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Abstract: Doxorubicin (DOX) is one of the most commonly used drugs in liver cancer. Unfortu‑
nately, the traditional chemotherapy with DOX presents many limitations, such as a systematic
release of DOX, affecting both tumor tissue and healthy tissue, leading to the apparition of many
side effects, multidrug resistance (MDR), and poor water solubility. Furthermore, drug delivery sys‑
tems’ responsiveness has been intensively studied according to the influence of different internal
and external stimuli on the efficiency of therapeutic drugs. In this review, we discuss both internal
stimuli‑responsive drug‑delivery systems, such as redox, pH and temperature variation, and exter‑
nal stimuli‑responsive drug‑delivery systems, such as the application of magnetic, photo‑thermal,
and electrical stimuli, for the controlled release of Doxorubicin in liver cancer therapy, along with
the future perspectives of these smart delivery systems in liver cancer therapy.

Keywords: doxorubicin; liver cancer; smart drug delivery systems; stimuli‑responsive polymers

1. Introduction
Liver cancer is one of the most common types of cancer, ranking in the top five in inci‑

dencewith up to 1,000,000 cases reported per yearworldwide [1]. Froman etiological point
of view, themain risk factors that favor liver cancer are viral infection with Hepatitis B and
Hepatitis C, liver cirrhosis, obesity, and type II diabetes [2,3]. There is information linking
the increased incidence of developing liver cancer by up to 50% in patients with cirrho‑
sis [4]. Alongwith liver cancer, cirrhosis results from a repercussion of different conditions,
such as chronic viral hepatitis, alcohol intake, fatty liver disease, and other liver dysfunc‑
tion [5,6]. The principal malignancy of the liver accounting for more than 5% of all types of
liver cancers that occurs predominantly in patients with underlying chronic liver disease
such as cirrhosis is hepatocellular carcinoma (HCC) [7]. Unfortunately, liver cancer is most
often diagnosed in the terminal phase because the early stages have an asymptomatic na‑
ture [3,8,9]. The average life expectancy of patients without treatment is 1–3 months and
for patients with treatment is 6–20 months [1,10]. The most usedmethod of treating cancer
is to surgically remove the cancerous tissue, but in the case of liver cancer, the survival rate
is 47% to 53% [8]. In addition, chemotherapy and radiotherapy represent other alternatives
as cancer treatments [9]. Chemotherapy is a mandatory part of clinical cancer treatment,
through the administration of antitumoral drugs in order to inhibit the growth of the tu‑
moral cells and generate cellular apoptosis. The recently reported studies have shownpoor
results correlated with chemotherapy [9]. Unfortunately, the administration of anticancer
agents is performed systemically, and the antitumor agent can affect both tumor cells and
healthy cells. This can cause both side effects and poor treatment effectiveness due to the
off‑target phagocytic uptake and nonspecific biodistribution of the drugs [11]. Another
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disadvantage of chemotherapy is multidrug resistance (MDR), which is closely related to
tumor recurrence and therapeutic failure, and poorwater‑solubility [10,12]. Themost used
antitumoral agent in the chemotherapy treatment for HCC is Doxorubicin (DOX), along
with chemotherapeutic drugs, such as 5‑fluorouracil and cisplatin [9,13,14].

Doxorubicin (DOX) (Figure 1), isolated from Streptomyces peucetius, is one of the most
commonly used drugs in cancer treatment, including breast, bile ducts, prostate, uterus,
ovary, esophagus, stomach, and liver cancer [15–18]. DOXwas one of the first antitumoral
agents used in liver cancer treatment [5]. It was reported that the antitumor activity of
doxorubicin is due to its ability to intercalate into the DNA helix and/or bind covalently
to proteins involved in DNA replication and transcription, resulting in an inhibitory ef‑
fect on DNA, RNA, and proteins’ synthesis, leading to cell death [19,20]. However, the
limitations of DOX are drug resistance and the side effects, mainly because of its toxicity
on non‑cancerous cells. The main side effects of the usage of DOX are nausea, vomiting,
myelosuppression, and arrhythmia in a very short time after administration [21]. Unfor‑
tunately, this cellular damage caused by DOX administration not only occurs in cancer
cells but also in healthy cells, such as a DNA alteration caused by the presence of Adri‑
amycin, which leads to a slowing or stopping of the cells’ growth [7,21]. Furthermore,
studies have shown that the use of DOX in conventional chemotherapy can lead to car‑
diotoxicity through increased oxidative stress, affecting the heart tissue and leading to
cardiomyopathy [22,23]. Nowadays, researchers are developing new forms of drugs able
to optimize the pharmacodynamics and pharmacokinetics that specially target the tumor
tissue, without affecting the surrounding healthy tissues [24,25].
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Materials science with its interdisciplinary character has provided a lot of solutions
in the field of biomedical sciences for different applications in recent decades, solving a lot
of problems that were previously impossible to address. In the twentieth century, mem‑
branes for hemodialysis appeared for kidney failure disease [26,27], a large number of
materials were discovered for tissue engineering from soft materials [28–30] to compos‑
ites for bone repair and regeneration [31,32], or even solutions that minimize the impact
of the health system through the environment and everyday life in terms of waste. One
of the applications that attracted the interest of researchers in the field of materials for
drug delivery.

In the hopes of solving the problem related to the efficiency of cancer treatment, var‑
ious drug delivery systems (DDSs) have been researched in the past few decades, aiming
at targeted delivery and controlled release of antitumor agents [33–39]. The principal in‑
terest is to develop new drug delivery systems to guarantee a safe administration of the
therapeutic agent, in order to improve the delivery efficiency, and not harm the human
body by the presence of toxic side‑effects [40,41]. The development of targeted release
systems for cancer treatment may overpower the limitations of standard treatment, such
as low stability, fast inactivation or degradation in vivo, non‑specific toxicity, poor solu‑
bility, unfavorable pharmacokinetics, and low biodistribution [42]. A multitude of con‑
trolled and targeted release systems have been reported in the literature, based on the use
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of organic [43] or inorganic [44,45] nanoparticles, polymeric micelles [46], dendrimers [47],
nano shells [48], and nanotubes [49]. Smart drug delivery systems are able to respond to
a range of diverse stimuli, such as internal stimuli (pH, redox conditions, enzymatic activ‑
ity, the concentration of specific biomolecules, temperature), or external stimuli (such as
applying magnetic fields, electric fields, ultrasound, mechanical pressure, etc.) [50]. Addi‑
tionally, many reviews in the domain of liver cancer therapy are continuously published
due to the extensive interest in the subject. Some of the latest topics are related to the use
of nanoparticles and a multitude of active pharmaceutical compounds [51–54], the nature
of materials used for different types of technological solutions for cancer problems related
to drug delivery [55–57], or medical aspects of liver cancer [58–60]. This review generally
presents themain recent trends in the obtaining of smart drug‑delivery systems fieldwhich
are internal or external stimuli‑responsive for the efficient release of DOX for the treatment
of hepatocellular carcinoma. These intelligent release systems are obtained in particular
from polymeric materials, which have the role of facilitating the controlled and targeted re‑
lease of Doxorubicin, reducing systemic toxicity, increasing drug bioavailability, reducing
and preventing the many side effects of Doxorubicin, improving selectivity, biocompati‑
bility, dispersibility and the stability of Doxorubicin. A summary of the reviewed studies
in tabulated form is presented at the conclusion (Table 1).

Table 1. Summary of featured stimuli‑responsive polymers.

