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Abstract: Poly(L-lactic acid) (PLLA) thin films with a highly oriented structure, successfully pre-
pared by a fast friction transfer technique, were investigated mainly on the basis of synchrotron
radiation wide-angle X-ray diffraction (WAXD) and Fourier transform infrared spectroscopy (FTIR).
The crystalline structure of the highly oriented PLLA film was remarkably affected by friction trans-
fer temperatures, which exhibited various crystal forms in different friction temperature regions.
Interestingly, metastable β-form was generated at all friction transfer temperatures (70–140 ◦C) be-
tween Tg and Tm, indicating that fast friction transfer rate was propitious to the formation of β-form.
Furthermore, the relative content among β-, α′-, and α-forms at different friction temperatures was
estimated by WAXD as well as FTIR spectroscopy. In situ temperature-dependent WAXD was applied
to reveal the complicated phase transition behavior of PLLA at a friction transfer temperature of
100 ◦C. The results illustrated that the contents of β- and α′-forms decreased in turn, whereas the
α-form increased in content due to partially melt-recrystallization or crystal perfection. Moreover,
by immersing into a solvent of acetone, β-, α′-form were transformed into stable α-crystalline form
directly as a consequence. The highly oriented structure was maintained with the chain perfectly par-
allel to friction transfer direction after acetone treatment, evidenced by polarized FTIR and polarized
optical microscopy (POM) measurements.

Keywords: highly oriented PLLA film; friction transfer technique; phase transition; β-form

1. Introduction

Poly(L-lactic acid) (PLLA), as a promising bio-based plastic that may be helpful in solv-
ing the environmental pollution problem and lessen the dependence on petroleum-based
plastics, has drawn much attention recently [1,2]. Due to the advantages of mechanical
property and easy processability, PLLA has been widely used in packaging and biomedical
fields for substitution of traditional commodity plastic [3–9]. For the purpose of expanding
the end-uses, it is of great importance to control the mechanical properties intimately
related to the crystalline structure and morphology [10–12]. As a semi-crystalline polymer,
various crystal modifications of PLLA, including α-form, α′- (or δ-) form, β-form, γ-form,
and stereocomplex between PLLA and Poly(D-lactic acid) (PDLA), can be obtained by the
regulation of crystal condition [13–20]. α-form is the most stable modification and adopts
a 10/3 helical conformation in the orthogonal unit cell, which can be directly formed at
high temperature (>120 ◦C) or from solution crystallization [21–25]. Independent from
the α-form, α′- (or δ-) form with an up–down disordered helix shows more disordered
multi-domain structure and is generated at relatively low temperature (<100 ◦C) [19,26].
The phase transition behavior from disordered α′- to ordered α-form concerning the struc-
ture, kinetics, and thermodynamic properties have been extensively investigated by many
groups [15,19,27–32]. Furthermore, the PLLA β-form is a metastable, frustrated structure

Polymers 2022, 14, 5300. https://doi.org/10.3390/polym14235300 https://www.mdpi.com/journal/polymers

https://doi.org/10.3390/polym14235300
https://doi.org/10.3390/polym14235300
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/polymers
https://www.mdpi.com
https://orcid.org/0000-0001-8003-2739
https://doi.org/10.3390/polym14235300
https://www.mdpi.com/journal/polymers
https://www.mdpi.com/article/10.3390/polym14235300?type=check_update&version=2


Polymers 2022, 14, 5300 2 of 12

that adopts a 3/1 helical conformation obtained by stretching the α-form at high tempera-
ture [33], solution-spinning [34], solid-state coextrusion [35], under pressure and shear [36],
single crystal growth from designated solutions [37], at a low crystallization temperature
(75–100 ◦C), or from PLLA/PDLA blend [38] or supramolecular PLLA bonded by multiple
hydrogen bonds [39]. The refinement structure of β-form proposed by Tashiro et al. reveals
that it contains six helical chains in one rectangular unit cell of P1 space group with alterna-
tive upward and downward chain [40]. In addition, they proposed the stress-induced phase
transition mechanism α-form with 10/3 helices to β-form with 3/1 helical conformation
via α′- (δ-) form under deformation at different temperatures. In our recent study, it was
found that β-form fibrils reorganized and perfected upon further annealing by utilizing
orientated PLLA ultrathin melt-draw films [41].

On the other hand, orientation is an efficacious approach to obtaining polymeric mate-
rials with excellent properties, and the orientation structures arise from the arrangement of
the molecule chain, from a coil to an extended chain [42]. Various methods have been de-
veloped to extend the polymer chain, such as uniaxial drawing and biaxial drawing [43,44].
Blowing molding has been used to manufacture high-performance polymer products.
Newly developed methods such as the friction transfer technique, dip-coating technique,
the Langmuir–Blodgett (LB) technique, and liquid crystalline (LC) self-organization were
used to arrange the molecular chain in the lab to obtain high physical performance [45–51].
The method of friction transfer was first proposed by Wittman and Smith in 1991 to prepare
the highly oriented poly (tetrafluoroethylene) (PTFE) film [52]. Compared to other methods,
friction transfer can be applied to prepare different highly-oriented polymer materials,
especially for conjugated polymers, that exhibit high in-plane anisotropic properties [53,54].

