidal particles approaching each other in a polymer solution arises from the fact
that the chains are expelled from the region between the two colloidal spheres into the
bulk due to the loss of configurational entropy by the chains in the region between the
spheres. The resulting unbalanced pressure exerted by the polymer chains on the outward
surfaces of the two colloids produces an effective depletion attraction between the spheres,
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which is quantified by the polymer-mediated potential of mean force (PMF) between the
two colloids. The knowledge of this PMF makes it possible to treat the colloidal dispersion
as an effective one-component system and to construct the corresponding phase diagram
describing the stability of the dispersion against flocculation [7,8].

The early pioneering work of Asakura and Oosawa [9,10] developed a theory for the
polymer-mediated PMF in colloid–polymer suspensions by treating colloids as hard spheres
and polymers as spheres that are fully penetrable to each other but not to the colloids.
The resulting PMF produced by the Asakura–Oosawa model is always attractive, with the
strength of attraction increasing monotonically with increasing polymer concentration.
Following this early work, a large variety of theoretical approaches have been developed
to treat colloidal interactions in polymer solutions, including scaling arguments [11], self-
consistent field theory [12], and the adsorption method [4] based on the superposition
approximation of one-particle depletion layers. In addition, several authors have used the
polymer reference interaction site model [13] within the framework of the integral equation
theory to compute the PMF in colloid–polymer solutions [14–19].

As already mentioned, the vast majority of the aforementioned theoretical studies are
limited to fully flexible polymer chains. At the same time, numerous polymeric molecules
employed in various practical applications are characterized by a certain degree of stiffness,
which is quantified by the chain persistence length [20]. The latter parameter strongly
affects the thickness of the polymer depletion layer around a colloid [21], and therefore
the polymer-mediated PMF between the colloids [21]. However, both experimental [22,23]
and theoretical [16,21,24,25] studies of the chain stiffness effects on the polymer-mediated
PMF are still relatively scarce. Among theoretical methods applied to this problem, one
can mention integral equation theory [16], self-consistent field theory [21], and density
functional theory (DFT) [24,25]. While the former two methods were applied to spherical
colloids, the latter approach was limited to the studies of polymer-mediated interactions
between flat walls. Accordingly, it would be of interest to apply the DFT formalism to
compute the PMF between spherical colloids mediated by semiflexible polymers. The first
goal of the present study is to perform such a calculation, with a particular focus on the
case when the polymer radius of gyration is comparable to the colloid radius.

As mentioned earlier, the fundamental importance of the polymer-mediated PMF
is due to the fact that it allows one to map the colloid–polymer binary mixture onto
an effective one-component colloidal system. Once this goal is accomplished, the phase
diagram of this one-component system can be computed using standard methods [3]. In the
earlier self-consistent field theory study [21] of a binary mixture of spherical colloids and
semiflexible polymers, the polymer-induced PMF was employed to compute the second
virial coefficient for the colloids, which can be used to characterize the stability of the
colloidal dispersion. However, the comprehensive phase diagram of the dispersion has
not been obtained directly from he PMF, but rather from the Free Volume Theory [26].
Accordingly, the second goal of the present work is to compute the phase diagram directly
from the PMF generated by the DFT approach.

The outline of the remainder of the paper is as follows. In Section 2, we specify our
microscopic model; in Section 3, we outline the DFT formalism employed to calculate the
polymer-mediated PMF between colloids. In Section 4, we present our approach to obtain
the phase diagrams. Section 5 presents our results, and Section 6 concludes the paper.

2. Microscopic Model

We consider hard-sphere colloidal particles with radius Rc embedded in a solution of
semiflexible polymer chains composed of N tangent hard sphere beads with diameter σ,
i.e., all the bond lengths are fixed at lb = σ (σ will be used as the length unit throughout
this work). In order to study the effect of chain flexibility on the brush structural properties,
we employ a bond-bending potential [27,28]:

Vbend(θijk) = εb[1− cos(θijk)] = εb[1−
si · si+1

σ2 ], (1)
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where θijk is the bond angle formed between the two subsequent vectors si and si+1 along
the bonds connecting monomers i, j = i + 1 and j, k = i + 2, i.e., si = ri+1 − ri and
si+1 = ri+2 − ri+1. The energy parameter εb then controls the persistence length lp, which
is defined as [29]

lp/lb = −1/ ln〈cos θijk〉. (2)

For semiflexible chains with εb ≥ 2, one has the persistence length lp/lb ≈ βεb = κ,
where β = 1/kBT (T is the temperature), and κ is the dimensionless stiffness parame-
ter [27,28].