Stimuli Smart‑Drug Delivery System Results Ref.

pH POEAd‑g‑LA‑DOX micelles pH changes promote chemical and physical
modifications resulting drug release [61]

pH HA‑hyd‑DOX pH changes promote hydrazone bonds
disintegrated resulting in drug release [62]

pH S(HA–GA/HA–His) pH changes promote the swelling of the core,
followed by the DOX release. [63]

pH CS‑NSA/A‑HA/DOX Drug release at pH5.5 [64]

pH CEC‑PEGDA pH changes promote chemical and physical
modifications resulting in drug release [65]

pH folic acid‑modified and zeolitic
imidazolate framework (ZIF)

pH changes promote chemical and physical
modifications resulting in drug release [66]

Temperature β‑CD‑g‑(PNIPAAm‑b‑POEGA)x/DOX Temperature greatly influences the release of
DOX [67]

Temperature
pH

Graphene nanosheets‑poly(N‑
isopropylacrylamide)‑polyethylenemine Drug release at pH 5.5 and above LCST [68]

Temperature
pH

Magnetic

magnetic iron oxide (MIO) nanoparticles
functionalized with Pluronic F127 (PF127)
and branched polyethylenimine (bPEI)

pH and temperature greatly influence the
release of DOX [69]

Temperature
Magnetic

phosphatidylglycerol (DPPG2) ‑d
(MR‑HIFU)

Release at 42 ◦C due to the melting
temperature [70]

Redox anti‑carbonic
anhydrase IX antibody (A‑CAIX Ab) Release due to disulfide linkages [71]

Redox (HA‑Cyst‑GA) Release due to the presence of reductive
stimulus [72]

Redox (HA‑ss‑FA) Release due to the presence of GSH [25]

Redox
pH

Phenylboronic acid‑modified hollow silica
nanoparticles

Release due to the presence of GSH and pH
variation [73]
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Table 1. Cont.

Stimuli Smart‑Drug Delivery System Results Ref.

Enzyme
poly(lactic‑co‑glycolic

acid)‑b‑poly‑l‑lysine and poly(lactic
acid)‑b‑poly(ethylene glycol)

Release due to protease‑mediated cleavage [74]

Enzyme poly(amidoamine) dendrimer Bind to hepatic azoreductase enzymes via a
NADPH‑dependent mechanism [75]

Magnetic poly (ethylene oxide)‑trimellitic anhydride
chloride‑folate (PEO‑TMA‑FA),

Significantly decreased tumor volume without
visible side effects [76]

Magnetic
Redox

poly(ethylene glycol)
(PEG)‑poly(e‑caprolactone) (PCL)

copolymers with magnetic iron oxide
nanoparticles (Fe 3 O 4)

Selectively target the SA‑positive HepG2 cells
by magnetic and enzymatic stimuli [77]

Photo‑responsive‑UV
Redox
pH

poly(acrylic acid‑co‑spiropyran
methacrylate) crosslinked by

disulfide‑containing
N,N‑bis(acryloyl)cystamine

Released upon the stimulation of light, pH,
and DTT. [78]

Ultrasonic albumin nanoparticle‑conjugated
microbubble complex Drug release via sonoporation [79]

Ultrasonic poly(lactobionamidoethyl
methacrylate)‑based amphiphiles

Accelerated release was attributed to the
ultrasound‑induced cleavage of ‑oa‑ linkage [80]

Ultrasonic alginate/chitosan stabilized perfluoro
hexane nanodroplets

Good accumulation and tumor‑targeting in
HepG2 tumors [81]

2. Internal Stimuli‑Responsive Drug Delivery System
2.1. pH‑Responsive Drug Delivery Systems

The variation of pH values in different regions of the human body can provide a suit‑
able physiological stimulus for pH‑responsive drug delivery in order to deliver the active
substances in the area of interest [82]. For example, the pH range of the stomach is be‑
tween 1.5–3.5 pH, 5.5–6.8 pH of the intestine, 6.4–7 pH of the colon, and up to 7.4 pH of
the blood [83]. The pH of cancerous tissue exhibits a decreasing trend due to the Warburg
effect, which explained that the hypoxic cells produce lactic acid due to glycolysis [35]. Fur‑
ther, pH‑responsive drug delivery systems have excellent advantages and have attracted
much attention in the past decade because the pH values in tumors and inflammatory tis‑
sues are significantly lower than those in blood and normal tissues and could increase
the therapeutic efficacy of administrated drugs [33,35,84–86]. The main principle of pH‑
responsive drug delivery systems is to release the active substance when the pH trigger
point is achieved, and the intracellular concentration of drugs is equal to the therapeutic
dose needed [34]. This release system time has the role of releasing the active substance
preferentially, in order to eliminate the disadvantages of chemotherapy treatment.

One modality to obtain this type of release system is to introduce “ionizable” chem‑
ical groups, for example, amines, phosphoric acids, and carboxylic acids among others,
with nanomaterials [87]. These groups, with varying pKa values and chemical structures,
have the ability to accept or donate protons and be subjected to pH‑dependent alterations
in the chemical or physical properties, such as solubility and swelling ratio, culminating
in drug release [34]. Various biomaterials have been reported in the obtaining of pH‑
responsive drug delivery systems, such as inorganic nanoparticles, core‑shell nanoparti‑
cles, liposomes, hydrogels, and polymer micelles [12,88–90]. An example of some widely
used materials for the production of pH‑sensitive drug delivery systems are pH‑sensitive
polymers, which are polyelectrolyteswith ionizable groups in their backbones, side groups,
or end groups. When the pH of an aqueous solution changes, these pH‑sensitive polymers
are ionized, resulting in a change in their conformation. These “smart” polymers can either
accept or donate H+ ions in response to the pH changes in the environment. The protona‑
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tion or deprotonation of these ionizable groups can lead to changes in the structure of the
polymer chain by electrostatic repulsion of the generated charges, which causes the tran‑
sition of the chains from collapsed to an expanded state [83]. For example, pH induces
protonation/deprotonation in the ‑NH2 groups of chitosan, making it susceptible to use
in obtaining pH‑sensitive release systems [91,92]. At acidic pH (<6), primary amines are
protonated and positively charged, making chitosan soluble in an aqueous solution [93].
In addition to sensitivity to pH, chitosan is low toxicity, biocompatible, has antibacterial
properties, mucoadhesive properties, and permeation‑enhancing effects [94,95]. Due to
these beneficial characteristics of chitosan, many researchers have used chitosan in various
pH‑sensitive release systems for liver cancer [96–100]. Mi et al. [96] reported pH‑sensitive
drug delivery for DOX based on Carboxymethyl‑β‑Cyclodextrin/Chitosan Nanoparticles.
In vitro release showed higher cumulative release rates of DOX from HF‑DOX‑CD NPs at
a low pH, than cumulative release at neutral pH or slightly basic pH due to the tendency of
chitosan nanoparticles to swell at low pH, and also, due to the acidic pH, the protonsmight
penetrate the interior and attack the inner secondary bonds of the nanoparticle. These two
reasons lead to a release of DOX in an acidic medium. Zhan et al. [79] developed pH‑
sensitive and self‑healing properties based on 4armPEGDA and N‑carboxyethyl chitosan
for liver cancer. The degradation rate was observed to be higher in the case of exposure to
an acidic environment indicating that hydrogels have pH‑dependent degradation behav‑
ior. Cytotoxicity tests were performed on human hepatocytes (L02) and the therapeutic
effect of DOX‑loaded CEC/4armPEGDA hydrogels on HepG2 cells. The results showed
no toxicity for human hepatocyte cells and even at a fairly small load of DOX the obtained
system was able to kill tumor cells over time due to the continuous release of DOX in the
hydrogel during this process. Qu et al. [65] presented the obtaining of a pH‑sensitive hy‑
drogel that was able to release DOX into an acidic environment based on N‑carboxyethyl
chitosan (CEC) and dibenzaldehyde‑terminated poly(ethylene glycol) (PEGDA) as a possi‑
ble treatment for hepatocellular carcinoma. At an acidic pH, the amino groups of chitosan
become protonated and positively charged, resulting in weaker ‑NH2 and ‑CHO bonds,
that also decompose and the release of the DOX takes place.

