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Abstract: In recent years, the field of conductive fabrics has been challenged by the increasing
popularity of these materials in the production of conductive, flexible and lightweight textiles, so-
called smart textiles, which make our lives easier. These electronic textiles can be used in a wide range
of human applications, from medical devices to consumer products. Recently, several scientific results
on smart textiles have been published, focusing on the key factors that affect the performance of
smart textiles, such as the type of substrate, the type of conductive materials, and the manufacturing
method to use them in the appropriate application. Smart textiles have already been fabricated
from various fabrics and different conductive materials, such as metallic nanoparticles, conductive
polymers, and carbon-based materials. In this review, we study the fabrication of conductive fabrics
based on carbon materials, especially carbon nanotubes and graphene, which represent a growing
class of high-performance materials for conductive textiles and provide them with superior electrical,
thermal, and mechanical properties. Therefore, this paper comprehensively describes conductive
fabrics based on single-walled carbon nanotubes, multi-walled carbon nanotubes, and graphene. The
fabrication process, physical properties, and their increasing importance in the field of electronic
devices are discussed.

Keywords: smart textile; SWCNTs; MWCNTs; graphene; applications

1. Introduction

Traditional textiles were created to protect people from the elements, such as cold and
rain, and to serve as covering material. The two most important qualities associated with
clothing are their ability to provide protection and their aesthetics. Throughout history,
advances in smart materials and electronics have contributed to a unique potential that
has led to the emergence of a new field called “smart textiles”. Smart textiles, also called
intelligent textiles or e-textiles, are a type of intelligent materials that can detect and respond
to changes in their environment [1]. The stimuli and responses can be thermal, electrical,
magnetic, mechanical, chemical, or any other type of stimulus or response [2]. Smart textiles
are indeed used in many applications ranging from simple to more complicated ones, for
example, in military, healthcare, and wearable electronics [3–5]. They are classified into
three groups based on their generation and intelligence [6,7]. First generation passive smart
textiles can provide additional functions in a passive mode regardless of environmental
changes. Examples of passive smart textiles include anti-odor, anti-static, anti-microbial,
and bulletproof [8,9]. In the second generation, smart textiles have been developed to sense
and respond to environmental stimuli. Examples include heat storage, sensors, thermoreg-
ulation, vapour-absorbing fabrics, and electrically heated suits [8]. A sophisticated smart
textile consists primarily of an entity that functions similarly to the brain, with cognitive,
reasoning, and activating capabilities that can sense, respond, and adapt to environmental
conditions or stimuli, including health monitoring and space suits [10]. Figure 1 shows a
chronology of the development of smart textiles.
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Figure 1. This timeline shows different generations of electronic textiles. Adapted [7].

Although recent advances in the field of smart textiles are extremely interesting, several
obstacles still need to be overcome to make them suitable for commercial and economic
use [6]. Unfortunately, the fabrication of conductive textiles is limited by several technical
and non-technical features. Therefore, it is essential to develop large-scale manufacturing
processes [11,12]. One of the problems in developing smart textiles is the smooth and
undetectable integration of the required electronics into the fabric. Therefore, material
scientists need to develop fibers with the required electrical capabilities that are strong,
comfortable, and attractive at the same time [13]. In addition, temperature, perspiration,
humidity, mechanical shock, continuous bending and tension, and illumination should be
thoroughly investigated [14]. The autonomy of the system should be increased to reduce
the burden of frequent battery charging, and the battery life also needs to be improved,
which is still a research problem [15]. The garments must ensure high security against
cyber threats [16]. For users to fully embrace this new technology, smart clothing must
be a product that meets consumers’ emotional and functional needs, and integration and
connectivity tools [17].

This article is about the fabrication of smart textiles using carbon-based materials,
especially SWCNTs, MWCNTs, and graphene, and is organized as follows: The smart ma-
terials, discussing the structure, physical properties, and potential applications of carbon
nanotubes, SWCNTs and MWCNTs, and graphene. Then, there are three major sections fo-
cusing on the smart textiles fabricated with SWCNTs, MWCNTs and graphene, respectively.
Meanwhile, the fabrication method, physical properties, especially electrical properties,
factors affecting these properties, and potential applications of smart textiles are described.

2. Smart Materials

Materials that are described as “smart” or “functional” are usually part of a “smart
system” that can sense and respond to its environment. If they are truly intelligent, they
have a significant impact on the performance of smart textiles [18]. In this article, the focus
is on single-walled carbon nanotubes, multi-walled carbon nanotubes, and graphene.

2.1. Carbon Nanotubes (CNTs)
2.1.1. Definition and Structure

Carbon nanotubes (CNTs) belong to the fullerene family, which includes carbon
allotropes whose atoms are connected in cage-like configurations, such as a hollow sphere,
an ellipsoid, or a cylinder [19–22], and have a thickness or diameter on the order of a few
nanometers [23]. CNTs can be fabricated in a variety of ways, but the three most common
methods are fabrication by electric arc, chemical vapor deposition, and laser ablation [24].

