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Abstract: The wear of the tibial insert is one of the primary factors leading to the failure of total
knee arthroplasty. As materials age, their wear performance often degrades. Supplementing highly
cross-linked polyethylene (HXLPE) with dodecyl gallate (DG) can improve the oxidation stability
of tibial inserts for use in total knee arthroplasty (TKA). This study aimed to evaluate the wear
resistance of HXLPE supplemented with DG (HXLPE-DG) tibial inserts before and after accelerated
aging. HXLPE-DG tibial inserts were subjected to wear testing of up to 5 million loading cycles
according to ISO 14243, and the resulting wear particles were analyzed according to ISO 17853. The
wear rate, number, size, and shape of the wear particles were analyzed. The average wear rate of
the unaged samples was 4.39 ± 0.75 mg/million cycles and was 3.22 ± 1.49 mg/million cycles for
the aged samples. The unaged tibial inserts generated about 2.80 × 107 particles/mL following the
wear test, but this was considerably lower for the aged samples at about 1.35 × 107 particles/mL.
The average equivalent circle diameter (ECD) of the wear particles from the unaged samples was
0.13 µm (max: 0.80 µm; min: 0.04 µm), and it was 0.14 µm (max: 0.66 µm; min: 0.06 µm) from the
aged samples. Moreover, 22.1% of the wear particles from the unaged samples had an aspect ratio
(AR) of >4 (slender shape), while this was 15.4% for the aged samples. HXLPE-DG improves the wear
performance of the material over time. HXLPE-DG is a novel material that has been demonstrated to
have antiaging properties and high wear resistance, making it a promising candidate for use in TKA.
Nevertheless, the results are preliminary and will be clarified in further studies.

Keywords: dodecyl gallate; highly cross-linked polyethylene; knee prosthesis; wear performance;
material aging

1. Introduction

Total knee arthroplasty (TKA) is considered an effective surgical treatment for knee
osteoarthritis [1,2]. Highly cross-linked polyethylene (HXLPE) is increasingly used in
total hip arthroplasty (THA) and is gradually replacing conventional ultrahigh-molecular-
weight polyethylene (UHMWPE) as the material of choice for bearings due to its excellent
wear resistance. Further researchers concluded that the benefit of HXLPE in total knee
arthroplasty (TKA) is unpredictable and remains controversial due to delamination and
cracking [3]. It is well understood that the addition of reinforcing fibers greatly improves
the stiffness and strength of polymeric matrix composites [4–6]. Researchers suggested that
adding antioxidants can slow down the oxidation. Thus, to improve the oxidation stability
of HXLPE, vitamin E is often added to the blend as an antioxidant [7]. However, since the
molecular structure of vitamin E contains only one hydroxyl group, the loss of vitamin E
during irradiation cross-linking can reduce the oxidation resistance of the material [8]. As
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an alternative, Fu J et al. proposed supplementing HXLPE with dodecyl gallate (HXLPE-
DG) [8]. Such polyphenols have multiple phenolic hydroxyl groups and can offer better
oxidation resistance than HXLPE supplemented with vitamin E (HXLPE-VE). HXLPE-DG
has also been reported to have comparable mechanical properties and biocompatibility to
HXLPE-VE [8].

In addition to the antioxidants used, aging is another important factor affecting the
long-term use and service life of polyethylene. At present, wear resistance of polymers has
been intensively studied, but the effect of aging on the tribological properties of polymers
is still poorly studied [9]. As a novel highly cross-linked polyethylene material, few studies
have investigated the wear properties of HXLPE-DG, particularly its performance before
and after aging.

The purpose of this study was to investigate the wear rate of HXLPE-DG before and
after aging using in vitro wear tests. The quantity, size, and morphology of polyethylene
wear particles in the lubricating medium were recorded to analyze the wear resistance
and resistance to oxidation of HXLPE-DG. The hypothesis of this study was that the wear
resistance of HXLPE-DG would reduce after aging.

2. Materials and Methods
2.1. Samples

Eight prosthetic knee tibial inserts (Beijing Naton Technology Group Co., Ltd., Beijing,
China) were investigated in this study (Figure 1). All inserts were made of HXLPE-DG and
produced using the same processing technology, with a size of 83.1 mm × 54.1 mm × 18.0 mm
and crosslink density of 224 mol/dm3. The tensile properties of the materials used in
this study are summarized in Table 1 [8]. Eight samples were randomly assigned to two
groups, one that would undergo aging and one that would not be aged and would serve as
a baseline. In the unaged group, three samples were randomly selected as the test group
and the remaining sample was used as a control. In the aged group, all samples were aged
according to ASTM-F2003 [10], with the samples being stored for 14 days at a constant
temperature of 70 ◦C and a pure oxygen pressure of 5 atmospheres. Then, three samples
were randomly selected as the test group sample and the remaining sample was used as
the control.

