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Abstract: An integrated and feasible approach was proposed using the underutilized grass fibre
(stem) derived from Napier grass and sugarcane for paper production in this study. To enhance
paper strength, pre-hydrolysis and beating techniques have been used to improve the chemical
pulps and mechanical pulping process, respectively. Napier grass and sugarcane are promising
non-wood sources for pulp production, owing to their high cellulose and low lignin and extractive
content. With the additional mild alkaline pre-treatment to the mechanical pulping process, the lignin
content was greatly reduced. The results reveal that the mechanical pulping with alkaline pre-
treatment may indeed potentially replace the most prevalent pulping process (chemical pulping). As
evidenced by the paper strength properties, mechanical pulping is far more suitable for grass-type
biomass, particularly Napier grass, which had a folding endurance capability five times greater than
chemical pulping. Furthermore, the remaining high hemicellulose content from mechanical pulping
contributed to a high pulp yield, while also facilitating the fibrillation on the sugarcane’s laboratory
paper handsheet. The findings also demonstrated that the additional beating process from chemical
pulping causes the fibres to be drawn toward each other, resulting in a more robust fibre network that
contributes to good paper strength. Consequently, this work sheds new light on the development of
advanced paper derived from grass fibre.

Keywords: Napier grass; sugarcane; grass fibre; chemical pulping; mechanical pulping; alkaline
pre-treatment; beating

1. Introduction

Grasslands are among the most common types of covered vegetation, accounting for
more than 31.5% of the world’s land mass. It is one of the sustainable resources and provides
a significant portion of livestock with a food source [1]. Among all the grasses, Napier grass
(Pennisetum purpureum) is a fast-growing monocot grass in the Poaceae family of which is
morphologically stout, tall, and a deep-rooted perennial bunchgrass, primarily propagated
by stem cutting [2–4]. Owing to its high productivity and nutritive value, Napier grass
is currently the most popular fodder grass in dairy and feedlot production systems in
Malaysia [5,6]. This grass is productive, easy to cultivate, drought-tolerant, and adaptable
to a variety of soil and climatic conditions, particularly in tropical soils. The wildlife
department of Sabah state even cultivated Napier grass for grazing as part of efforts to
minimize human–animal conflict and crop destruction [7]. Given its high cellulose content,
Napier grass has the potential to produce biofuels such as alcohol, ethanol, butanol, and
methane [8,9]. In addition, another fascinating grass which is currently used as primary raw
material for biofuel products is the giant grass known as sugarcane (Saccharum officinarum).
Sugarcane is distinct from other types of grass in that it can store vast amounts of sugar
as sweet juice in its fibrous stalk/stem. Sugarcane ethanol is produced from sugarcane
fermentation and can effectively be used as an ethanol-gasoline blend or as a 100% pure
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ethanol fuel in spark ignition engine vehicles. The favourable climate and agricultural
capabilities of Malaysia enable the production of a high yield of sugarcane, which opens
up the possibility of an alternative fuel source [10].

Aside from the biofuel implementation programme, Malaysia is in an urge to start
introducing green and sustainable pulping processes, and grass fibre-based paper products
may sound promising. In recent years, there have been some major breakthroughs in
Malaysia’s papermaking industry with the use of oil palm biomass in two notifiable
companies producing pulp and paper products from empty fruit bunch fibres [11,12].
However, Malaysia is still highly dependent on the imports of pulp to meet the domestic
demand of paper products. Wood is the primary source of cellulose fibre used in the paper
industry in Malaysia, with 80% of the virgin pulp imported [13]. Due to a recent global
shortage of woody products, pulp supplies have been one of the major issues in the paper
industry [14]. Thus, the use of non-wood fibres that can be processed into pulp with less
chemicals or energy input is a promising cost-effective strategy in producing pulp and
paper. Napier grass and sugarcane have two primary parts in terms of structure—the leaf
and the stem. Due to its high protein content, nutrition, and desirable texture, the Napier
grass leaf is suitable for use as animal fodder (e.g., softness). The stem, on the other hand,
is underutilized due to its hardness, high density, and high lignin content [15,16]. In the
case of sugarcane, the dry pulpy residue left after extracting juice from the stem was also
underutilized as well. The valorisation of all this underutilized biomass via a pulping
process could be the solution to an enhanced biomass conversion.