2.1.2. Types of Carbon Nanotubes

CNTs are generally classified by the number of carbon layers into single-walled
(SWNTs) or multi-walled (MWNTs) carbon nanotubes, as shown in Figure 2. SWCNTs
are single graphene layers wrapped in tubes. Depending on how the tube is wrapped,
SWCNTs have different properties [25] and structures [26–28]. MWCNTs, on the other
hand, consist of multiple graphite layers wound on top of each other [29], and the diameter
between the tube walls is about 0.34 nm. The architecture of MWCNTs can be described by
one of two models: the Russian doll model and the parchment model [30]. Table 1 shows
the comparison between SWCNTs and MWCNTs and Table 2 shows the main physical
properties of the two [31–46].
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Figure 2. Structure of carbon nanotubes (a) SWNTs and (b) MWNTs.

Table 1. Comparison between SWNTs and MWNTs.

SWCNTs MWCNTs References

Single graphene layer Multiple graphene layers [40,44]

SWNTs have a diameter of 0.4 to 3.0 nm
and a length of 20 to 1000 nm.

The outer diameters are between 2 and
100 nm, the inner diameters between
1–3 nm and the lengths between 1 and
50 m.

[29,45]

The synthesis of SWCNTs requires the
use of a catalyst.

The synthesis of MWCNTs can in fact
be made no need for a catalytic

[40,44]

Bulk production is challenging because
it requires precise control of growth
and environmental conditions.

Bulk production is simple.

Purity is poor Purity is high

Less deposits in the body More deposits in the body

It is more flexible and can be
twisted effortlessly. It is complicated to twist.

Characterization and evaluation
are simple It has a very complex structure

Table 2. Summary of the main properties of SWCNTs and MWCNTs.

Properties Unit SWCNTs MWCNTs References

Specific gravity g/m3 0.8–1.3 1.8–2.6
[46]

Resistivity µΩ/cm 5–50 5–50

Young’s modulus TPa ∼1 ∼1–0.3 [41,42]

Thermal conductivity W.m−1K−1 3000–6000 2000–3000 [41,43]

Electrical conductivity S/m 102–106 103–105

[43]Thermal stability in air ◦C 550–650 550–650

Specific area m2/g 400–900 200–400

2.1.3. Potential Applications of CNTs

CNTs were used in wide range of applications due to its small and lightweight, which
makes them suitable for a [40]. They can be used in many fields, such as electronic and
photovoltaic devices [47], solar cells [48], superconductors [49], food science [50], water
purification [51], biology and medicine [52], electrical/electronic applications [53], wearable
devices, and smart textiles [54]. Figure 3 shows various applications of CNTs in textiles.
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Figure 3. Potential applications for the use of carbon nanotubes in textiles.

2.2. Graphene
2.2.1. Definition and Structure

Graphene is a flat monolayer of carbon atoms densely condensed into a two-dimensional
(2D) honeycomb crystal structure [55–61], as shown in Figure 4. Graphene belongs to the
category of graphitic nanomaterials, which includes graphene with few layers (1–5 layers).
It has numerous chemical [62,63], physical [64], electronic [65], and mechanical [66] excellent
properties. In addition, graphene is said to be the thinnest known substance [67], the
most hydrophobic known substance [68], possessing both brittleness and ductility [69],
nontoxic, and inexpensive [70,71]. Table 3 shows a summary of the basic physical properties
of graphene.

Figure 4. Structure of graphene as a honeycomb lattice of carbon atoms.

Table 3. Summary of the basic physical properties of graphene.

Quantity Values References

Tensile strength 130 GPa [72]

Young’s modulus 1TPa [73]

Weight 0.77 mg/m2 [74]

Thermal conductivity ~3000–5000 W m−1 K−1 [75,76]

Mobility of charge carrier 2 × 105 cm2 V−1 s−1 [77–79]

Electrical conductivity ~3.6 × 108 S/m [80]

Transmittance ≈97.7% [81]

2.2.2. Potential Applications of Graphene

The exceptional properties of graphene can be exploited in numerous applications,
including biomedicine [82], membranes [83], sensors [84], energy harvesting and stor-
age [85], composites and coatings [86], and functional devices [87], as shown in Figure 5.
In addition, graphene is a promising material for the fabrication of smart and electronic
textiles, where multiple functions can be combined in a single material. The large surface
area and flexibility improve conformal contact, resulting in increased sensitivity [88]. Due
to the atomic structure of carbon atoms in graphene, electrons can move at incredible
speeds without scattering, saving energy that would otherwise be wasted in conventional
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conductors. The number of graphene layers and the coupling effects with the underlying
substrate affect the electronic properties of the graphene system. Seamless integration of
electronics into textiles can enable various applications, including flexible, stretchable, and
foldable devices [89], electrodes, and electronic textiles that can be used in various fields.

Figure 5. Potential Applications of graphene.

3. Conductive Fabrics Based on Carbon Nanotubes

Conductive fabrics are usually made from various substrates, such as cotton [90],
polyester [91], wool [92], and nylon [93], using numerous techniques, such as embroi-
dery [94], knitting [95], spinning [96], coating [90], printing [97], dipping and drying, drop
casting [98], and others. To make fabrics electrically conductive, there are usually two
approaches: one approach is to incorporate conductive fillers, such as metal nanoparticles
and carbon-based materials [99], graphene and carbon nanotubes, into the fabric. The
second approach is to coat the fabric with a conductive polymer, such as PEDOT:PSS, which
contains little or no metal. This review focuses on the fabrication of conductive fabrics from
carbon-based materials.