Furthermore, many polymeric networks have been studied for showing pH‑sensitive
bioerodible properties such as Poly(Ortho Ester Amides) (POEAd) due to the hydrolysis
of ortho esters at low pH [61]. Yan et al. [101] proposed a solution for the promotion of
drug accumulation and efficient killing ability of tumoral cells via galactose‑grafted on
an ultra‑pH‑sensitive drug carrier (POEAd‑g‑LA‑DOX micelles), which can respond to
both intracellular and extracellular pH, to remain stable at pH 7, responding to extracel‑
lular tumor pH, conjugating receptors in the cell membrane of liver cancer through sur‑
face galactose‑ligands of micelles, and being sensitive to intracellular tumor pH following
further swelling for rapid drug release. The POEAd‑g‑LA copolymers were successfully
obtained via facile polycondensation followed by the grafting of lactobionic acid. Figure 2
shows the percentage of main chain hydrolysis over time, as well as size and accumulation
release over time, at different pH values. In order to assess the influence of pH, Yan car‑
ried out an NMR analysis to follow the time‑course of the hydrolysis of ortho esters in the
main‑chain for up to 72 h in deuterated water buffers (pH 7.4, 6.5, and 5.5). The hydrolysis
of the ortho ester did not occur at neutral pH, while at pH 5.5 it was observed that the hy‑
drolyzation of ortho esters was accelerated due to the acidic pH, which could lead to a size
reduction and drug release. Furthermore, it was highlighted that the ultra‑pH‑sensitivity
of ortho ester can influence the size, observing that at an acidic pH the size of the particles
increases, swelling itself, which was probably due to the interaction between the hydrogen
bonding interaction of the hydrophilic productswith plenty of hydroxyl groups and amide,
and gradually increasing hydration. Additionally, the rate of drug release was reported
to be higher in the case of an acidic medium, which can thus be a benefit due to the acidic
pH of the tumor tissue. The in vivo therapeutic efficacy of the reported formulations was
tested in the mice bearing subcutaneous‑inoculated H22 tumors, and it was observed that
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in relation to the mice treated with POEAD‑g‑LA20‑DOX a decrease in the tumor size was
reported, reducing the growth, and demonstrating an inhibitory effect on tumoral tissue.
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dependent changes of average size of POEAd‑g‑LA micelles in aqueous phosphate buffer measured
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Hyaluronic acid (HA) has been widely used in targeted drug delivery systems due
to its good biocompatibility, good water solubility, high selectivity, and affinity to CD44
receptors found in different tumor cells [101,102]. In order to increase the drug/cargo accu‑
mulation specifically in CD44 over‑expressing cancer cells, HA‑attached pharmaceuticals
and nanocarriers have been created. This is because HA has numerous functional groups
available for chemical conjugation with anticancer medications or nanocarriers of drugs
or genes [103]. Further, it was reported that DOX could be covalently bounded on the
backbone of HA through the hydrazone linkage [62,104]. Li et al. [105] described that hy‑
drazone bonds disintegrated in lysosomal pH and remained stable at neutral pH. Liao
et al. [62] reported a pH‑responsive drug delivery of hyaluronic acid‑hydrazone linkage‑
Doxorubicin (HA‑hyd‑DOX), which is illustrated in Figure 3. Due to the amphiphilic struc‑
ture between the hydrophilic glucopyranose ring and hydrophobic DOX segment, a series
of HA‑hyd‑DOX NPs were generated by self‑assembling in an aqueous solution. The re‑
sults showed a burst release in the first 6 h in buffers at pH 5.0 due to a looser structure
of particles with the cleavage of hydrazone bonds at a lower pH. The cell cytotoxicity was
studied on HeLa and L929 cells for 48 h of incubation and a nontoxicity against HeLa or
L929 cells was observed, suggesting that HA is nontoxic, having good biocompatibility.
Additionally, an internalization was observed due to the receptor‑mediated binding affin‑
ity of CD44 for HA with high specificity.
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Wuet al. [63] reported on the liver cancer‑targetingmixedmicelles based onhyaluronic
acid–glycyrrhetinic acid conjugate and a hyaluronic acid‑L‑histidine conjugate
S(HA–GA/HA–His) were prepared via ultrasonic dispersion, and the in vitro and in vivo
investigation of antitumor effect of Doxorubicin (DOX)‑loaded micelles (Figure 4). It was
related to the pH sensibility of DOX‑loaded HA–GA/HA–His is micelles and the remark‑
able absorption of HepG2 cells. It was reported that the hydrophobic DOXmolecules were
efficiently encapsulated into the HA–GA/HA–His micelles in an aqueous solution because
of the presence of a hydrophobic core in the micelles. It was shown that the obtained DOX‑
loaded micelles exhibited a sustained DOX release under the acid pH of hepatocellular
carcinoma cells, due to protonation of His, resulting in the swelling of the core, followed
by the DOX release.
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Anirudhan et al. [64] delivered DOX and cisplatin (CDDP) via pH‑responsive drug
delivery, also based on hyaluronic acid (HA) and chitosan (CS‑NSA). The release was stud‑
ied via immersion in two buffer media at pH 7.4 and 5.5 to mimic the intestinal fluid and
tumor environment, at 37 ◦C, for 48 h. A better release of DOX was observed in compar‑
ison with cisplatin, for both pH levels. Further, a higher release was observed for both
drugs at pH 5.5 (for CS‑NSA/A‑HA/DOX, the release was 89.0% at pH 5.5 and 42.0% at
pH 7.4 and for CS‑NSA/A‑HA/CDDP, the release was 87.0% at pH 5.5 and 44.6% pH 7.4).
Lei et al. [106] developed a pH‑responsive drug delivery based on HA showed a great re‑
lease under the endosomal/lysosomal environment for DOX (56.5%) (Figure 5).
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Folic acid (FA)was reported as an effective targeting prodrug due to the selective bind‑
ing of FA to the folate receptor (FR), which is overexpressed in cancer cells [107]. Zeolitic
imidazolate framework (ZIF) coordination bonds are sensitive to low pH and this could
be used for the delivery of an active substance, such as DOX [108]. Bi et al. [66] reported
the delivery of DOX for human hepatocellular carcinoma via folic acid‑modified and ze‑
olitic imidazolate framework (ZIF) nanoparticles. It highlighted the pH sensitivity of the
obtained nanocarrier; thus, it was observed that drug release of the drug delivery system
based on folic acid is increased by the acidic environment. Further, it was reported that the
release mechanism of the DOX is influenced by the ZIF degradation in acid environments
and the increased solubility of DOX at lower pH as a result of increased protonation of
amino groups in DOX molecules. In addition to the previously listed advantages of pH‑
sensitive systems, the limitations of pH‑responsive drug delivery systems are that the pH
level is an endogenous stimulus and this makes it difficult to control, a narrow range of
pH variation, and steady kinetics for the drug release [39,109–111]. These limitations can
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be overcome by the development of multi‑responsive drug delivery systems, so that the
release is not based only on a single stimulus, such as pH.

2.2. Temperature‑Responsive Drug Delivery Systems
One of the most closely studied stimuli of controlled release systems is temperature.