Paper pulp can be divided into two types based on the pulping method used: chemical
pulp and mechanical pulp. Chemical pulp is made using the chemical pulping process,
whereas mechanical pulp is made using the mechanical pulping process. Mechanical
pulping is appealing to pulp producers because it is less expensive and easier to implement
than chemical pulping [17]. To improve the efficacy of fibrillation, the fibre may be pre-
softened by heat prior to mechanical pulping, known as thermo-mechanical pulping.
Despite the fact that thermo-mechanical pulping is a mainstay of the pulping industry,
thermo-mechanical pulping mills face a number of challenges as a result of rising electricity
costs and a push to reduce greenhouse gas emissions [18]. The pulp and paper industry
is one of the world’s largest users of energy and water. The paper and pulp industry
was reported as the fourth largest emitter of greenhouse gases in the manufacturing
sector of the United States of America. It was also reported in India that this industry
produces approximately 100 million kg of hazardous pollutants annually [19]. Common
solid pollutants include wood waste, sodium salts from the recovery boiler, pulp screening
rejects, dregs, and grit from causticizing plants [20,21]. Researchers in the pulp and paper
sector are always in an effort to improve the pulping technique, with an emphasis of
not only to replace wood resources as a raw material, but also to provide insights into
environmental practices that can move beyond the conventional pulping methods.

Malaysia’s paper consumption is growing steadily, putting a large and constant de-
mand on the supply of fibres for pulp and paper production. At this juncture, with the
fascinating characteristics such as abundance volume, a short cycle growth, and environ-
mental friendliness, grass fibres may act as a great alternative to replace wood fibres. We
believe that the advanced pulping technique will enable grass-type fibre to be a game
changer in the pulp and paper industry. To fully comprehend the potential of grass fibre
(stem) for pulp and paper production, chemical and mechanical pulping were applied to
two grass-type biomasses, Napier grass and sugarcane stem. The characteristics for both
grass fibres’ laboratory paper handsheets produced using varying pulping techniques were
also evaluated. The strength of the paper made from grass fibre presents another challenge
in the production of paper. Pre-hydrolysis techniques and beating techniques have been
used to improve chemical pulps and the mechanical pulping process, respectively. Thus,
this research will also investigate into the efficacy of pulp and fibre modification via the
beating process on chemical pulping and alkaline pre-treatment on mechanical pulping.
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2. Materials and Methods
2.1. Raw Materials Preparation

Samples of Napier grass and sugarcane were supplied by Regu Yakin Sdn. Bhd.
(Pahang, Malaysia). Both plants were propagated vegetatively through stem cuttings in
Pahang. The Napier grass and sugarcane were harvested after 4 and 6 months, respectively.
The harvested Napier grass stems were washed before being dried in a forced-air drying
oven at 60 ◦C overnight, whereas the sugarcane stems were collected and dried after the
sugar extraction process. The dried stems were then chipped using a chipper machine
(PZ 8, Pallmann Maschinenfabrik GmbH & Co, Zweibrücken, Germany) and screened to a
width of approximately 2 cm to enable better chemical penetration during pulping. The
samples were then air-dried to 10% moisture content (storage) prior to pre-treatment.

2.2. Pulping Process
2.2.1. Mechanical Pulping

The fibres were pre-treated by being fully immersed in a 3% sodium hydroxide (NaOH)
solution with a solid-to-liquid ratio of 1:10. The impregnation process was held for 24 h.
The fibres were then washed with tap water for approximately 30 min, or until the soapy
condition diminished. The Refiner Mechanical Pulper (RMP) machine (Andritz Sprout
Bauer, Muncy, PA, USA) with 1/65-inch disc gap was used to refine the washed fibres. The
refining process was carried out with the disc plate gaps set at 2.5 mm between the refining
plates. The two-cycle refining process was designed to reduce the negative impact of the
plates’ harsh actions on the fibres. The wet fibres were manually squeezed after refining to
remove the water.

2.2.2. Chemical Pulping (Kraft Pulping)

Table 1 summarises the chemical pulping conditions for Napier grass and sugarcane
stem. The chemical pulping was carried out using Twin Digester (MK Twin Tub Digester,
model GTD-15L, GIST Co Ltd., Korea). Both mechanical and chemical pulping machines
were provided by the Institute of Tropical Forestry and Forest Products (INTROP), Univer-
siti Putra Malaysia, Selangor, Malaysia. Notably, the entire chemical pulping process was
in a closed system.