3.1. Conductive Fabrics Based on SWCNTs

Recently [100], conductive and flexible melt-blown fabrics were coated with SWCNTs
by chemical vapor deposition, where the melt-blown fabrics were recycled from face masks.
The results showed that the sheet resistance of the conductive fabrics depended on the
deposition time and was 245, 116, and 57 Ω/� for deposition times of 1 h, 2 h, and 3 h,
respectively. It was also found that the sheet resistance decreased when the gold chloride
dopant was used with values of 64, 54, and 26 Ω/�, respectively. Alamer et al. [101]
fabricated a highly conductive cotton fabric impregnated with SWCNTs by using the
filtration technique to produce conductive cotton. The advantage of this technique is
that the residual solution that passes through the filter paper is collected in a beaker and
stored for later use. This process was also safe, simple, and environmentally friendly,
using renewable energy sources and using chemicals effectively. They found that the sheet
resistance of the sample reached the minimum value of 0.006 Ω/� at a concentration
of 41.5 wt.%. They also ensured that the temperature behavior of the conductive cotton
was consistent and reproducible for at least two months. Huang et al. [102] designed an
electrode using a stretchable Lycra fabric, SWCNTs as conducting materials, and a dyeing
and drying process. The impurities were first removed from the surface of the fabric using
deionized water. Then, the fabric was stretched to 100% elongation and immersed in
SWCNT ink, alcohol, and nitric acid, respectively. Then, the fabric was dried and stretched
to allow the SWCNTs to penetrate the fabric and increase its conductivity. The resistance of
the conductive electrode was stable after 5 × 102 stretching cycles with a minimum sheet
resistance of 65 Ω/� at 35% tensile load.

In another study, SWCNT ink was printed on a stretchable substrate using inkjet
printing technique [103]. It was found that the sheet resistance of the conductive substrate
depended on the number of coating layers and decreased as the number of layers increased.
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The minimum sheet resistance was 19.08 Ω/� for the five-layer coating, and this value
changed slightly after the sample was stretched. Zhang et al. [104] fabricated conductive
cotton nylon with SWCNTs by immersion drying and then modified the fabric by plasma.
The results showed that the sheet resistance of the modified fabric 2.0 k Ω/� was lower than
the sheet resistance of the unmodified fabric 4.9 k Ω/�, which was attributed to the increase
in the surface roughness of the fabric. SWCNTs dispersed in dodecylbenzene sulfonic
acid, sodium salt, were applied to polyester fabric by the coating dry cure method [105].
Before the coating process, the fabric was treated with plasma using different working
gases and different treatment times. The results showed that this treatment led to an
improvement in the antistatic properties of the polyester fabric. It was found that the
antistatic property increased with increasing plasma treatment and then decreased. The
effect of SWCNTs as absorbers of UV light for cotton fabrics was investigated in the study
published by Mahmoudifard and Safi [106] and compared with ZnO and TiO2 absorbers.
It was found that SWCNTs absorbed UV light with a high UPF value compared to ZnO
and TiO2 absorbers. In another interesting study [107], a piezoresistive stretchable sensor
based on SWCNTs and fabrics was fabricated, the joint movements of children were
measured and compared with a rectangular sensor. It was found that the stretchable sensor
had the same effect as the rectangular sensor with electrical resistance in the range of
280 Ω and 290 Ω. A flexible and stable supercapacitor with a high specific capacitance
of about 70 to 80 Fg−1 was prepared by immersing cotton leaves in SWCNT ink [108].
The results showed that the sample exhibited high electrical conductivity with a sheet
resistance of less than 1 Ω/�. In another study, SWCNTs dispersed in sodium dodecyl
benzyl sulfonate and ethylene glycol were used to prepare conductive threads by the
immersion drying method [109]. The results showed that the electrical conductivity was
curiously dependent on the concentration of SWCNTs, with the resistance decreasing from
3.587 Ω to 0.01257 Ω as the concentration increased from 0.008049 wt% to 1.07269 wt%.
In 2008, Shim et al. [110] fabricated a conductive cotton yarn by using SWNTs, MWNTs
and polyelectrolytes and applying the immersion method. The cotton yarn becomes
conductive after multiple immersions, with a resistivity as low as 20 Ω.cm−1. This approach
is characterized by its speed, simplicity, robustness, low cost, and easy scalability. The
fabrication of conductive Lycra fabric has also been investigated using the conductive
materials SWCNTs and polyaniline, using the immersion drying process [111]. The results
showed that the conductive fabric had a minimum sheet resistance of 35 Ω/�. This fabric
was used to manufacture antenna which worked at 2.45 GHz with reflection coefficient
of about ~18.6 dB. In another study [112], conductive cotton fabrics were prepared using
a composite of SWCNTs and the conductive polymer PEDOT: PSS by the technique of
drop casting. The effects of applying the composite in the cotton fabrics were studied, and
the results showed that a cotton fabric composed of one layer of PEDOT: PSS between
two layers of SWCNTs was electrically stable for four months, with a minimum sheet
resistance of 0.006 Ω at a concentration of 41.5 wt.%. The metallic conductive threads
were also prepared from SWCNTs, PEDOT:PSS, and a mixture of both [113]. The results
showed that the electrical resistances depend on the fabrication process. The lowest
sheet resistance was obtained for the sample prepared from a mixture of SWCNTs and
PEDOT:PSS with a value of 0.0072 Ω, and a lower amount of composite of 1.729 mg.
Table 4 show summary list of SWCNTs-based materials with details of their manufacturing
processes and electrical properties.
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Table 4. Shows summary list of SWCNTs-based materials with details of their manufacturing
processes and electrical properties.