Temperature‑sensitive polymers are used in order to obtain this responsive DDS, for dif‑
ferent biomedical applications, such as temperature‑sensitive gels, liposomes, micelles, col‑
loidal particles, mRNA recovery, and gene delivery [112–114]. These thermosensitive poly‑
mers are able to release the encapsulated active substance even at small temperature vari‑
ations. Numerous thermosensitive compounds are used for obtaining thermoresponsive
hydrogels in DDS applications, such as poly(N‑isopro‑pylacrylamide (PNIPAAm) deriva‑
tives, poly(ethylene oxide)‑poly(propylene oxide) (PEO–PPO) pluronic copolymers), core–
shell thermoresponsive NPs, polymeric nanotubes, polymeric micelles, layer‑by‑layer
(LBL)‑assembled nanocapsules, microbeads (MBs), and elastin‑like polypeptides
(ELPs) [50,115,116]. However, thermo‑responsive release systems can retain the load at
systemic circulation temperatures of 37 ◦C, but release a load rapidly when the tempera‑
ture exceeds 40 ◦C, due to the locally heated tumor. These DDS experience a reversible
phase transition from a molecularly dissolved hydrated state in an aqueous solution (hy‑
drophilic) to a dehydrated state (hydrophobic) as a reaction to the slight variation in tem‑
perature leading to an induced sharp globule‑to‑coil conversion that generates the release
of encapsulated antitumoral agents from these polymeric nanocarriers [117]. Depending
on the critical solution temperature (CST), thermo‑responsive polymers are classified into
two categories: (i) polymers that have a low critical solution temperature (LCST), which
means that these polymers are water‑soluble and make homogenous systems below this
temperature; and (ii) polymers that have an upper critical solution temperature (UCST),
whichmeans that these polymers are water‑soluble andmake homogenous systems above
this temperature [117].

Poly(N‑isopropyl acrylamide) (PNIPAA)‑based materials show thermo–thermo
responsiveness behavior which could be very useful in the development of different
temperature‑sensitive release systems [118]. Cheng et al. [67] developed a PEGylated star‑
shaped polymer based on the conjugation of the β‑CD core with thermosensitive poly(N‑
isopropyl acrylamide) (PNIPAAm) and biocompatible poly(oligo(ethylene glycol) acry‑
late) (POEGA) arms in order to obtain temperature‑sensitive drug delivery systems for
liver cancer. The DOXwas used as a model chemotherapeutic in order to study its in vitro
cellular uptake. It was shown that only DOX and β‑CD‑g‑(PNIPAAm‑b‑POEGA)x/DOX
at 25 ◦C have a slow cellular uptake, but when the tempera ture was increased to 37 ◦C,
a faster and higher cellular uptake was reported. Interestingly, at a temperature above
LCST, PNIPAAm becomes hydrophobic, having a tendency to aggregate, forming the core
of nanoparticles, meanwhile, the POEGA chains help maintain the integrity of the formed
nanoparticles. In addition, it was reported at 80% in the first 6 h and 90% release after 24 h
of DOX at 37 ◦C condition; meanwhile, at the 25 ◦C condition, a slow release of DOX was
observed, where after 24 h, the release decreased to 53.9%. In Figure 6, the decrease in the
cell viability is reported in the case of β‑CD‑g‑(PNIPAAm‑b‑POEGA)x/DOX in compari‑
son with neat DOX. The test was performed on HepG2 and H460 cancer cells. The same
results were shown in the case of hydrophobic paclitaxel (PTX), which is a hydrophobic
anticancer drug. Kunene et al. [68] reported pH and temperature‑responsive based on
magnetic graphene nanosheets (MGNSs), functionalized by poly(N‑isopropylacrylamide)
(PNIPAM) and polyethylenemine (PEI) nanogel for DOX delivery for liver cancer. The
cell viability was reported at above 90% against HEK293 cells and HepG2 cancerous cells.
The DOX release was reported higher at pH 5.4 than at pH 7.4 and above, the LCST was
rapid, due to the swelling and de‑swelling of the PNIPAM/ PEI nanogel at variations of
the medium’s temperature.
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Furthermore, other studies were reported in order to release DOX for liver cancer
through temperature‑responsive drug delivery. Mdlovu et al. [69] described a dual‑
responsive drug delivery system (pH‑ and thermo‑responsive drug delivery system) based
onmagnetic iron oxide (MIO) nanoparticles functionalizedwith Pluronic F127 (PF127) and
branched polyethylenimine (bPEI) and loaded with DOX. The DOX releases were depen‑
dent on temperature and pH as the highest release rate (54.8%) was in acidic conditions
(pH 5.4) and when the temperature was increased from 37 ◦C to 42 ◦C an increased rate
release (51%)was reported due to the LCST of the PF127 polymerwhich is 42 ◦C [119]. Fur‑
thermore,Mdlovu et al. [120] described pH‑ and thermo‑sensitiveDoxorubicin‑conjugated
magnetic SBA‑15 mesoporous for hepatocellular carcinoma with a release rate of 70% in
acidic conditions and 69% at 42 ◦C (pH = 7.4), which in comparison with previous work,
showed an increase in the release values of DOX. Sebeke et al. [70] reported thermo‑
responsive drug delivery based on phosphatidylglycerol (DPPG2) viamagnetic resonance‑
guided high‑intensity focused ultrasound (MR‑HIFU)‑mediated hyperthermia. A rapid re‑
lease was reported at 42 ◦C due to the melting temperature of DPPG2‑TSL. Classical meth‑
ods of chemotherapy agents are hemofiltration or plasma filtration [121,122]. Removal of
~30%of the administered dosewas reported and a reduction in the toxicity of the remaining
drug in the organism.

2.3. Redox‑Responsive Drug Delivery Systems
At this moment, redox‑responsive drug delivery systems have been intensely studied,

to improve the controlled release of the antitumoral agents, via targeting the tumoral tissue
through redox‑response in the presence of glutathione (GSH) [71]. The cancerous tissue
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presents particular abnormal cellular environments, such as the presence of enzymes and
reducing environments [123]. The main principle of redox‑responsive drug delivery sys‑
tems is employing the distinct differences in redox potentials between tumors and normal
tissues. The reducing environment of cancerous tissue is based on the reduction and ox‑
idation state of NADPH/NADP+ and glutathione (GSH, GSH/GSSG) [123,124]. The most
popular redox couple is GSH/glutathione disulfide (GSSG) [125]. The GSH is a tripeptide
of glutamate, cysteine, and glycine found at an increased concentration in ovarian, breast,
lung cancer, head and neck cancer, and in lower concentration in brain and liver tumors
compared to healthy tissue [126]. In addition, it was reported that the GSH plays an impor‑
tant role in cell differentiation, proliferation, and apoptosis, and imbalanced values may
indicate cancer presence [127]. The GSH levels can be influenced by oxidative stress, and
can act as a biomarker, to indicate the severity of cancer. The highest concentration of
GSH values for healthy tissues is in the liver and hepatic GSH plays an important role in
interorgan GSH homeostasis by being the main source of plasma GSH. Liver disease can
decrease the concentration of GSH values due tomultiple factors, such as reduction during
oxidative stress, increased utilization and export, and decreased synthesis [128].