For the wear test, each sample was assembled with the same type and specification of
femoral condyle and tibial tray, all of which were made of CoCrMo.
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Table 1. The tensile properties of the materials.

HXLPE-DG

Unaged Aged

UTS (MPa) 60.6 ± 2.2 54.8 ± 5.4
EAB (%) 280 ± 14 261 ± 24
YS (MPa) 22.6 ± 0.3 23.8 ± 0.3

Impact strength (kJ·m−2) 77 ± 4 82 ± 1

2.2. Test Equipment and Test Parameters
2.2.1. Wear Test

The wear test was carried out on an AMTI knee simulator (ADL-K6-01, Advanced
Mechanical Technology Inc., Watertown, MA, USA). The test process included steps for
sample presoaking, maintaining constant weight, fixing, abrasion, cleaning, and weighing.

The wear test was run for five million cycles in accordance with ISO 14243-1 [11]. The
specific test parameters are shown in Table 2. The test samples were assembled as Figure 2.
The control samples did not undergo the wear test but were subjected to the same axial
load as the test group. This was then used to correct the mass loss of the inserts when
calculating the wear rate. Calf serum with a protein concentration of 20 g/L (added with
0.02% sodium azide) was used as the lubricating medium.

Table 2. Wear test parameters.

Parameter Test Specifications from ISO 14243-1

Load and displacement input curves

AP force: −265 N~110 N
Flexion: 0◦~58◦

Tibial rotation torque: −1 Nm~6 Nm
Axial force: 168 N~2600 N

Test cycles 5,000,000

Test frequency 1 Hz

Test medium Calf serum
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The gravimetric wear and wear rate were calculated according to ISO 14243-2 [12].
The gravimetric wear (Wn) referred to the net loss of mass from each test specimen after
n loading cycles and was calculated using Equations (1) and (2). The gravimetric wear
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of all the test specimens was calculated after the following wear cycles during the wear
simulation: 500,000, 1 million, 2 million, 3 million, 4 million, and 5 million cycles.

Wn = m0 − mn + Sn (1)

Sn = mn − m0 (2)

m0—the mass of the test specimen before the wear test.
mn—the mass of the test specimen after n loading cycles.
Sn—the increase in mass of the control specimen over the same period.
m0—the mass of the control specimen before the wear test.
mn—the mass of the control specimen after n loading cycles.
The mass loss of the inserts was calculated and linearly fitted. The linear relationship

between the mass loss and number of cycles n was determined by Equation (3), and the
wear rate aG was calculated.

Wn = aG × n + b (3)

b—constant.
The wear rate was taken as the average of the three test samples.

2.2.2. Wear Particles Analysis

The wear particles analysis test was carried out according to ISO 17853 [13].
First, 10 mL of the calf serum was continuously mixed with 40 mL of hydrochloric acid

(37% volume fraction) for approximately 1 h at 50 ◦C. The fluid turned a slightly purple
color. Then, 0.5 mL of the digestion solution was mixed with 100 mL of methanol.

The filtrate was filtered using a polycarbonate membrane with a pore size of 0.1 µm,
and the filtered membrane was dried in a precision drying oven for 24 h.

Images were taken using a scanning electron microscope (SEM) (S-4800, Hitachi,
Tokyo, Japan) at a magnification of 10,000× g and acceleration voltage of 10 kV.

The polyethylene wear particles were assessed in terms of quantity, size, and morphol-
ogy using the image analysis software ImageJ (contributors worldwide, USA).

The total number of polyethylene wear particles was calculated using Equation (4).

N = n × S
A

(4)

N is the quantity of polyethylene wear particles on the filter membrane; n is the quan-
tity of polyethylene wear particles from SEM images; S is the area of the filter membrane; A
is the area of each SEM image.

Knowing that the wear particles on each filter membrane were from 0.1 mL of the
calf serum medium, the content of wear particles in the full volume of calf serum medium
could then be calculated.