In general, the comprehensive crystal structures and phase transition behavior of
PLLA can be strongly influenced by an external field, such as draw temperature, draw rate,
and draw ratio [55,56]. Therefore, understanding and controlling the structural formation
and orientation play a key role in regulating or enhancing the mechanical performances of
polymers. Apart from other methods, such as a normal drawing rate about 5–10 mm/s,
the friction transfer speed can even reach a much faster rate of 1 m/s in our present case,
which may pave an effective way to controlling the structure and obtaining highly oriented
film [57]. However, the relationship of various PLLA crystal modifications affected by
temperature and related phase transition behavior is still lacking. Herein, we prepared a
highly orientated PLLA thin film by friction transfer technique. By combining the polarized
IR and WAXD data, the crystal structure of thin film can be identified at different friction
transfer temperatures, and the subsequent phase transition behavior in the heating process
as well as acetone treatment has been discussed in detail.

2. Experimental Section
2.1. Sample

The PLLA 2002D (Mw = 2.12 × 105 g/mol, D content of 4.25%) used in the present
study was purchased from Natureworks company, Bangkok, Thailand. The PLLA sticks
were prepared by injection molding with a barrel temperature of 190 ◦C for 10 min and
were subsequently quenched in cold water to obtain an amorphous state. The gauge length,
width, and thickness of the injection-molded test pieces were 80, 10, and 2 mm, respectively.

2.2. Characterization
2.2.1. Polarized Optical Microscopy

Polarized optical microscopy (POM) images were obtained using a Nikon H600L
polarized optical micro-scope equipped with a MD50 CMOS camera.

2.2.2. Scanning Electron Microscopy

Scanning electron microscope (SEM) analysis was conducted on a JEOL JEM 6700
instrument. Before measurement, the surfaces of the dried specimens were sputtered with
gold for SEM observation.
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2.2.3. Differential Scanning Calorimetry

Differential scanning calorimetry (DSC) measurement was performed at a heating rate
of 10 ◦C·min−1 using a TA Q20 calorimeter under flowing nitrogen.

2.2.4. Fourier Transform Infrared Spectroscopy

Fourier transform infrared spectroscopy (FTIR) spectra were measured using a Bruker
tensor 27 spectrometer equipped with a DTGs detector. FTIR spectra were measured at a
2 cm−1 spectral resolution, and a total of 32 scans were accumulated in the wavenumber
range from 4000 to 450 cm−1. The normal transmission mode was employed for polarized
IR measurement.

2.2.5. Synchrotron Radiation 2-Dimensional-Wide Angle X-Ray Diffraction (Sr-2D WAXD)

The 2D-WAXD diffraction patterns were collected on beamline (BL16B1) in the Shang-
hai Synchrotron Radiation Facility (Shanghai, China). The wavelength of the X-ray radiation
was 1 Å, and the sample-to-detector distance was 125 mm. An exposure time of X-ray mea-
surement was about 30 s per shot, utilizing a Mar 165 CCD. The temperature dependence
of 2D-WAXD measurement was controlled by a Linkam heater with an accuracy of±0.1 ◦C,
and the heating rate was ca. 2 ◦C/min.

3. Results and Discussion

The friction transfer process of the thus-obtained transparent PLLA stick on the heated
glass slide was carried out by a homemade mini friction transfer apparatus, as shown in
Figure 1a. The PLLA sample was fixed into the clamps and the screw was tightened to
apply the appropriate pressure, while the value of the pressure could be recorded through
the pressure sensor. The applied loads chosen here for squeezing and cylinder pressure
were 20 kgf/cm2 and 0.7 MPa, respectively. The friction transfer speed was about 1 m/s.
Highly oriented PLLA films can be obtained in a wide temperature range (Tg < T ≤ Tm);
here, the substrate temperatures were set from 70 ◦C to 150 ◦C. Before trigging the valve,
the amorphous PLLA stick was kept on the glass slide for 5 min at presetting temperature.
The friction transfer film, with a thickness of 5 µm, was peeled off in water.
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Figure 1. Schematic drawing of homemade mini friction transfer machine (a); enlarged region for the
PLLA chain axis on the glass slide along the friction direction (b); POM (c) and SEM (d) images of
the PLLA films friction transferred at a temperature of 100 ◦C, respectively. The arrows indicate the
friction direction.
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3.1. Temperature Dependence of Friction Transferred PLLA Polymorphous Crystal Structure