The main advantages of redox‑responsive delivery systems are the stability in con‑
tact with the normal tissue, which can decrease the systematic toxicity and side effects,
the prompt response to high values of GSH concentration in tumoral cells to release the
therapeutic agents, and the release of the therapeutic agent in the cytoplasm, which im‑
proves the therapeutic effect [123]. The main categories of redox‑responsive drug delivery
systems are disulfide bonds (which are able to break down via reducing glutathione to
sulfhydryl group and break the drug delivery system and facilitate the therapeutic agent
release) and diselenide bonds (the Se–Se bond and C–Se bond are with lower bond en‑
ergy than that of the S–S bonds) [123,129,130]. Luo et al. [131] reported the pH and redox‑
responsive drug delivery for DOX via deprotonation/protonation under acidic pH and
cleavage of disulfide bonds (Figure 7).
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These linkages express great stability in the oxidative extracellular medium, the ther‑
apeutic agent is released in the increased reductive intracellular compartments by thiol–
sulfide exchange reactions [72]. Chen et al. [71] developed a new antibody‑targeted and
redox‑responsive drug delivery system by binding the anti‑carbonic anhydrase IX anti‑
body (A‑CAIX Ab) on the surface of mesoporous silica nanoparticles (MSNs) via disul‑
fide linkages used as the vehicle to load the chemotherapy drug, Doxorubicin (DOX). In
Figure 8, it is shown how theMSNs are used as a vehicle to load theDOX andCAIX grafted
on MSNs by disulfide bonds. The in vivo tests performed on mice showed a reduction in
tumorweight after only 11 days aswell asMSNs loadedwithDOX andDOX@MSNs‑CAIX.
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Wang et al. [132] developed a redox‑responsive liposome, capable of probably leading
both cancer stem cells and bulk cancer via the incorporation of Salinomycin (Sal), which
is a hydrophobic drug, into the lipid layers of the obtained liposomes, and Doxorubicin
(DOX), a hydrophilic drug, encapsulated into the aqueous cavity of the liposomes. It was
shown that GSH potentially affects the disulfide bonds of obtained liposome lipid layers
destabilizing the liposomal nanostructure and the presence of GSH may influence the fast
release of DOX and Sel, leading to the synergistic inhibition of tumor growth and reduc‑
tion in cancer stem cells’ stemness. Mezghani et al. [72] described that the introduction
of disulfide linkages acts as a burst release constituent and the hydrophobic groups of the
glycyrrhetic acid were covalently linked to the hydrophilic backbone of hyaluronic acid
over amide bond development, with the mixture of an intermediate disulfide bond as a
major component. The resulting swelled nanoparticles from the reduction in the disulfide
bonds lead to hydrophobicity modification of the core of nanoparticles conducting to the
production of aggregates, which can lead to the deconstruction of the nanoparticle in the
deeply reductive environment. In addition, it was observed that the size of the nanoparti‑
cles remains unchanged in the absence of GSH,which indicates the stability of the obtained
nanoparticles in the non‑reductivemedia. Furthermore, the performed in vivo test showed
that the obtained DDS accumulated in hepatic tissue, approving their targeting abilities.

Additionally, Yang et al. [25] reported the obtaining of a redox‑responsive drug de‑
livery system based on a hyaluronic acid (HA)‑grafted polymer loaded with DOX. The
HA is conjugated with folic acid (FA) through a reduction‑sensitive disulfide linkage in
order to design an amphiphilic polymer (HA‑ss‑FA). Further, cystamine (CYS) was used
as a cross‑linking agent to link HA and FA. The DOX release was studied in a phosphate
buffer solution (PBS), at physiological pH and temperature, in the presence of GSH, in or‑
der to simulate the environment of the tumor cells and it was observed that the presence
of GSH influenced a faster release of DOX because of the disruption of the disulfide bond
in the HA‑ss‑FA molecules in the reductive environment. Pandey et al. [133] presented a
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dual‑stimuli‑responsive drug‑delivery system based on micelles for cancer therapy using
Doxorubicin. The micelles are represented by an amphiphilic biocompatible miktoarm
star copolymer comprising two hydrophobic poly(ε‑caprolactone) (PCL) blocks, a short
poly(propargyl glycine) middle block, and a hydrophilic glycopolypeptide (GP) block con‑
taining galactose units for targeting liver cancer cells and were tested for responsiveness
via two stimuli, such as redox and enzymes. It was observed that with a higher concen‑
tration of GSH, the release of DOX was increased, and in the case of the absence or lower
concentration of GSH in the media, the release was radically decreased probably due to
the presence of a few lightly cross‑linked micelles. Additionally, the TEM images showed
that after 24 h, the obtained micelles showed aggregation, and after 48 h the micelles dis‑
appeared in the presence of GSH treatment showing that the micellar assembly is only
rattled by GSH‑mediated cleavage of disulfide bonds. A multifunctional dual‑responsive
drug delivery system for targeting tumor therapy based on hollowmesoporous nanosilica
loaded with Doxorubicin was proposed by Huang et al. [73]. Cytochrome C (CytC) was
used as a sealing agent for mesoporous nanosilica and also as a mediator of apoptosis by
recruiting and activating caspase once it is released from the cell mitochondria to the cyto‑
plasm via conjugation with Apoptotic protease activating factor‑1 (Apaf‑1) in the presence
of Deoxyadenosine triphosphate (dATP) which is a nucleotide used for DNA synthesis as
a substrate in DNA polymerase [134,135]. In addition, the usage of lactobionic acid (LA)
was utilized as a targeting agent, especially for HepG2 cells due to the particular ligand
binding to the asialoglycoprotein receptor (ASGP‑R) of HepG2 cells. The purpose of this
dual‑responsive drug delivery was to create a special delivery of DOX in the presence
of glutathione (GSH) and acidic pH in the tumor microenvironment. The drug‑release
results showed that an increased release was observed in the case of an acidic environ‑
ment and in the presence of a higher concentration of GSH via the simultaneous break‑
age of disulfide bonds and disassociation of boronated ester bonds of the system, which
can lead to cell apoptosis and tumor growth inhibition [73]. Saedi et al. [136] described
a dual‑sensitive drug delivery (redox and pH‑sensitive) based on a folate‑modified star‑
like amphiphilic copolymer based on castor oil for DOX. The drug release was studied in
PBS (pH = 7.4, 2 µM GSH) and ABS (pH = 5.5), with or without 10 mM GSH, and the re‑
sults showed that at pH 7.4 the release of DOX was slow and inefficient, but at pH 7.4 and
2 µMGSH, the release was approximately 20% and by increasing the concentration of GSH
(10 mM GSH), the release was increased up to 39%. The acidic condition also favors the
release, such as when at pH 5.5 and 10 mMGSH, the biggest release of DOXwas observed.
Yan et al. [137] described polyethyleneimine (disulfide cross‑linked PEI, PSP)/tetrahedral
DNA (TDNs)/Doxorubicin (DOX) nanocomplexes (NCs)‑based redox‑responsive drug de‑
livery system. Figure 9 details the gradually disassembled drug delivery system through
the breakage of the disulfide when it interacts with the intracellular high concentration of
GSH at the tumor site. Further, the disassembled DDS penetrated the tumoral tissue, im‑
proving the therapeutic efficacy. An increase in the release was observed in the presence
of an acidic environment and GSH (50%) due to cleavage of the disulfide linkages in the
high concentration of GSH.