Table 1. Pulping condition for the Napier grass and sugarcane.

Pulping Condition Chemical Pulping

Weight of sample 300 g
Sulphidity 25.0%

Active alkali 17% 17%
Fibre: liquor 1:7

Temperature during cooking 170 ◦C
Time to maximum temperature 60 min
Time at maximum temperature 120 min

2.3. Screening

Prior to screening, these pulps were dispersed in a Hydropulper (Sheng Feng, Henan,
China). The pulps were screened using PTI Sommerville Fractionators with 0.30 mm slots.
The oversized debris particles from the stem pulp were removed via screening.

2.4. Spin Drying

Both types of pulps were spin-dried to remove residual water using a spinning ma-
chine. The screened pulps were spin-dried for 5–10 min in a fabric bag. After the spinning
process was completed, the pulps were weighed to determine the pulp yield percentage.
Finally, the pulp was stored in a freezer at 6 ◦C. A specific weight of the pulp was placed in
an oven to dry at 105 ◦C overnight to establish the oven-dry mass. The screened pulp yield
was calculated using the formula:
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Pulp yield (%) =
Oven dry mass o f pulp

Initial oven dry mass o f wood chips
× 100 (1)

2.5. Laboratory Handsheet Making Process

Beaten samples were prepared in accordance with standard condition TAPPI T 248
sp-00 [22]. A total of 500 revolutions were used as the beating degree. A specified mass
of Napier grass and sugarcane (beaten and unbeaten pulp) were fiberized in a disinte-
grator at room temperature and 10% consistency for 20 min using a laboratory PFI mill
machine. Finally, laboratory paper handsheet production was conducted using a laboratory
handsheet machine based on the TAPPI Standard, T 205 sp-02 [23] to produce 60 g/m2 of
laboratory paper handsheets. Before any evaluation, these laboratory paper handsheets
were conditioned for 24 h at a temperature of 23 ◦C ± 1 ◦C and 50% ± 2% relative humidity.

2.6. Evaluation
2.6.1. Chemical Composition

The chemical composition of the raw materials and produced pulps from Napier grass
and sugarcane stems were determined according to TAPPI standard. All experiments were
carried out in five replicates to obtain an accurate result.

Extractives

The extractive content of the sample was determined according to TAPPI T 204 cm-
97 standard. The ethanol-acetone solution was prepared by a mixture of approximately
95% ethyl alcohol and acetone as a reagent in the ratio of 3:1. A sufficient amount of the
sample equivalent to 2 g of the powder of CS and PKS was weighted separately and placed
into the thimble. The thimble with the sample was then placed in a dry Soxhlet extraction
apparatus. The extraction flasks were then filled with 200 mL of the ethanol-acetone
solution. The flasks were connected to the extraction apparatus with water flowing to the
condenser section. The heater was set to 100 ◦C and the boiling process took around 4 to
5 h. After the extraction process, the solution was dried using a desiccator and further
dried in an oven for 24 h before the extraction content was calculated. The percentage of
extractive in lignocellulosic biomasses was calculated as follows:

% of Extractive =
Weight o f f lask (g) + Extraction − Weight o f f lask (g)

ODW sample (g)
× 100 (2)

ODW =
Weight o f air dried sample (g)− Weight o f crucible (g)

100
(3)

Lignin Content

The lignin content of samples was determined according to TAPPI T 222 om-98
standard. Approximately 1 g of oven-dried extraction free sample (Napier grass and
sugarcane stem) was added into a beaker with 2% H2SO4. The mixture was occasionally
stirred in a water bath at room temperature and rested for 2 h to ensure a complete
dissolution occurred. The solution was then added into distilled water until the total
volume of 575 mL. The mixture was then boiled for 4 h by maintaining a constant volume
using a reflux condenser. After boiling, the solution was filtered with the aid of a suction
machine and washed using hot water. The lignin residue was dried for 1 h at 110 ◦C and
then allowed to cool in a desiccator. The percentage of lignin was calculated as follows:

% of Lignin =
W4 − W3

100 × W2
× (100 − W1) (4)

where,

W1 = alcohol-acetone extractive content, %;
W2 = weight the of oven-dried extractive-free sample, g;
W3 = weight of oven-dried crucible, g;
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W4 = weight of oven-dried residue and crucible, g.