As shown in Figure 1b, the highly oriented fibril structure of the PLLA chain aligned
along the friction transfer direction was generated in the friction transfer process, which
was verified by POM (Figure 1c) and SEM (Figure 1d) images. Figure 2 displays 2D-WAXD
patterns and 1D-WAXD curves by subtracting the amorphous phase obtained from melt
as a function of different friction temperatures in the range of 70 to 150 ◦C. Diffraction
spots can be observed in the 2D-WAXD patterns for the samples friction transferred at a
temperature below 150 ◦C, indicative of highly-oriented structure formation. Fast friction
transfer speed can prevent the relaxation of molecular chains, even at a friction temperature
near the melting point of PLLA. Due to the complicated peak overlapped of various crystal
forms, integrated intensities in the q range from 11 to 13 nm−1 of strong characteristic re-
flections corresponding to each crystalline form among α′-, α-, and β-forms were evaluated
carefully by the multiple Gaussian peaks deconvolution method, as shown in Figure 3a.
Various crystal structures are remarkably influenced by the friction temperatures in this
region. In the peak deconvolution process, three different peak positions representative
of α′(100/200), α(100/200), and β(200) were fixed at q = 0.5407, 0.5333, and 0.5205 nm−1,
respectively [15,28,29].
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In the meantime, IR spectra directly reflect the local structure of the single chain; it
is very sensitive to the conformation and local molecular arrangement. All the samples
at different friction temperatures show the 912 and 921 cm−1 characteristic peaks by
decomposing overlapped curves, as depicted in Figure 3b. The characteristic IR band of
921 cm−1 was assigned to the coupling of the C-C backbone stretching with the CH3 rocking
mode, which is ascribed to the α- and α′-forms [32,33,55]. Moreover, it was reported that
the β-form of PLLA homocrystal had essentially the same 3/1 helical conformation and
showed the characteristic band at 912 cm−1, as described in the previous literature [30].

In order to quantitatively analyze the molar fraction of each crystal form, the inte-
grated intensities of the α′(110/200), α(110/200), and β(200) reflections were applied for
calculating the relative molar fraction of each crystal form. The relative molar content of
form fx, in which x represents α′-, α-, or β-form individually, was estimated as below.

ftotal = fβ(200) + fα(200⁄100) + fα’ (200⁄100) = 1 (1)

fx = Ix/((Iβ(200) + Iα(200/110) + Iα’ (200/100)) (2)
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Three friction transfer temperature regions of various crystal forms are identified
in Figure 4. At low friction temperatures (70–80 ◦C), only α′ and β crystal forms can be
observed with approximately approaching molar content. With increasing friction transfer
temperature, the α-form started to generate, and thus three crystal forms including α′-, α,
and β-forms were coexistent in the temperature range from 90 to 100 ◦C. At high friction
transfer temperatures (110–140 ◦C), α′-form cannot be observed. However, the molar
content of α-form continued to increase rapidly, while the content of β-form decreased. It
should be noticed that β-form exists in all friction transfer temperature regions from 70 to
140 ◦C, indicating that fast friction transfer rate is conducive to the formation of metastable
β-form. To further confirm the molar fraction of β-form by using IR spectra, the relative
molar fraction of β-form can be estimated by utilizing characteristic IR bands of 921 and
912 cm−1. Substantially congruent with the X-ray diffraction data, the relative content of
β-form shows a similar tendency with various friction transfer temperatures, as shown
in Figure 5. The relative content of β-form varies from 40 to 60% in the friction transfer
temperature region between 70 and 130 ◦C, whereas the content of β-form drops obviously
down to less than 30% at a friction transfer temperature of 140 ◦C.
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3.2. Thermal-Induced Phase Transition of PLLA Friction Transferred at 100 ◦C

In order to disclose the complicated phase transition among these crystal forms in
the heating process, the PLLA thin film friction transferred at 100 ◦C was utilized as an
example. Figure 6 shows the DSC curves. It is clear that almost no glass transition can be
observed in the first heating procedure indicative of the high crystallinity of this sample.
Moreover, two endothermic peaks at 148 and 154 ◦C can be observed, which should be
ascribed to the melting of β- and α-form crystals, respectively. For the second heating,
obvious Tg at about 62 ◦C and one melting peak ascribing to α-form can be recognized.
Unfortunately, DSC thermogram does not show the procedure of α′-form recrystallization
to α-form. For further detailed analysis of phase transition behavior, the phase transition
among β-, α′-, and α-forms in the heating process is traced by in situ WAXD measurements
in Figure 7a. In fact, there was almost no change in the 1D-WAXD curve in the heating
process. In order to emphasize the phase change in the region of high temperature, the
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relative content of the crystal forms in the heating procedure from 130 to 160 ◦C is shown
in Figure 7b. When the temperature reached 148 ◦C in the heating process, the content of
β-form started to decrease, which corresponded to the melting point of β-form shown in
the DSC curves. In the meantime, α-form only increased in the fraction of content, which
may suggest the metastable β-form partially changes to a stable α-form. By further heating
until 152 ◦C, the relative content of α′-form began to decrease, while α-form continues to
ramp up, which was ascribed to the melting-recrystallization and crystal perfection process
of α′-form to α-form phase transition reported in our previous study [58].
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3.3. Acetone-Induced Phase Transition of PLLA Friction Transferred at 100 ◦C