Year Substrate Coated with Method Electrical Properties References

2022 Melt blown fabrics
SWCNTs Chemical vapor

deposition

57 Ω/�
[100]

SWCNTs + gold chloride 26 Ω/�

2020 Cotton SWNTs Filtration 0.006 Ω/� [101]

2017 Lycra SWCNTs Dyeing drying 65 Ω/� [102]

2014 Thin films SWCNTs Inkjet printed 19.08 Ω/� [103]

2012 Cotton nylon SWCNTs Dyeing drying 2.0 k Ω/� [104]

2015 Polyester SWCNTs Coating-dry-cure - [105]

2012 Cotton SWCNTs + ZnO + TiO2 Dyeing drying - [106]

2020 Polyester spandex SWCNTs + polyurethane Dry curing machine 280–290 Ω [107]

2010 Cotton SWCNT ink Dyeing drying 1 Ω/� [108]

2020 Cotton thread SWCNTs + SDBS Dip coating 0.01257 Ω [109]

2008 Cotton yarn SWNTs + MWNTs +
polyelectrolyte Dip coating 20 Ω/cm [110]

2017 Lycra SWCNTs Dyeing drying 35 Ω/� [111]

2021 Cotton thread SWNTs + PEDOT: PSS drop-casting 0.0072 Ω [112]

3.2. Conductive Fabrics Based on MWCNTs

As discussed in the previous section, conductive fabrics made of SWCNTs have
excellent electrical properties; however, SWCNTs are expensive, purification is difficult,
and dispersion in liquid is also difficult. Therefore, many researchers focused on fabricating
conductive fabrics using MWCNTs instead of SWCNTs because they are cheaper, can
be produced in large quantities, and are more stable compared to SWCNTs. Rahman
et al. [113] fabricated conductive and thermal cotton fabrics with MWCNTs using the dip
and dry method. The results showed that the electrical conductivity of the conductive
cotton was about 0.20 S m−1 with a sheet resistance of 1.67 kΩ/� after four times of
immersion. In addition, the thermal conductivity of the fabric was also increased by 70%.
MWCNTs dispersed in DMF were used in the recent study presented by Alamer et al. [114]
to prepare conductive cotton fabrics using the drop-casting and drying method. The sheet
resistance of the conductive cotton was proportional to the MWCNT loading of the fabric
and reached a value of 15.92 Ω/� at a saturation concentration of 42.20 wt.%. Moreover,
the conductive fabrics exhibited semiconductor behavior as the resistance decreased with
increasing temperature. The conductive cotton fabrics were also prepared by immersing
the fabrics in a dispersion of MWCNTs in sodium dodecyl sulphate [115]. The amount
of MWCNTs was increased up to 20 times by repeating the immersion process, and the
cotton fabrics with high MWCNT concentration exhibited a minimum sheet resistance
of 2.5 kΩ.cm−2. The results also showed that the conductive cotton treated with HNO3
resulted in a reduction of sheet resistance to 1.5 kΩ.cm−2 which was attributed to the
interaction between MWCNTs and cellulose through glycosidic bonds.