Holocellulose

A total of 2 g of the residue from the ethanol-acetone extraction was placed into a
250 mL beaker and closed with a watch glass. The specimen was added with 100 mL of
distilled water, 1.5 g of sodium chlorite, and 5 mL of 10% acetic acid. The beaker was
placed in a hot water bath or on a hot plate maintained at 70 ◦C; the contents were swirled
vigorously once every 5 min. The flask was kept closed with a small, inverted Erlenmeyer
flask. The whole experiment was carried out in a fume hood. After 30 min, 5 mL of
10% acetic acid was added. After 30 min, 1.5 g of sodium chlorite was additionally added
on and acetic acid and sodium chlorite were continued until 6 g of sodium chlorite was
incorporated in the solution. Then, the mixture was heated for 30 min after the last addition
of sodium chlorite. The suspension was cooled in an ice bath. It was filtered into a weighed
fruited glass crucible and washed with iced distilled water. Finally, it was washed with
acetone. The residue was air dried for one to two days until it was free of acetone and
covered by perforated aluminium foil. It was transferred to a desiccator and weighed at
daily intervals until the sample reached a constant weight. The percentage of holocellulose
was calculated as follows:

% of Holocellulose =
W4 − W3

100 × W2
× (100 − W1) (5)

where,

W1 = alcohol-acetone extractive content, %;
W2 = weight of oven-dried extractive-free sample, g;
W3 = weight of oven-dried crucible, g;
W4 = weight of oven-dried residue and crucible, g.

Alpha-Cellulose

The cellulose content in both samples were carried out according to TAPPI 203 stan-
dard using 8.3 and 17.5% NaOH and 2 N of acetic acid (CH3CO2H). A total of 2 g of the
sample was put into a 250 mL beaker. Then, 15 mL of 17.5% NaOH was added and gently
macerated with a flattened glass rod for 1 min. A total of 10 mL NaOH was further added
into the solution and stirred for 45 s, then 10 mL of NaOH was added and stirred for 15.
The mixture was stirred and allowed to stand for another 3 min. A total of 10 mL of NaOH
was added and mixed with a stirring rod every 21/2 min. These steps were repeated for
three times until the total time reached 15 min. The beaker was covered with a watch glass
and the mixture was left in a water bath for 30 min. Then, 100 mL of distilled water was
added quickly at 20 ◦C and thoroughly mixed, and the diluted mixture was left in the water
bath for a further 30 min. The mixture was filtered into a weighed fruited glass crucible
with coarse porosity. The beaker and residue were rinsed with 25 mL of 8.3% NaOH and
650 mL of distilled water. Then, the residue was rinsed with 2N CH3CO2H and rinsed
again with distilled water. The crucible was placed in the oven at 105 ◦C. The α-cellulose
was calculated as a percentage, as shown in Equation (5). The amount of hemicellulose was
calculated by subtracting alpha-cellulose from holocellulose.

% of Alpha − cellulose =
W4 − W3

100 × W2
× W1 (6)

where,

W1 = Holocellulose content, %;
W2 = weight of oven-dried holocellulose sample, g;
W3 = weight of oven-dried crucible, g;
W4 = weight of oven-dried residue and crucible, g.
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2.6.2. Laboratory Handsheet Properties Determination

Laboratory paper handsheets were examined in terms of their physical, mechanical,
and optical properties. To ensure the uniform distribution of Napier and sugarcane stem
fibres, the pulp slurry was disintegrated using a Pulp Disintegrator (Regmed DSG 200) at
25,000 rpm before the production of laboratory paper handsheets. All results in this study
were expressed as mean ± standard deviation of three replicates. The sample was prepared
with the required testing size in accordance with the relevant standard, and the following
parameters were evaluated:

(a) The bursting test was performed by bursting strength tester (GT-7013-ADP) according
to TAPPI T403 om-02 [24].

(b) The opacity test was performed by Technidyne Brightimeter (Micro S-5) according to
TAPPI Standard, T 425 om-01 [25].