Several studies on solvent-induced crystallization behavior have been reported [59,60].
There is, however, as far as we know, no report about the influence of solvent on the
phase transition behavior of PLLA, especially for the β-form. As reported, acetone was
an effective solvent to accelerate the crystallization of PLLA, which was adopted here to
check the influence of it on the morphology and crystal structure of the friction transferred
PLLA film.

Figure 8 shows the polarized optical micrographs of the friction transferred PLLA
films. The as-prepared films (Figure 8a,c) exhibit smooth surfaces and highly oriented fibril
morphology. After acetone immersion for 24 h, as shown in Figure 8b,d, the clearer fibril
morphology of PLLA can be observed without losing highly oriented structure. The change
of crystal structure was investigated by utilizing WAXD and polarized FTIR techniques.
The WAXD results of PLLA film friction transferred at 100 ◦C before and after immersing
into acetone is shown in Figure 9a. Three crystal modifications (β-,α′-, and α-forms)
changed to the characteristic peak of pure α-form, which is indicative of acetone inducing
the occurrence of phase transition from metastable α′- and β-forms into the stable α-form.
This was also confirmed by FTIR measurements, as shown in Figure 9b. It was clear that
the coexistence of 912 and 921 cm−1 IR characteristic bands changed to only one IR band of
921 cm−1 after acetone treatment.
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Figure 10a,b show the polarized FTIR spectra of friction transferred PLLA film before
and after acetone treatment in the region of 1800–1000 cm−1(C=O stretching vibration,
CH3 and CH bending, and C-O-C stretching region) and 1000–600 cm−1(C-C backbone
vibrations), respectively [61]. In addition, the band assignments of α′- or α- and β-forms are
summarized in Table 1. The film exhibited a strong dichroism at the maximum absorption
band, whereas the dichroic ratio D =A///A⊥ for 912 cm−1 (β-form) and 921 cm−1 (α′- or
α-form) was nearly zero. The result demonstrated that the polymer backbones or chain
orientation almost perfectly parallel the friction transfer direction. It can be clearly seen
that the ordered chain orientation remained parallel to the drawing direction in the strain-
induced mesomorphic ordered structure, where the strain-induced 10/3 helical chain
started to occur, as discussed previously by the appearance of the characteristic band at
921 cm−1.
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Table 1. Characteristic infrared band assignments of PLLA in the range of 1800-600 cm−1.

IR Frequencies (cm−1)
Polarization Assignments

Amorphous α’ α β

1761 1759 ⊥ ν(C=O)
1457 1457 δas(CH3)
1386 ⊥ δs(CH3)

1370 //
δs(CH3) + δ(CH)1360 1360 ⊥

1213 1213 /
νas(COC) + ras(CH3)1183 1183 //

1131 1134 // ras(CH3)
1092 1092 1092 // νs(COC)
1046 1046 1045 ν(C-CH3)
955 957 957 // r(CH3) + ν(C-COO)

921 921 912 ⊥ ν(C-C) + r(CH3)
870 872 872 ν(C-COO)
757 757 757 ⊥ δ(C=O)

4. Conclusions

In the present study, highly oriented thin films of PLLA have been prepared by a
friction transfer method at different temperatures. The polymorphism of the resultant PLLA
films and related phase transformation behavior during the heating process and solvent
treatment were studied by utilizing WAXD, FTIR, and POM techniques. Preference of β-
form was generated between 70 and 140 ◦C, and the relatively fraction of β-, α′, and α-forms
was also evaluated quantitatively. The results suggest that high friction transfer speed was
in favor of the formation of metastable β-form, regardless of the friction temperature region
from Tg to Tm. The comprehensive thermal-induced phase transformation process among
β-, α′-, and α-forms was revealed by in situ WAXD measurement. The contents of β- and
α′-forms decreased continuously in the heating process, which may experience partial melt-
recrystallization or solid-to-solid transition to α-form. By immersing into acetone solvent,
the highly oriented structure was retained, and dichroic ratio D approached 0, whereas the
crystal structure of β- and α′-forms transformed to a stable α-form after solvent treatment
by keeping the chain orientation. Current research may provide an effective approach to
fabricating highly oriented thin film combined by regulating the crystal structure.
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