2.4. Enzyme‑Responsive Drug Delivery System
In recent years, many intelligent systems have been studied for the release of Dox‑

orubicin based on enzyme responsiveness [138–141]. Enzymatic‑responsive drug delivery
systems represent a very promising category, due to the fact that changes in the expres‑
sion can be found in tumor cells of specific enzymes, such as proteases, phosphatases, and
glycosidases, which can be very easily targeted by enzyme‑mediated drugs’ release [130].
The enzyme‑responsive drug delivery systems have ester bonds in their composition or
the peptide structure that can be degraded by various enzymes specific to inflammation
of the tumor location [142,143]. The main properties of enzyme‑responsive drug delivery
systems are biorecognition, selectivity, and catalytic efficacy [142]. Generally, enzymatic‑
responsive drug delivery systems are obtained from peptide hydrogels, polymers and
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polymer conjugates, and polymeric nanoparticles, but also from mesoporous silica
nanoparticles, metal nanoparticles, and semiconducting nanoparticles [144–146]. Enzyme‑
responsive polymers are used to incorporate the therapeutic agent, and in the presence
of the enzyme found in the body, to release the therapeutic agent in a targeted way [147].
The most widely used enzymes for drug delivery systems are the hydrolases, including
proteases, lipases, and glycosidases, due to the simple design requiring the attachment of
bioactive moieties to the carrier through enzyme cleavable unit [146]. Proteases are en‑
zymes that break down the peptides at the level of amino acids, being involved in many
physiological processes such as tissue remodeling, wound healing, and tumor
invasion [148]. An overexpression of proteases has been associated with cancer, so pro‑
teases can beused to allow for the selective activation of smart drugdelivery platforms [149].
Yildiz et al. [74] reported core–shell nanoparticles based on amphiphilic copolymers
poly(lactic‑co‑glycolic acid)‑b‑poly‑l‑lysine and poly(lactic acid)‑b‑poly(ethylene glycol)
for Doxorubicin‑loaded protease‑activated drug delivery systems. The cytocompatibility
was evaluated onMDA‑MB‑231 breast cancer cells and a significantly reduced cell viability
was observed at drug concentrations of 0.10 µM.
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Lipase, such as phospholipase, are enzymes that hydrolyze fats. However, in this case,
it has also been observed that it can play the role of a pathological indicator for various con‑
ditions, such asmany kinds of cancers and other conditions such as thrombosis, congestive
heart failure, inflammation, neurodegeneration, and infectious pathogens [148].

Another enzyme intensively studied in the enzyme‑responsive drug delivery field is
azoreductase, which is an enzyme produced by micro‑organism species generally present
in the colon [148].
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Another studied enzyme is azoreductase, which is a reductase enzyme extensively
studied in the case of liver cancer, so that Medina et al. [75] reported the development of
enzyme‑activated nanoconjugates for the treatment of liver cancer through the release of
DOX by using L1‑L4 azo‑linkers to conjugate a generation of 5 of poly(amidoamine) den‑
drimer and designed to be able to bind to hepatic azoreductase enzymes. The obtained
enzymatic‑responsive system was tested on Hep G2 and Hep 3B cells. The results showed
a non‑toxicity for cardiomyocytes, comparing with the silenced toxicity after the classi‑
cal administration of DOX at the same concentration and are readily cleavable by intra‑
cellular azoreductase enzymes proven to be effective in killing liver cancer cells, having
IC50 value similar to free DOX. Sun et al. [150] reported an NTR‑responsive 4‑nitrobenzyl
group, hydrophobic AIE, tetraphenyl ethylene (TPE), and polyethylene glycol hydrophilic
moieties for DOX drug delivery trough nitro reductase (NTR)–catalyzed. It was reported
that 4 HeLa and HEK 293T cells were used in order to evaluate the cytotoxicity. The TNP‑
based drug delivery system showed that the DOX release was possible in the presence of
NADH due to high sensitivity and selectivity to NTR, leading to the breakdown of the
micelles and DOX release.

The main disadvantage of enzyme‑responsive drug delivery systems is the release
of the therapeutic agent before reaching the target area due to possible exposure to an
enzyme trigger, or a closely related enzyme could release the load prematurely. This lim‑
itation can be overcome by obtaining a release system sensitive to dual stimuli, with a
component sensitive to the pH variation, which favors a much more targeted release [151].
Gao et al. [152] reported a dual‑responsive drug delivery based on hydrophobic‑modified
sodium alginate. In vitro cellular uptake and cytotoxicity were tested on HepG2 or Hela
cells, and the results showed had good growth inhibition effects on HepG2 cells or Hela
cells and also a slow release effect was shown. In Figure 10, the schematic synthesis and
stimuli‑responsive release is shown. This dual‑stimulus drug delivery system is capable
of releasing DOX in a much more targeted manner, due to lysosomal enzyme which is
present in all mammalian cells.
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3. External Stimuli‑Responsive Drug Delivery Systems
3.1. Magnetic‑Responsive Drug Delivery Systems

The extensively studied external stimuli‑responsive drug delivery systems for cancer
are the magnetic‑responsive drug delivery systems. These kinds of smart drug‑delivery
systems can be achieved only if the nanocarrier possesses a strong magnetic property and
can be employed by an applied magnetic field [153]. The first time was reported in 1980 by
Kenneth et al. where the authors proposed the in vitro release of active Adriamycin via the
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utilization of magnetic‑responsive albumin microspheres [154]. The magnetic‑responsive
DDS is able to be a selective target of antitumoral agents without disturbing the reticuloen‑
dothelial system (RES) in which an external magnetic field is applied to increase the drug
concentration at the tumor site after administration of magnetic particles [155]. The mech‑
anism of the magnetic drug‑delivery system is that the therapeutic agent is linked to/or en‑
capsulates magnetic nano/microparticles. Once attached, the magnetic‑responsive DDS is
injected into the bloodstream as a biocompatible ferrofluid and applied to a magnetic field
in order to direct the DDS to the targeted tissue [156]. The magnetic susceptibility allows
nuclear magnetic resonance (NMR) observation, tracking, and quantification of the antitu‑
moral agent to the targeted tumoral tissue [157]. The most utilized magnetic‑responsive
nanocarriers are based on iron, cobalt, nickel, metallic oxides, mesoporous silica, calcium
silicates, liposomes, and polymers [24]. Magnetic‑responsive drug delivery systems con‑
sist of magnetic core‑shell and polymer coatings [158]. In addition to the properties of the
targeted release of the active substance, magnetic‑responsive DDS have properties in diag‑
nosis, being considered as theragnostic delivery systems combining imaging agents and
effective therapeutic drugs [159].

In the last fewyears,many research papers based ondeveloping amagnetic‑responsive
carrier have been published [160–163]. Jeon et al. reported the obtaining of smart porous
nanoclusters used as potential drug delivery for DOX in liver cancer therapy via tran‑
scatheter intra‑arterial infusion, which is a widely usedmedical technique based on image‑
guidance using X‑ray angiography performed for inoperable liver tumors [164]. Super‑
paramagnetic iron oxide nanoparticles (SPIONs) are frequently used in the production
of magnetic‑responsive drug delivery systems, that in comparison with ferromagnetic‑
based materials which are permanently magnetized, these types of materials are mag‑
netized only in an applied field [161]. SPIONs are constituted through iron oxide cores
(magnetite (Fe3O4) and/or maghemite (gFe2O3) nanocrystals) which could be targeted via
application of an external magnetic field [165,166]. Li et al. presented the development
of core‑shell drug delivery based on SPIONs and DOX for dual purposes (tumor target‑
ing and MRI diagnosis) [69]. In addition, superparamagnetic iron oxide (SPIO) is com‑
monly used as an MRI contrast agent in order to evaluate or diagnose liver cancer [76,166].
Maeng et al. [76] proposed a magnetic‑responsive drug delivery system based on
poly(ethylene oxide)‑trimellitic anhydride chloride‑folate (PEO‑TMA‑FA), Doxorubicin
(DOX), superparamagnetic iron oxide (Fe3O4) and folate, for liver cancer. The efficacy of
the delivery system was demonstrated by in vivo tests on rats and rabbits with liver can‑
cer, compared with the administration of DOX and a commercial liposome‑based drug,
DOXIL. In Figure 11, the authors graphically represent the model of the release system ob‑
tained for a better understanding of its structure. It can be seen that the core consists of iron
oxides, and the core is coated in PEO‑TMA‑FA, and DOX is attached to the polymer sur‑
face. Folic acid (FA) was used to enter the receptor‑expressing cancer cells through folate
receptor‑mediated endocytosis [167,168] and a special delivery of the targeting agent due
to increased concentration of folate receptor (FR) in tumoral tissues. First, itwas shown that
there is a high level of FR in the case of liver cancer, compared to healthy tissue, and later,
the effectiveness of DOX release was demonstrated using the DDS obtained. The in vitro
test that investigates the anticancer effect shows that the obtained DDS was able to inhibit
the proliferation of liver cancer cellsmore thanDOXIL. Additionally, the in vivo test shows
a significantly decreased tumor volume and did not produce visible side‑effects [76].