The conventional dyeing method was used to deposit synthetic MWCNTs on the
surface of cotton fabrics [116]. The deposition of MWCNTs was uniform and permanent,
and the results showed that the sheet resistance changed in the range of 5486 MΩ/� to
0.433 MΩ/� due to the change of the amount of MWCNTs from 100 mg to 500 mg. In
addition, the mechanical properties of the conductive fabric were also improved, and the
strength was increased by increasing the amount of MWCNTs, which was attributed to
the effect of van der walls force between the nanotube particles and the cotton surface. In
another study [117], MWCNTs were first dispersed by grafting dimethyl phosphite and
perfluorohexyl iodine, then applied to cotton fabric by the impregnation-drying method.
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The conductive fabric had a sheet resistance of 225.6 kΩ/� and exhibited UV resistance,
with the UPF value reaching the maximum value of 121. Costa et al. [118] fabricated
electrodes for supercapacitors based on cotton fabric and MWCNTs dispersed in sodium
dodecylbenzene sulfonate. The MWCNT dispersion was applied to the surface of the
conductive cotton using the dip-pad drying method. By repeating this method eight times,
the resistance of the fabric electrodes reached the minimum value of 2.62 Ω.cm−2, had a
specific capacitance of 8.01 F g−1, a high energy density of 6.30 Wh kg−1, and a cyclability
of 5000. In the study presented by Nafeiea et al. [119], conductive wool fabrics were
prepared using MWCNTs and carboxylated MWCNTs, both dispersed in water, and the
effect of sodium dodecyl sulfate as an anionic surfactant and cetyltrimethylammonium
bromide as a cationic surfactant was investigated. The results showed that the use of a
cationic surfactant improved the dispersion of MWCNTs in water, while the dispersion of
carboxylated MWCNTs in water was better without the use of a surfactant. The electrical
conductivity of the wool fabric prepared with 5 g/L carboxylated MWCNTs reached a
maximum value of 2 × 10−3 S cm−1, which is ten times higher than the conductivity of
the wool fabric treated with MWCNTs. In the study presented by Kowalczyk et al. [120],
MWCNTs were also dispersed in sodium dodecyl sulfate, then applied to polyester/cotton
fabrics using the padding-drying method. The resistance depended on the number of pads
and changed from 5.79 kΩ to 1.07 kΩ when the number of pads was increased from one to
three, which was attributed to the formation of the MWCNT networks. Polyester fabric
treated with MWCNTs dispersed in enzymes was used as an electrode in dye-sensitised
solar cells [121], where the MWCNT dispersion was applied to the surface of the fabric
by the tape-casting method. The sheet resistance of the treated fabric depended on the
thickness of the coating and changed from 38 Ω/� to 12 Ω/� when the coating thickness
increased from 5 µm to 28 µm. It was also found that the sheet resistance depended
on the size of MWCNTs. The energy conversion efficiency of the conductive electrode
reached about 5.69%. Hao et al. [122] fabricated flexible conductive cotton electrodes for
supercapacitors using carboxyl MWCNTs. The carboxyl MWCNTs were deposited on
the cotton fabric at high temperature and pressure by immersion method. The electrical
resistance of the composite reached a value of 2.606 Ω with a high specific capacitance of
94.3 F g−1, and the sample exhibited good stability up to 3000 cycles. The conductive yarns
based on MWCNTs were fabricated in the study presented by Abbas et al. [123,124], in
which the spin-dry method was used for the fabrication process. The results showed that
the resistance of the conductive yarn depended on the diameter of the yarn. It was 2.55 k Ω
and 120 Ω for the yarns with diameters of 12 µm and 100 µm, respectively. In addition, the
absorption coefficients of the conductive yarns were measured in the range of 50 MHz to
20 GHz and were found to depend on the diameter of the conductive yarns. Table 5 shows
summary list of MWCNTs-based materials with details of their manufacturing processes
and electrical properties.
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Table 5. Summary list of MWCNTs-based materials with details of their manufacturing processes
and electrical properties.

Year Substrate Coated with Method Electrical Properties References

2015 Cotton MWCNTs Dyeing drying 1.67 kΩ/�
0.20 S m−1 [115]

2022 Cotton MWCNTs Dyeing drying 15.92 Ω/� [116]

2015 Cotton MWCNTs Dyeing drying 1.5 Ωk cm−2 [117]

2019 Cotton MWCNTs Dyeing 0.433 MΩ/� [118]

2020 Cotton MWCNTs Dipping drying 225.6 kΩ/� [119]

2020 Cotton MWCNTs Dip-pad-dry 2.625 Ω cm−2 [120]

2016 Wool MWCNTs - 2 × 10 −3 S cm−1 [121]

2015 Polyester/Cotton MWCNTs Padding machine 1.03 × 10 3 Ω/� [122]

2015 Polyester MWCNTs Tape casting 15 Ω/� [123]

2018 Cotton MWCNTs-COOH Dyeing drying 2.606 Ω [124]

3.3. Conductive Fabrics Based on Graphene

Incorporating graphene into textiles not only imparts conductivity to the textiles,
but also enables the production of multifunctional textiles due to the excellent physical
properties of graphene, as we discussed in Section 2. Gan et al. [125] fabricated conductive
cotton fabrics using graphene nanoribbons by wet coating method. The mechanical and
electrical properties of the fabrics were improved after repeating the wet coating method.
The achieved low resistance was about 80 Ω with an increase in tensile stress and elastic
modulus of 58.9% and 64.1%, respectively. In another study [126], the trapping method was
used to fabricate conductive PET graphene-based fabrics. The main feature of this method
is to reduce the insolubility of graphene so that it can easily penetrate the fabrics. The sheet
resistance of the fabrics was strongly dependent on the graphene loading and changed
from 77.9 MΩ/� to 2.5 kΩ/� when the graphene loading increased from 2.5 wt.% to
10.7 wt.%. Sahito et al. [127] developed a flexible and conductive cotton fabric coated with
graphene nanosheets. Briefly, the charge of the surface of the cotton fabric was modified
by cationization, which resulted in a positive charge that enabled strong bonding between
the graphene oxide nanosheets and the cotton fabric and formed a uniform layer on the
surface of the fabric, then the chemical reduction method was used to convert the graphene
oxide nanosheets into graphene nanosheets. This conductive flexible cotton fabric with
sheet resistance of 7 Ω/� was used as a counter electrode for a dye-sensitive solar cell,
and the calculated photovoltaic conversion efficiency was 6.93%. Ren et al. [128] fabricated
conductive cotton fabrics with graphene oxide, where the graphene oxide was synthesized
from graphite flakes, dispersed in DI water, applied to the cotton fabrics by a vacuum
filtration method, and then reduced by a hot-pressing method. The sheet resistance was
about 0.9 kΩ/� and increased to about 1.2 kΩ/� after 10 washing cycles. This conductive
cotton fabric was used as a strain sensor and showed good stability up to 400 bending
cycles. In an interesting method, Atta et al. [129] immersed cotton yarns in a graphene
oxide dispersion, then reduced them with gamma rays. The resulting cotton yarns were
used as portable supercapacitors and the specific capacitance reached a maximum value
of 97 F/g. It was also found that the series resistance and charge transfer resistance
depended on the graphene oxide concentration and reached a minimum value of 34 Ω
and 22 Ω for the series resistance and charge transfer resistance, respectively. Maneval
et al. [130] prepared conductive cotton yarns by using two methods: cationization to
improve electrostatic interactions, and dip coating to coat the surface of cotton yarns with a
graphene dispersion (see Figure 6). Before the yarn breaks, the electrical conductivity of
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the yarn reached a maximum of 1.1 S cm−1 at a graphene concentration of 14% by weight
and under continuous mechanical stress.