Both colloid–colloid (vcc(r)) and monomer–monomer (vmm(r)) excluded volume in-
teractions are of the hard-sphere type: vcc(r) = ∞ if r < 2Rc and zero otherwise, and
vmm(r) = ∞ if r < σ and zero otherwise. The monomer–colloid interaction is modeled as
a sum of hard-sphere repulsion at contact (vmc(r) = ∞ if r < Rmc = 0.5σ + Rc) and a soft
Gaussian repulsion at larger separations: βvmc(r) = exp[−(r− Rmc)2/R2

g], where Rg is the
polymer chain gyration radius. In order to isolate the effect of the chain stiffness parameter
κ on the polymer-induced depletion PMF between the two colloids while keeping the
depletant size fixed, we simultaneously vary the chain contour length and its persistence
length in such a way that Rg remains constant.

3. Density Functional Theory

The major goal of the present work is to compute the phase diagram of an effective
one-component colloidal system by tracing out the polymeric component. In order to
achieve this goal, one needs to compute the polymer-mediated PMF W(R) between the two
colloids separated by distance R. Combining W(R) with the bare colloid–colloid potential
vcc(R) gives the total interaction Vcc(R) between two colloids:

Vcc(R) = vcc(R) + W(R). (3)

In order to obtain W(R), we define ρ(r, R) as the conditional probability of finding
a polymer bead at r given that one colloid is at the origin and the other is located at R
(R = |R|). With this definition, the polymer-mediated PMF between the two colloids is
given by the following exact relations [14]:

W(R) =
∫ ∞

R
F(R ′)dR ′, (4)

where the outwards excess mean force, F(R), is given by:

F(R) = −
∫

dr(∇vmc(r) · R̂)ρ(r, R), (5)

where R̂ is the unit vector along the line connecting the two colloids, and ρ(r, R) is
the anisotropic monomer density profile induced by the two colloids. In the present
study, we construct the latter density profile on the basis of the Kirkwood superposition
approximation (KSA) [8], whereby ρ(r, R) is approximated by the product of spherically
symmetric density profiles ρ(r) around individual colloids: ρKSA(r, R) ≈ ρ(r)ρ(|r−R|)/ρ,
with ρ being the bulk monomer density.

The isotropic monomer density profile ρ(r) around a single colloid is obtained from
the DFT formalism [30–32]. As a starting point of the DFT-based approach, one writes
an expression of the grand free energy, Ω, as a functional of the polymer density profile
ρp(Rp), where Rp = (r1, r2, · · · , rN) is a collective variable with the individual monomer
coordinates ri. The average monomer density ρ(r) is related to the molecular density profile,
ρp(Rp), as follows:

ρ(r) =
∫

dRp

N

∑
i=1

δ(r− ri)ρp(Rp) (6)
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The minimization of Ω with respect to ρp(Rp) yields the equilibrium polymer density
distribution. The functional Ω is related to the Helmholtz free energy functional, F, via a
Legendre transform:

Ω[ρp(Rp)] = F[ρp(Rp)] +
∫

dRpρp(Rp))[Vext(Rp)− µ], (7)

where µ is the polymer chemical potential, and Vext(Rp) is the external field, which in the
present case is due to the interaction of the polymer beads with the colloid:

Vext(Rp) =
N

∑
i=1

vmc(ri). (8)

We employ the following approximation for the Helmholtz free energy functional,
which separates it into ideal and excess parts according to [33]:

F[ρp(Rp)] = Fid[ρp(Rp)] + Fex[ρ(r)], (9)

with the ideal functional given by [34,35]:

βFid[ρp(Rp)] =
∫

dRpρp(Rp))[ln ρp(Rp)− 1] + β
∫

dRpρp(Rp)Vb(Rp) + β
N−2

∑
i=1

∫
dRpρp(Rp)Vbend(si, si+1), (10)

where Vbend is given by Equation (1), and Vb(Rp) is the binding energy given by [36]:

exp[−βVb(Rp)] =
N−1

∏
i=1

δ(|ri − ri+1| − σ)

4πσ2 =
N−1

∏
i=1

gb(|ri − ri+1). (11)

For the excess free energy functional, we adopt the weighted density approximation [37]:

βFex[ρ(r)] =
∫

drρ(r) fex(ρ̄(r)), (12)

with the weighted density given by:

ρ̄(r) =
∫

dr′ρ(r′)w(|r− r′|). (13)

In the above, the monomer density ρ(r) is given by Equation (6), and fex(ρ) is the
excess free energy density per site of the polymer solution with site density ρ arising from
the short-ranged hard-core repulsive interactions. We compute it from the Wertheim’s
expression which was obtained on the basis of the first-order thermodynamic perturbation
theory [38]:

fex(ρ) =
4η − 3η2

(1− η)2 − (1− 1
N
) ln

1− η/2
(1− η)3 (14)

where η = πσ3ρ/6 is the monomer packing fraction.
In the present work, we employ the simple square-well form for the weighting function

w(r), whose range is given by the diameter σ of the polymer segment [39]:

w(r) =
3

4πσ3 Θ(σ− r), (15)

where Θ(r) is the Heaviside step function. While more sophisticated forms of the weighting
function are available in the literature (e.g., those used in the Fundamental Measure Theory
version of DFT [40]), earlier studies [41] have shown relative insensitivity of DFT results
for polymeric systems to the specific choice of the weight function.
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The minimization of the grand free energy functional Ω yields the following result for
the equilibrium polymer density profile [32]:

ρp(Rp) =
N−1

∏
i=1

gb(|ri − ri+1)
N−2

∏
i=1

exp[−βVbend(si, si+1)]
N

∏
i=1

exp[−λ(ri)], (16)

where
λ(r) = β

δFex

δρ(r)
+ βvmc(r). (17)

Substitution of ρp(Rp) into Equation (6) then yields an integral equation for the
monomer density distribution ρ(r) which needs to be solved numerically [32].

Regarding the numerical implementation of the DFT procedure, given that the monomer
density distribution around a single colloid is spherically symmetric, the corresponding
integral equation for ρ(r) is solved numerically on an equidistant grid along the radial
coordinate r with the grid spacing ∆r = 0.02. A simple Picard iteration procedure was
employed [42], and tolerance criterion for terminating the iterative procedure was set
to 10−6.

4. Phase Diagrams

In order to calculate the phase diagram, we follow the standard approach [3,8] and map
the two-component colloid–polymer mixture onto an effective one-component colloidal
system by tracing out the polymeric component. This goal is accomplished via Equation (3),
whereby the bare hard-sphere colloid–colloid potential vcc(r) is augmented by the polymer-
mediated depletion PMF W(R) obtained from Equation (4) using DFT formalism outlined
in Section 3. In calculating the phase diagram, we consider both fluid (vapor and liquid)
and solid phases. The phase boundaries are obtained by equating the pressure and the
colloid chemical potential in the two coexisting phases [3,8].

The dimensionless pressure of a fluid phase is given by [3]:

PVc

kBT
=

ηc + η2
c + η3

c − η4
c

(1− η3
c )

+
ρcηc

2

∫
drβW(r), (18)

where Vc = 4πR3
c /3 is the volume of the colloidal sphere, ρc is the colloid number density,

and ηc = ρcVc is the colloid packing fraction. The first term on the right-hand side of
Equation (18) originates from the Carnahan–Starling equation of state [43], while the
second term comes from the mean-field treatment of the effective colloid–colloid attraction
due to the polymer-mediated depletion interaction.

The dimensionless chemical potential of a fluid phase is given by [3]:

µ

kBT
= ln

Λ3
c

Vc
+ ln ηc +

3− ηc

(1− η3
c )
− 3 + ρc

∫
drβW(r), (19)

where Λc is the de Broglie wavelength of the colloidal particle.
The dimensionless pressure of a solid phase is given by [3]:

PVc

kBT
=

3ηc

1− ηc/ηcp
+

ρcηc

2

∫
drβW(r), (20)

where ηcp = π/(3
√

2) is the value of ηc at close packing.
Finally, the dimensionless chemical potential of a solid phase is given by [3]:

µ

kBT
= ln

Λ3
c

Vc
+

27
8η3

cp
+ 3 ln

[
ηc

1− ηc/ηcp

]
+

3
1− ηc/ηcp

+ ρc

∫
drβW(r), (21)
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5. Results

In order to focus on the effect of the polymer stiffness parameter κ on the colloid–
colloid polymer-induced depletion interaction and the corresponding phase behavior of the
effective one-component colloidal system, we start by computing the polymer chain radius
of gyration Rg for a range of values of the chain contour length N and stiffness parameter
κ. The radius of gyration for our microscopic model of the semiflexible chain specified in
Section 2 is calculated using the DFT methodology described in detail in Ref. [44] (with the
Helmholtz free energy functional and the weighted density defined in Section 3). All the
results reported below were obtained for the value Rg = 10 and the following five pairs
of values of N and κ: (N = 40, κ = 25.1), (N = 48, κ = 11.5), (N = 64, κ = 6.2), (N = 80,
κ = 4.4), and (N = 96, κ = 3.5). While in the first pair the contour and persistence lengths
are comparable, in the last pair lp is nearly two orders of magnitude smaller than contour
length. Thus, these selected values span the range from semiflexible to nearly fully flexible
polymeric depletants (at the fixed depletant size).