Further, for an improved release, an attempt is made to combine two or more mul‑
tiple stimuli, as in the case of Tang et al. [77], who developed a release system so sen‑
sitive to the magnetic stimulus as to direct the path of the therapeutic substance to the
target tissue, as well as being sensitive to the reducing environment, so that at the mo‑
ment of interaction with the tumor tissue the release is performed through the obtaining of
star‑shaped magnetic micelles based on self‑assembly poly(ethylene glycol) (PEG)‑poly(e‑
caprolactone) (PCL) copolymers with magnetic iron oxide nanoparticles (Fe3O4) and DOX
encapsulated into the hydrophobic core of the micelles (Figure 12) [77].
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Shao et al. [169] developed magnetic nanoparticles as delivery carriers based on mag‑
netic Fe3O4 and a body of mesoporous SiO2 containing Doxorubicin (DOX) as “nano‑
bullets” (Figure 13). The loading efficiencywas reported as being 60%and the drug‑loading
content was 20%. It was observed that the drug retention is increased by themagnetic field,
and the acidic pH increased the release rate of DOX (50% of DOX is released at pH 5.5 in
24 h in comparison with less than 5% at pH 7.4 in 24 h). Cheraghi et al. [170] proposed
cobalt ferrite magnetic nanoparticles for antitumoral drug release. The treatment with
lemon juice with different volumes was used as a chelating agent. It was observed that an
increase in the lemon juice contents can partially replace the Fe3+ ionswith Fe2+ ions, reduc‑
ing the super‑exchange interaction between the magnetic atoms at octahedral and tetrahe‑
dral sites (Fe3+‑O‑Fe3+), leading to a drop at the net magnetic moment. Additionally, the
obtained drug delivery was dual‑responsive, such that the pH values influenced the drug
release along with the magnetic response, leading to the best release of DOX by more than
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42% at pH 5.4 in 75 h. Li et al. [171] employed polyethylene glycol (PEG)‑functionalized
γ‑Fe2O3 particles (γ‑Fe2O3/PEG) as a dual drug delivery of DOX. After applying an AMF
(45 kA/m and 186 kHz), the cumulative releases were increased to 32, 45, 55, and 63% un‑
der the pH values of 7.2, 6.5, 6.0, and 5.5. Further, a higher release of DOXwas observed in
acidic pH due to higher DOX solubility in the acid environment. Ren et al. [154] presented
magnetite nanoparticles and graphene oxide (GO/Fe3O4) drug delivery loaded with Dox‑
orubicin hydrochloride via a chemical precipitation method. The release was increased by
the addition of a magnetic field by inducing a temperature increase through magnetic hy‑
perthermia. The challenges for using magnetic‑responsive drug delivery systems are: the
potential toxicity of metallic nanoparticles, so that in many studies the accumulation of
various magnetic nanoparticles in various vital organs has been reported [172,173]; a fairly
large magnetic field is needed; and it is very difficult to focus the alternating magnetic
field [39,149,161].
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3.2. Photo‑Responsive and Photothermal‑Responsive Drug Delivery Systems
Photo‑responsive drug delivery systems have been an attractive option for the con‑

trolled release of drugs using light sources, such as ultraviolet (UV), visible, and near‑
infrared (NIR) light [174]. The photo‑responsive drug delivery systems have numerous
advantages, such as being safe, minimally invasive, and a tissue‑selective treatment for
cancer therapy [175–178]. Most commonly used light‑responsive agents are reversible such
as azobenzene, spiropyran, dithienylethene, and diazonaphthoquinone, and irreversible,
such as o‑nitrobenzy, pyrenylmethyl, and coumarin [179]. These light‑responsive agents
are capable, when irradiated with light radiation, to disturb the bilayer membrane of the
corresponding polymersomes (artificial vesicles enclosing an aqueous cavity) resulting
in the self‑assembly of the amphiphilic copolymer, which reorganizes into smaller poly‑



Polymers 2022, 14, 5249 19 of 31

mers leading to the drug release [179,180]. Boruah et al. [181] reported photo‑responsive
drug delivery systems based on liposome‑azobenzene nanocomposite for DOX. The re‑
sults showed a drug release of 77.33% in comparison to pure vesicles’ release of ~3.3%.
Zhou et al. [182] developed azo‑bearing diblock copolymers as a photo‑responsive and
pH‑responsive drug delivery system for DOX. The results showed excellent cytocompati‑
bility on human breast‑cancer cell (MCF‑7) and a burst release was observed in the first 2 h
and after 10 h 90%was released. Additionally, when spiropyran (SP) is under the action of
irradiationwith a specificwavelength of light (200–400 nm), a ring‑opening occurs through
a cis‑trans isomerization, to zwitterionic merocyanine (MC) [39,183]. Chen et al. [180] re‑
ported a multi‑sensitive drug delivery system, including photo‑responsive stimuli based
on poly(acrylic acid‑co‑spiropyranmethacrylate) crosslinked by disulfide‑containing N,N‑
bis(acryloyl)cystamine for DOX release. After irradiation, the addition of spiropyran lead
to the hydrophobic SP in nanogels isomerized to the hydrophilic MC and then the nanogel
swelled, resulting in a disruption of nanogel due to the oxidative scission of the disulphide
crosslinkers, facilitating the drug release. The limitations of UV‑responsive drug delivery
systems are poor tissue penetration and the damaging effects on healthy tissues [184]. As
a solution for these limitations, different near‑infrared (NIR) or visible light‑responsive
materials have been developed [6,185,186].

Photothermal‑responsive drug delivery systems are based on external light, having
many advantages, such as a noninvasive nature, simplicity of operation, good controllabil‑
ity over both wavelength and intensity, and high spatiotemporal
resolution [6,187–189]. Photothermal therapy uses a photothermal agent that is stimulated
by both specific band light and vibrational energy/heat release to selectively target tumoral
tissue. Photo‑responsive DDS are characterized by threemain categories: (i) photothermal
responsive DDS; (ii) photodynamic responsive DDS; and (iii) photoconversion‑responsive
DDS [6]. Drug delivery systems based on the photothermal response have a dual role, in
cancer diagnosis and treatment [190]. The photothermal‑responsive DDS has mandatory
main components, such as chromophore which is able to absorb the applied energy and
the correspondingwavelength and achieves an excited state, followed by the conversion of
the absorbed light energy into thermal, and the second main component is the thermally
responsive material that has an increased sensibility at temperature variation [191,192].
The most used materials for this kind of DDS are gold nanoparticles [193–195] and NI‑
PAAm [196]. Ji et al. [197] reported a new drug‑release system based on gold nanocages
(AuNCs) as the photothermal core, Hyaluronan (HA) as the targeting ligand, P(NIPAM‑
co‑Am) (PM) as the thermally responsive copolymers, and Doxorubicin as the therapeutic
agent for liver cancer therapy. It was shown that in vitro results demonstrate that the ob‑
tained DOX/AuNCs‑PM‑HA has increased anticancer activity and in vivo photoacoustic
tomography imaging shows effective tumor targeting. Modification by conjugation of HA
to the outer surface of the delivery vector improved this delivery system targeting ability,
leading to a higher drug concentration at the tumor site, reduced toxicity and side effects
of DOX, and an improved curative effect. Huang et al. [198] proposed mesoporous core–
shell structured nanocomposites (MCSN) of Cu2‑xSe@SiO (Figure 14). It was observed
that the composites displayed a concentration‑dependent temperature change under laser
irradiation. The release rate was reported as 42% at pH = 4.6 in 6 h, without irradiation
and 55.4% at pH = 4.6 after adding NIR laser irradiation, and became slow without laser
irradiation. Chen et al. [199] proposed a photothermal drug delivery based on gelatin. Af‑
ter irradiation, an increase was reported in local temperature, up to 55.9 ◦C. Li et al. [200]
described an iron‑oxide‑based transdermal drug delivery with high photothermal conver‑
sion efficiency and stability, efficient cellular uptake, synergistic cancer cell‑killing effect,
and enhanced percutaneous permeability in vitro.
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3.3. Electric‑Responsive Drug Delivery Systems
Another studied type of external stimuli drug‑delivery system is based on electri‑