Figure 6. Schematic representation of the device used for the coating of cotton yarns with graphene
sheets [130].

Lu et al. [131] fabricated silk fabric with a high conductivity of a single fiber of
3595 S m−1 by using graphene oxide nanosheets as a conductive material and a coating
reduction method. Briefly, the untreated silk fabric was immersed in bovine serum albumin,
which generates a positive charge on the surface of the fabric and increases the absorption
of the conductive material when the fabric is immersed in the graphene oxide nanosheet
solution. Then, a hydrazine vapor reduction method was used to reduce the graphene
oxide on the fabric. In the study presented by Zulan et al. [132], the conductive silk fabric
was also prepared with graphene oxide after the fabric was modified. The modification of
the silk fabric was performed as follows: the fabric was immersed in a solution containing
regenerated silk fibroin as an electrostatic adhesive, deionized water, and bovine serum
albumin. The modified fabric was coated with graphene oxide, then thermally reduced
to convert the graphene oxide into graphene. The results showed that the conductive silk
fabric was thermally stable and exhibited an electrical conductivity of 3.06 × 10−6 S cm−1.
In another study [133], a flexible, stable, conductive cotton yarn with an electrical conduc-
tivity of about 1.0 S cm−1 was prepared using reduced graphene oxide and a dip coating
and reduction method. The results also showed that the conductive cotton yarn exhibited
mechanical stability up to 1000 cycles and absorbed UV irradiation of about 1.0 mA/W
under bending deformation. Yarns from Calotropis gigantean [134], which have a unique
structure, excellent hydrophilicity, and lower natural longitudinal crimp, were used to
produce conductive yarns on a large scale by dyeing graphene oxide onto the surface of
the yarn and applying a reduction process (see Figure 7). The obtained conductivity of the
treated yarn depended on the concentration of graphene oxide and reached a maximum
value of 6.9 S m−1 at high concentration and was shown to be resistant to washing, which
was due to the hydrogen bonding formed between the fiber and graphene during the
dyeing process.

Figure 7. Images of the pristine, GO-modified, and rGO-modified CGYs [134].

Molina et al. [135] fabricated conductive fabrics by chemical reduction of graphene
oxide on polyester fabric. The resistance of the fabric decreased from 1011 Ω. cm2 for
the untreated fabric to 23.15 Ω. cm2 for the fabric coated with three layers of reduced
graphene oxide. In another study [136], the knitted fabric was also immersed in graphene
oxide solution, then subjected to a reduction process. The sheet resistance of the resulting



Polymers 2022, 14, 5376 11 of 19

promoted fabric was dependent on the amount of reduced graphene oxide in the fabric
and the number of immersion cycles. It reached the value of 0.19 MΩ/� after 15 dipping
cycles. The graphene/polyurethane composite material and the dip coating method [137]
were used to fabricate a conductive para-aramid fabric, as shown in Figure 8. It was found
that the sheet resistance and electrical capacitance of the conductive fabric decreased as
the number of dip coating cycles increased due to the increase in the amount of composite
materials. The minimum sheet resistance and electrical capacitance of the conductive fabric
reached 75 kΩ/� and 89.4 pF, respectively, after 5 dip coating cycles. It was also found
that this sample can be used for a heat-resistant para-aramid knitted glove with a phone
touch screen when hot-pressed at 140 degrees.

Figure 8. Illustration of the fabrication process for graphene/WPU with dip coating on para-aramid
knitted fabric, which consists of two steps: (a) preparation of graphene/WPU composite solution,
(b) dip coating of para-aramid knitted fabric with different coating cycles [137].