Using the DFT approach, we compute the polymer-induced PMF for five pairs of
values of N and κ listed above; the monomer bulk density is fixed at ρ = 0.001. The DFT
results for the dimensionless PMF βW(R) are presented in Figure 1 for two values of the
colloid radius: Rc = 5 in the upper panel, and Rc = 20 in the lower panel. Thus, the former
case corresponds to the situation Rc < Rg, while in the latter case has Rc > Rg. One sees
that for both values of the colloid radius the strength of the depletion attraction and its
range increase with increasing chain stiffness, in agreement with earlier SCF results [21].
The depletion attraction also becomes stronger with increasing colloid radius, as one would
expect [21].

0 10 20 30

R-2R
c

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

β
W

(R
)

N=40, κ=25.1

N=48, κ=11.5

N=64, κ=6.2

N=80, κ=4.4

N=96, κ=3.5

-0.05

-0.04

-0.03

-0.02

-0.01

0.00

β
W

(R
)

R
c
=5

R
c
=20

Figure 1. Dimensionless colloid−colloid βW(R) as a function of colloid separation R− 2Rc for five
values of the stiffness parameter κ as indicated in the legend. The monomer bulk density is fixed at
ρ = 0.001. Upper panel: colloid radius Rc = 5; Lower panel: colloid radius Rc = 20.

In order to compute the phase diagrams of the effective one-component colloidal
systems, we obtain the depletion PMFs for a range of values of the reservoir monomer
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density ρr [26] and then use these results to calculate the phase boundaries as described in
Section 4. Some representative results in the variables ηc–ρr (reservoir representation [26])
are shown in Figure 2, where the upper panel corresponds to the colloid radius Rc = 5, and
the lower panel corresponds to the colloid radius Rc = 20. In the upper panel, the solid
lines correspond to the semiflexible polymeric depletant with N = 40 and κ = 25.1, while
the dashed lines correspond to more flexible chains with N = 96 and κ = 3.5. In the lower
panel, the solid phase boundary lines correspond to the system (N = 48, κ = 11.5) and
the dashed lines to the system (N = 96, κ = 3.5). In both panels, the circles mark the
location of the liquid–vapor critical points, while the triangles denote the vapor–liquid–
solid triple point coexistence. In the reservoir representation, the triangles marking these
three coexisting phases all correspond to the same value of the monomer reservoir density
ρr and therefore lie on a horizontal line (all tie-lines connecting coexisting phases are
horizontal in the reservoir representation). As one would expect from the PMF results
presented in Figure 1, the phase boundaries move to lower values of ρr with increasing
chain stiffness (solid lines lie below dashed lines in both panels of Figure 2). Likewise, for a
given polymeric depletant (N = 96, κ = 3.5), the phase boundaries move to lower values
of ρr with increasing colloid radius, as can be seen by comparing the dashed lines in the
upper and lower panels of Figure 2.

0.0 0.1 0.2 0.3 0.4 0.5 0.6
η

c

0.0000

0.0005

ρ
r

0.000

0.001

0.002

ρ
r

R
c
=5

R
c
=20

Figure 2. Phase boundaries for an effective one-component colloidal system in the reservoir represen-
tation in the variables ηc–ρr. Green lines denote the liquid–vapor phase boundary, blue lines mark
the liquid–solid phase boundary, and purple lines correspond to the vapor–solid phase boundary.
Red circles mark the location of the liquid–vapor critical points, and the triangles denote the vapor–
liquid–solid triple point coexistence. Upper panel: solid lines correspond to the polymeric chains
with (N = 40, κ = 25.1); dashed lines correspond to the polymeric chains with (N = 96, κ = 3.5); the
colloid radius is Rc = 5. Lower panel: solid lines correspond to the polymeric chains with (N = 48, κ

= 11.5); dashed lines correspond to the polymeric chains with (N = 96, κ = 3.5); the colloid radius is
Rc = 20.
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Figure 3 replots the data shown in Figure 2 in a system representation [26] in the
variables ηc–ρ. The transformation from the reservoir to the system representation is
achieved [3] via the equation ρ = ρr(1− ηc). It is important to note that the range of ρ
values in Figure 3, as well as the range of ρr values in Figure 2, are both sufficiently low,
so that no isotropic–nematic transition of semiflexible polymers needs to be taken into
account [27,28].