The size of the polyethylene wear particles was represented by the equivalent circle
diameter (ECD) [14]. Since the wear particles had an irregular shape, the diameter of a
sphere equal to the projected area of the wear particles was used to represent the particle
size, calculated by Equation (5).

ECD =

(
4 × A

π

) 1
2

(5)

The shape of the polyethylene wear particles was characterized by the aspect ratio
(AR) [14], which is the ratio of the maximum diameter to the minimum diameter of the
projected surface of the wear particles, as shown in Equation (6).

AR = dmax/dmin (6)
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3. Results
3.1. Wear Rate

The average wear rate of the unaged HXLPE-DG inserts was 4.39 mg/million cy-
cles but was considerably lower for the aged HXLPE-DG inserts at 3.22 mg/million cy-
cles (Table 3). The wear rate of the HXLPE-DG polyethylene inserts decreased by 26.7%
after aging.

Table 3. Wear rate after 5 million cycles.

Number Preconditioning Test Specimen Wear Rate
(mg/Million Cycles)

Mean Wear Rate
(mg/Million Cycles) Standard Deviation

1 unaged
5.22

4.39 0.753.78
4.17

2 aged
1.88

3.22 1.492.97
4.82

3.2. Wear Particles Analysis

SEM images of wear particles from the unaged and aged polyethylene inserts are
shown in Figure 3. Immediately it can be seen that there are very few wear particles with
an ECD greater than 1 µm, and the majority of particles are round or spherical in shape.
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3.2.1. Amount of Wear Particles

The average number of polyethylene wear particles on each filter membrane was
calculated according to Equation (4), giving about 2.80 × 107 particles/mL for the unaged
samples and 1.35 × 107 particles/mL for the aged samples (Figure 4). The serum from the
wear test of the unaged polyethylene contained 107.4% more wear particles than the serum
from the aged polyethylene.
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3.2.2. Size of Wear Particles

The average ECD of the wear particles from the unaged polyethylene was 0.13 µm
(max: 0.80 µm; min: 0.04 µm), and the average ECD from the aged polyethylene was
0.14 µm (max: 0.66 µm; min: 0.06 µm) (Figure 5).
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Figure 5. Size of polyethylene wear particles.

Wear particles from the unaged polyethylene within the size range of 0.00–0.20 µm had
a distribution of 2.24 × 107/mL, particles within the range of 0.21–0.40 µm were distributed
at 5.12 × 106/mL, within the range of 0.41–0.60 µm were 5.39 × 105/mL, and no wear
particles with an ECD of 0.60 µm or larger were found. Wear particles with an ECD of less
than 0.4 µm accounted for 98.3% of all particles from the unaged polyethylene.

Similarly, wear particles from the aged polyethylene within the size range of 0.00–0.20 µm
were distributed at 1.03 × 107/mL, within the range of 0.21–0.40 µm were distributed at
2.20 × 106/mL, within the range of 0.41–0.60 µm were distributed at 6.12 × 105/mL, within
0.61–0.80 µm were 3.67 × 105/mL, and no wear particles with an ECD greater than 0.80 µm
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were found (Figure 6). For the aged polyethylene inserts, 92.6% of the wear particles had
an ECD of less than 0.4 µm. The aged polyethylene produced a greater quantity of larger
particle sizes than the unaged polyethylene.
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3.2.3. Shape of Wear Particles

The shape of the HXLPE-DG wear particles was evaluated using the aspect ratio (AR).
The average value of AR for the unaged wear particles was 2.8 (max: 9.9; min: 1.0), and
the average value of AR for the aged wear particles was 2.7 (max: 7.7; min: 1.1) (Figure 7).
The percentage of particles with AR > 4 (slender shape) decreased with aging, from 22.1%
unaged to 15.4% aged.
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4. Discussion

A previous study from our research group reported that unaged HXLPE-DG knee
inserts had a wear rate of 3.92 mg/million cycles [1], which was similar to the results of this
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study, although the earlier study did not consider the aged specimen. Haider et al. reported
UHMWPE tibial inserts with a wear rate of 19.88 mg/million cycles [15], which was more
than four times that of HXLPE-DG. The surface of UHMWPE is primarily composed
of unbranched linear structures (free radicals). When subjected to high temperature or
long-term friction, the bonding force between the molecular chains of the polyethylene
structure weaken, resulting in surface wear [16,17]. The polyphenol groups in HXLPE-DG
can eliminate free radicals and reduce oxidation, thereby improving the wear resistance [8].
B.R. Micheli et al. reported HXLPE-VE tibial inserts with a wear rate of 2.4 mg/million
cycles [18], and T.M. Grupp et al. reported a wear rate of 5.3–5.6 mg/million cycles [19].
The addition of dodecyl gallate to the insert material provides comparable improvements
in the wear resistance to vitamin E.