A conductive stretch-sensitive fabric was fabricated using graphene oxide nanosheets
and a reducing deposition method [138]. Briefly, graphene oxide nanosheets were deposited
on nylon/polyurethane fabric, then reduced with sodium borohydride. The results showed
that the electrical resistivity of the conductive fabric with a value of 112 kΩ m−2 was four
times lower than that of the untreated nylon/polyurethane fabric. In addition, the electrical
resistivity of the conductive fabric increased from 112 kΩ m−2 to 154 kΩ m−2 after eight
washes. The conductive fabric was also used to fabricate a strain sensor in the strain range of
0 to 30 percent, and the strain sensor exhibited good sensitivity and stability. Ba et al. [139]
found a method to improve the bonding between the graphene and the functional group
on the cotton fabric using karaya gum as a bioinspired exfoliating agent, in which the
synthesized graphene solution was applied to the surface of the cotton fabric by dip coating
or brush coating. The electrical conductivity of the conductive cotton fabric reached a
maximum value of 13,000 S m−1 at a graphene concentration of 6 wt.%. Another interesting
method to improve the bonding between graphene and cotton fabric and to fabricate a
scalable conductive fabric with a length of 150 m and a sheet resistance of about 11.9 Ω/�
was presented in the study by Afroj et al. [140]. The conductive graphene dispersion was
prepared using the microfluidization technique for natural graphite flakes, then applied to
the cotton fabric using the pad dry curing method. Another important observation was that
the conductivity of the conductive cotton did not change even after washing ten times. The
screen printing method [141] was used to print graphene ink on the surface of the textile
after the textile was modified using heat transfer technology. The sheet resistance of the
conductive textile reached a minimum value of 100 Ω/� after three printing cycles, and
this textile was used to fabricate a conductive electrode for electrocardiogram monitoring. It
was found that the efficiency of the graphene electrode was comparable to the conventional
electrode. In another study, the screen printing method with graphene ink was also used,
but for the two sides of the cotton fabric in the study presented by Zhang et al. [142],
and the fabric produced was used as a portable heater (see Figure 9). The small voltage
difference of 3 V applied to the conductive fabric resulted in a high heating temperature,
52.6 ◦C, which confirmed that this conductive fabric could be used as a wearable heater. The
conductive cotton fabric also exhibited a high electrical conductivity of 1.18 × 104 S m−1.
The biocompatible conductive fabric sensor was fabricated using graphene nanoplatelets
dispersed in a water-based ink and screen-printed onto the fabric surface [143]. The results
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showed that the fabric sensor was stable and sensitive, that the stiffness of the fabric
increased with the amount of material applied, and that the electrical conductivity reached
the maximum value of about 10.26 S m−1 at a graphene concentration of 3.8 wt%.

Figure 9. Screen printing process for the production of conductive cotton with graphene ink [143].

In addition, Yapici et al. [144] also fabricated electrocardiogram electrodes based on
nylon fabric coated with reduced graphene oxide using the immersion drying method. The
resulting electrode had an electrical conductivity of 4.5 S cm−1, and this value was stable up
to five washing cycles. In the study by Sahito et al. [145], the surface of a cotton fabric was
modified with bovine serum albumin, which resulted in a positive charge on the surface.
In their study, the electrical properties of cotton and modified cotton were compared after
they were immersed in graphene oxide. The results showed that the amount of graphene
oxide in the modified cotton was greater than the amount of graphene oxide in the cotton.
Then, the graphene oxide was reduced and converted to graphene by the chemical vapor
reduction method. The minimum sheet resistances obtained were 40 Ω/� and 510 Ω/�
for the conductive cotton and the conductive modified cotton, respectively. The conductive
nylon 6 fabric was prepared by depositing reduced graphene oxide on the surface of the
fabric, which was presented in the study by Yun et al. [146]. A new method was used in
this process: electrostatic self-assembly of graphene oxide and bovine serum albumin to
improve the adhesion of graphene sheets on the fabric was used to deposit them on the
surface of the fabric, followed by a low-temperature reduction process. The conductive
fabric exhibited high electrical conductivity of 1000 S cm−1, which is not affected by bending
and washing cycles. In another process [147], UV light was used to reduce graphene oxide
on cotton and wool fabrics without using a reducing agent or high annealing temperature.
Briefly, graphene oxide was first applied to the surface of the fabric using the brush coating
drying method, the process was repeated to increase the concentration of the materials,
then the fabric was irradiated with UV light to reduce the graphene oxide and convert it to
graphene. It was found that the sheet resistance reached a minimum value of 100.80 kΩ/�
and 45 kΩ/� when the conductive cotton and wool fabrics were irradiated with UV light,
respectively. Table 6 shows summary list of graphene-based materials with details of their
manufacturing processes and electrical properties.
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Table 6. Summary list of graphene-based materials with details of their manufacturing processes and
electrical properties.