0.0 0.1 0.2 0.3 0.4 0.5 0.6
η

c

0.0000

0.0005

ρ

0.000

0.001

0.002
ρ

R
c
=5

R
c
=20

Figure 3. Same as Figure 2 but in the system representation in the variables ηc–ρ.

It follows from the results shown in Figure 2 that the monomer reservoir density
ρrc (which corresponds to the liquid–vapor critical point), as well as ρrt (the monomer
reservoir density corresponding to the vapor–liquid–solid triple point), both decrease with
increasing chain stiffness κ. This behavior is further illustrated in Figure 4, which plots both
ρrc and ρrt as functions of the inverse stiffness parameter κ−1. The upper panel presents the
results for the colloid radius Rc = 5, while the lower panel shows the results for the colloid
radius Rc = 20. For both values of the colloid size, ρrc and ρrt increase nearly linearly with
κ−1. Furthermore, the slope of the triple point line ρrt is significantly higher than the slope
of the critical point line ρrc. This behavior is indeed consistent with the phase diagrams
shown in Figure 2, where one sees that an increase in chain stiffness (going from dashed
to solid phase boundaries) leads to a substantially larger drop in ρrt (marked by triangles)
compared to the drop in ρrc (marked by circles).
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Figure 4. The monomer reservoir density corresponding to the liquid–vapor critical point ρrc and
to the vapor–liquid–solid triple point ρrt as functions of the inverse stiffness parameter κ−1. Upper
panel: colloid radius Rc = 5; Lower panel: colloid radius Rc = 20.

By comparing the upper and lower panels of Figure 2, one sees that both ρrc and ρrt
decrease with increasing colloid radius, which is consistent with W(R) becoming more
attractive for larger colloids, as shown in Figure 1. The dependence of the critical and triple
reservoir monomer densities on the dimensionless ratio Rc/Rg is illustrated in Figure 5 for
two particular semiflexible chains: (N = 64, κ = 6.2) in the upper panel and (N = 96, κ = 3.5)
in the lower panel. One sees that for both depletants ρrc and ρrt decrease monotonically
with increasing Rc/Rg, as one would expect based on the results shown in Figures 1 and 2.
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Figure 5. The monomer reservoir density corresponding to the liquid–vapor critical point ρrc and
to the vapor–liquid–solid triple point ρrt as functions of the ratio Rc/Rg. Upper panel: semiflexible
chain with (N = 64, κ = 6.2); Lower panel: semiflexible chain with (N = 96, κ = 3.5).

6. Conclusions

In this work, we have developed a Density Functional Theory for the depletion
potential of mean force between spherical colloids induced by semiflexible polymer chains.
The theory was used to study the effects of the colloid radius (relative to the polymer radius
of gyration) and the chain stiffness (for a given value of Rg) on the strength of the depletion
attraction. In agreement with earlier self-consistent field theory calculations [21], it was
found that depletion attraction becomes stronger for larger colloids and stiffer chains.

The colloid–colloid potential of mean force was calculated for a range of monomer
densities, and the results were subsequently used to construct phase diagrams for an
effective one-component colloidal system, both in the reservoir and in the system repre-
sentations of the monomer density. The phase boundaries for vapor–liquid, vapor–solid,
and liquid–solid phase coexistence were obtained, as well as vapor–liquid critical points
and vapor–liquid–solid triple points. The reservoir monomer densities corresponding to
critical and triple point were found to increase nearly linearly with inverse chain stiffness,
with the slope of the former being substantially smaller than the latter.

This work can be extended in several important directions. First, it would be of
interest to study the morphology of the crystalline phase. To achieve this, the microscopic
model must be made more chemically specific in order to enable comparison with existing
experimental data obtained by tunneling electron microscopy. Second, given the importance
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of photocatalytic activity for practical applications of these systems, one could combine the
present results with quantum DFT calculations with a goal of estimating the photocatalytic
activity and comparing it with previous studies. These directions will be the subjects of
future research.
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