cal stimulation. Electrical stimuli were used in order to generate the release of the ther‑
apeutic agent by conductive polymeric bulk materials and implantable electronic deliv‑
ery devices [201]. Conductive polymers are used in many biomedical applications, such
as biosensors, in nerve tissue regeneration, and drug delivery systems [202–205], due to
their unique electrical and optical properties, very similar to metals and inorganic semi‑
conductors [206]. The main advantages of conductive polymers are that their chemical,
electrical and physical properties can be tailored to the specific needs, and that they have
metal conductivity properties, but also have the flexibility of polymers [202,207,208]. The
most‑used conductive polymers to obtain electric‑responsive drug delivery systems are
Polyaniline (PANI) [209], polypyrrole (PPy) [210], and poly(3,4‑ethylenedioxythiophene)
(PEDOT) [211]. The conductive polymers are used to customize the drug delivery systems,
so that when an electric field is applied, it can facilitate the release of the antitumor agent
in the desired area. The accomplishment of this kind of conductive polymer can be in‑
fluenced by the nature of the chosen dopant and the molecular weight of the antitumoral
agent [212]. The main principle of the utilization of electrically responsive drug delivery
systems is the application of a weak electric field over targeted tumoral tissue after the
administration of electro‑responsive drug carriers for controlled on‑site drug release [213].
The major limitation of electric‑responsive drug delivery systems is the fact that they are
limited to topical or subdermal implants, due to the need to place electrodes in the polymer
matrix [151].

3.4. Ultrasonic‑Responsive Drug Delivery
Ultrasonic‑responsive drug delivery is a less utilized system that is sensitive to exter‑

nal stimuli, but it can represent a promising trigger for stimuli‑responsive drug delivery
due to its amazing characteristics, such as the ability to non‑invasively penetrate deeply
into the tissue without damaging it [214,215]. The ultrasound waves are able to permeate
the materials far deeper than light and has the advantage that there is no need for further
functionalization of the biomaterials in order to introduce additional functional groups to
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increase the reactivity of the biomaterial, as the polymers heat up in seconds under expo‑
sure to ultrasound [163]. Ultrasounds are defined as mechanical waves with high frequen‑
cies (≥20 kHz) which are able to travel through a medium [214]. Generally, ultrasound
waves have applications in different fields, such as in vivo imaging, physiotherapy, cos‑
metics and food industry [216]. In general, release systems based on ultrasound waves are
obtained from polymers, in different forms, such as polymer‑coated bubbles/emulsions,
and polymer hydrogels [216–220]. It was reported that ultrasonic‑responsive drug delivery
systems are able to increase drug delivery, but also increase the therapeutic efficacy, and
temporal release of drugs [221]. The use of ultrasound waves can induce thermal effects,
mechanical effects, or radiation force, which can lead to the release of the active substance
in a non‑invasive, remote, and spatiotemporally controlled manner [222]. Kim et al. [79]
developed Doxorubicin‑loaded albumin nanoparticle‑conjugatedmicrobubble complex in
an iodized oil emulsion as an ultrasonic‑responsive drug delivery system for liver cancer.
The delivery of DOX was possible due to the sonoporation effect induced by the cavita‑
tion of microbubbles. Wang et al. [80] reported poly(lactobionamidoethyl methacrylate)‑
based amphiphiles as ultrasonic‑responsive drug delivery systems (Figure 15). The re‑
sults showed that the accelerated release was attributed to the ultrasound‑induced cleav‑
age of ‑oa‑ linkage, leading to intracellular drug release from delivery system increasing
the cytotoxic potency at the targeted cells. Zhou et al. [223] reported chitosan nanobubbles
for ultrasound‑mediated targeted delivery of Doxorubicin. The results showed an near‑
instantaneous cellular entry of DOX due to sonoporation. In addition, Wu et al. [224]
reported that sonoporation inhibited tumor growth and the decrease in tumor weight
was approximately 6.5‑fold in comparison, without exposure to ultrasound irradiation.
Gao et al. [81] developed ultrasound‑ and pH‑responsive delivery of DOX based on al‑
ginate/chitosan stabilized perfluoro hexane nanodroplets. The in vitro and in vivo tests
showed that DOX‑loaded nanodroplets have a good accumulation and tumor‑targeting
in HepG2 tumors, resulting a growth inhibition of the tumoral tissue under the effect of
ultrasound. A very important limitation of ultrasound‑responsive drug delivery systems
are represented by the possible tissue damage caused by heating and by irreversible pore
formation in cell membranes [39,225,226].
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4. Conclusions and Future Perspectives
Chemotherapy is the most widely used technique for treating liver cancer. Disad‑

vantages of this method of treatment are numerous side effects, lack of therapeutic agent
targeting, and the solubility and stability of anticancer drugs. Furthermore, the most com‑
monly used antitumor agent in the treatment of liver cancer is Doxorubicin. A possible so‑
lution for the limitation of the conventional chemotherapy is byusing intelligent controlled‑
release systems, capable of releasing the antitumor agent in a controlledmanner in the pres‑
ence of stimuli. In this review, we present and summarize both internal stimuli‑responsive
drug delivery systems, such as redox, pH and temperature variation, and external stimuli‑
responsive drug delivery systems, such as the application of magnetic, photothermal, and
electrical stimuli, for the controlled release of Doxorubicin in liver cancer therapy. Fur‑
thermore, drug delivery systems sensitive to multiple stimuli are an attractive subject to
researchers due to their increased targeted efficiency. The studies of stimuli‑responsive
drug delivery systems of Doxorubicin are still at an incipient stage as they require mul‑
tiple preclinical evaluations of their biocompatibility and toxicity. Future trends can be
divided into two main directions. The first one is related to ever increasingly precise ma‑
terials and technologies that will allow precise amounts of DOX to be discarded at the
tumor site with minimum impact for the rest of the organism. This would be possible
due to higher accessibility at an industrial scale to targeted drug‑delivery systems based
using as target molecule the concentrations of tumormarker in the blood (especially alpha‑
fetoprotein) and also by the possibility to concentrate the drug delivery system at the tu‑
mor site. Supramolecular architectures that incorporate monoclonal antibodies for tumor
markers are an elegant solution to this problem, but their cost remains prohibitive at the
moment and the actual synthesis routes make this plan utopian. Another future direction
would be represented by coupling the DOX‑targeted drug delivery with another medical
procedure—hemodialysis. A large number of patients with chronic kidney disease will
develop a form of liver cancer due to the accumulation of creatinine, urea, and uric acid.
Hemodialysis membranes that incorporate targeted drug delivery systems for liver cancer
would increase the life quality of patients that suffer from both medical conditions.
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