Year Substrate Coated with Method Electrical Properties References

2015 Cotton Graphene nanoribbon Wet coating 80 Ω [125]

2014 Cotton yarn Graphene/graphite Trapping 2.5 kΩ/� [126]

2016 Cotton Graphene nanosheets Dyeing drying 7 Ω [127]

2017 Cotton Graphene oxide Vacuum filtration 0.9 kΩ/� [128]

2021 Cotton Graphene oxide Immersing 22–34Ω [129]

2021 Cotton Graphene Dyeing drying 1.1 S cm−1 [130]

2015 Silk Graphene oxide Immersing 3595 S m−1 [131]

2019 Silk Graphene Oxide Dip-pad 3.06 × 10 −4 S cm−1 [132]

2019 Cotton thread Graphene oxide Dip-coating chemical
reduction ~1.0 S cm−1 [133]

2022 Gigantea yarn Graphene oxide Pad dyeing 6.9 S m−1 [134]

2013 Polyester Graphene oxide Chemical reduction 23.15 Ω. cm2 [135]

2017 knitted Graphene oxide Dyeing drying 0.19 MΩ/� [136]

2019 Para-aramid Graphene/waterborne/
polyurethane Dip coating 7.5 × 10 4 Ω/� [137]

2017 Nylon Graphene oxide Dip coating 112 KΩ/m2 [138]

2020 Cotton Graphene Dip- and brush-coated 13000 S m−1 [139]

2020 Poly-cotton Graphene Pad dry 11.9 Ω/� [140]

2020 Cotton Graphene Screen-printing 100 Ω/� [141]

2021 Cotton Graphene ink Screen-printing 1.18 × 10 4 S m−1 [142]

2021 Polyester elastane Graphene nanoplatelets Screen-printing 10.26 S m−1 [143]

2015 Nylon Graphene oxide Dip coating 4.5 S cm−1 [144]

2015
Cotton

Graphene oxide Dip coating
40 Ω/�

[145]
Modified cotton 510 Ω/�

2013 Nylon yarns Graphene oxide
Electrostatic self-assembly

and low
temperature reduction

1000 S/m [146]

2014
Cotton

Graphene oxide Brush coating drying
100.8 kΩ/�

[147]
Wool 45 kΩ/�

4. Summary

This review article summarizes the method of designing and fabricating electrical,
flexible, and lightweight conductive fabrics with embedded SWCNTs, MWCNTs, and
graphene, and their applications in the field of smart textiles. The development of smart
textiles was carried out in three stages: the first stage is to impart conductivity to the textiles,
the second stage is to fabricate the smart textiles, and the final stage is to functionalize
the conductive yarns. Carbon-based materials, particularly SWCNTs, MWCNTs, and
graphene, are discussed from their structure, physical properties, and potential applications
to their use in the design and fabrication of conductive fabrics with a wide range of
electrical conductivity and interesting physical properties that make them suitable for
various wearable electronic applications. We come to the following conclusions:

1. Conductive fabrics based on SWCNTs have been prepared by various fabrication
methods: chemical vapor deposition, filtration technique, dyeing and drying method,
inkjet printing method, dipping and drying method, and drop-casting method. It has
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been shown that the electrical conductivity of conductive fabrics and sheet resistance
has a wide range from low to high values, and depends on various factors, such as:
deposition times, dopants, content of SWCNTs in the fabric, stretching cycles, number
of coating layers, treatment of the fabric with plasma, and mixing of SWCNTs with
other carbon-based materials, such as MWCNTS and graphene, or with conductive
polymers, such as polyaniline and PEDOT:PSS. These SWCNTs based fabrics have
been used in various applications such as: UV light shielding, piezoresistive sensor,
supercapacitor, antenna, and metal thread.

2. Conductive fabrics based on MWCNTs were prepared by various fabrication methods:
Dipping and drying, drop casting and drying, dipping, impregnation and drying,
dipping and drying, and tape casting. The fabricated conductive fabrics exhibited a
wide range of electrical conductivity, which was influenced by several factors: Size
of MWCNTs, number of dipping operations, type of organic solvents, content of
MWCNTs, temperature, dopants, repetition of the fabrication process, use of anionic
and cationic surfactants, and use of enzymes. These conductive fabrics based on
MWCNTs have been used as electrodes in supercapacitors, and as electrodes in dye-
sensitised solar cells and block UV light.

3. Conductive graphene-based fabrics have been fabricated using graphene, graphene
nanoribbons, graphene oxide, graphene nanosheets, natural graphite flakes, and
graphene ink. Various methods were used in the fabrication process: wet coating,
trapping method, chemical reduction method, vacuum filtration—hot press method,
dipping and gamma ray reduction method, cationization—dip coating, coating and re-
duction method, dyeing and reduction method, dipping and reduction method, reduc-
ing deposition method, brush coating, pad dry curing method, screen printing method,
chemical vapor reduction method, electrostatic self-assembly—low temperature re-
duction process, UV reduction method. The electrical properties of graphene-based
materials are influenced by several factors: repetition of the manufacturing process,
graphene content, graphene oxide concentration, tensile stress, cationization process,
number of coating layers, number of dipping cycles, exfoliation agent, and number of
printing cycles. Thus, the conductive fabrics produced have been used in various appli-
cations: electrode for a dye-sensitive solar cell, strain sensor, portable supercapacitors,
UV blockers, heat-resistant gloves, electrocardiogram electrodes, and portable heaters.
Finally, the field of smart textile fabrication from carbon-based materials is developing
rapidly but needs further development to bring these applications from small scales
(in research laboratories) to large scales (industrial applications). Therefore, more basic
research is needed to enable the next wave of smart textile products.
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