The results of this study showed that subjecting HXLPE-DG to accelerated aging
for 14 days reduced the wear rate by 26.7%. In contrast, Affatato et al. found that aging
HXLPE-VE did not have a significant effect on the wear behavior [20,21]. Other studies
showed that the oxidative induction time of polyethylene blended with polyphenols after
aging treatment was greater than that of pure polyethylene, demonstrating the benefits of
polyphenols on oxidative stability [22,23].

The wear rate of the three HXLPE-DG inserts after aging ranged from 1.88 mg/million
cycles to 4.82 mg/million cycles, with a standard deviation of 1.49. There was a greater
variation in the wear rate between the aged samples than the unaged samples. This shows
that aging has a certain influence on the internal structure of polyethylene [24]. Further
research may be needed to improve the stability of HXLPE-DG, in addition to refining the
processing technology.

In total joint arthroplasty, aseptic implant loosening is a common cause of implant fail-
ure, resulting mainly from inflammatory reactions caused by implant wear particles [25,26].
Key factors in these osteolytic processes are the material type and the size and shape
of the wear particles [27]. Studies have shown that the greater the number of particles,
the greater the resulting macrophage response, and the number of submicron particles is
critical [28,29]. This current study found that the number of wear particles per unit volume
from the unaged polyethylene was 102.9% more than the aged polyethylene, demonstrating
a considerable reduction in the number of wear particles after aging. Zhang et al. [30]
pointed out that irradiation can generate free radicals inside polyethylene, and the free
radicals are easily oxidized which can lead to degradation of the mechanical properties
of the bulk material. When HXLPE blended with polyphenols is aged, some free radicals
are preferentially combined with polyphenol groups, which increases the degree of cross-
linking and increases the wear resistance of the polyethylene. This was one reason why the
wear rate of HXLPE-DG reduced after aging [8].

ECD and AR are commonly used to measure particle size and morphology [14,31]. The
difference in the average ECD of unaged polyethylene wear particles (0.13 µm) and aged
wear particles (0.14 µm) was not significant. The wear particles produced from both groups
were small, all less than 0.80 µm, and were granular in form, resembling the morphology
of wear particles reported for high cross-linked polyethylene (HXLPE).

Markhoff et al. [31] reported that the ECD of most wear particles from UHMWPE,
HXLPE, and HXLPE-VE was between 0.1 µm and 0.2 µm. In a previous study from our
research group, the average ECD of wear particles from unaged HXLPE-DG was 0.18 µm
after 3 million cycles [8], which was similar to the results of this study where 98.3% of the
wear particles generated were less than 0.4 µm. The reason may be that the cross-linking
process reduces the deformability of the polyethylene inserts, resulting in less fibrous
particles [31,32], and larger polyethylene particles could be crushed under the action of
cyclic stress. At the same time, the proportion of large strip-shaped, needle-shaped, and
fibrous particles was greatly reduced [1].

In this study, although the AR of the polyethylene wear particles was similar before
and after aging, the percentage of slender particles with AR > 4 decreased by 29.9%
after aging. Previous studies have shown that slender particles can induce more severe
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inflammatory factor expression and macrophage infiltration [33,34]. This indicates that
the wear particles generated by the abrasion of aged HXLPE-DG would not be easily
phagocytosed by macrophages compared with unaged HXLPE-DG.

There are some limitations of this study that should be noted. Due to the long time
required for in vitro wear testing and associated costs, the number of test samples in this
study was small, and the size of the tibial inserts was larger. Analytical studies were also
not carried out on samples with different specifications to obtain more data to verify the
wear resistance of HXLPE-DG. There may be some variation between the results of this
study and those of other studies quoted in this article due to differences in test equipment,
conditions, methods, etc., which may lead to certain limitations in the comparison of
test data.

5. Conclusions

Preconditioning the HXLPE-DG inserts through accelerated aging further improved
their resistance to wearing. HXLPE-DG is a novel material that has been demonstrated to
have antiaging properties and a high wear resistance, making it a promising candidate for
use in TKA. Nevertheless, the results are preliminary and will be clarified in further studies.
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