(c) The brightness test was performed by Technidyne Brightimeter (Micro S-5) according
to TAPPI T425 Om-02 [26].

(d) The tensile test was performed by a universal testing machine (UTM Twin Column
Lyod 2.5 kN) according to TAPPI Standard, T 494 om-01 [27].

(e) The tearing test was performed by Elmendorf ProTear Tester (Thwing-Albert) accord-
ing to TAPPI Standard, T 414 om-98 [28].

(f) A morphological observation of the laboratory paper handsheet.
(g) The morphological properties of handsheets were observed via Scanning Electron

Microscopy (SEM) (Hitachi S-3400N and Jeol JXA 840A) under an accelerating voltage
of 15 kV. Before scanning, samples were coated with gold using a sputter coater
system (Edwards Sputter Coater; BOC Edwards, Crawley, West Sussex, UK) to obtain
an excellent image by avoiding any charging effect.

2.7. Statistical Analysis

Statistical analyses were conducted using the statistical package SPSS for Windows,
version 16.0 (SPSS, Chicago, IL, USA), which was used to evaluate the adsorption property
data of the laboratory paper handsheet properties for analysis of variance (ANOVA) at a
95% confident level (p ≤ 0.05). Results were analysed using one-way ANOVA, followed
by Tukey’s test as a post hoc test [29]. The Tukey–Kramer multiple comparisons test was
applied to analyse the differences between the treatment effects when significance was
observed. The effects were considered to be not statistically significant when the p-value
was higher than 0.05 at the 95% confidence level.

3. Result and Discussion
3.1. Chemical Composition Analysis

Table 2 summarizes the contents of cell wall structural constituents (cellulose, hemicel-
luloses, and lignin) in Napier grass, sugarcane biomass, and pulp obtained. Despite their
high ash content, both biomasses are ideal for pulping, owing to their low lignin content.
According to Kontturi et al. [30], cellulose is the primary structural component of plant cells.
As shown in Table 1, both biomasses have a high α-cellulose content, which has the poten-
tial to result in high pulp fibre yields. Sugarcane contains a higher ash content than Napier
grass (refer to Table 1). The use of non-wood as a pulping raw material in conventional
processes is limited by the presence of high silica levels [31]. The chemical analysis also
revealed that both biomasses had a low extractive content. Materials with a low extractive
value are more likely to generate a high yield during the cooking process [32]. A chemical
composition comparison reveals a significant difference between the raw fibre and the
obtained pulp. The obtained pulp contained more cellulose, while other content, particu-
larly lignin content, was highly removed. The disruption of lignin–carbohydrate complex
(lignin-hemicelluloses) linkages during the alkaline treatment significantly reduced the
lignin and hemicellulose content [33] from both of the grass-type fibres.
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Table 2. Chemical composition analysis of biomass and pulp obtained.

Type of
Biomass

Pulping
Technique

Lignin
(%)

α-Cellulose
(%)

Hemicellulose
(%)

Extractive
(%)

Ash Content
(%)

Napier grass
Raw Fibre 21.77 (0.07) 46.58 (0.23) 31.04 (0.05) 3.42 (0.00) 4.16 (0.10)

Chemical Pulping 3.31 (0.01) 89.42 (0.16) 3.38 (0.12) 1.18 (0.01) 1.31 (0.00)
Mechanical Pulping 11.21 (0.02) 73.97 (0.08) 11.76 (0.02) 1.98 (0.02) 2.56 (0.01)

Sugarcane
Raw Fibre 22.32 (0.00) 40.34 (0.02) 33.39 (0.01) 3.95 (0.00) 8.27 (0.00)

Chemical Pulping 2.76 (0.01) 87.98 (0.01) 3.56 (0.00) 1.30 (0.01) 4.52 (0.01)
Mechanical Pulping 9.67 (0.00) 74.09 (0.01) 12.92 (0.00) 2.34 (0.00) 2.81 (0.00)

Note: The values in parentheses are the standard deviation of the mean values.

Undoubtedly, a higher lignin content necessitates a large amount of energy and
chemicals [34]. The presence of lignin is detrimental to the stability of chemical and
mechanical paper properties [35]. It was even necessary to bleach for some applications.
The lignin content of Napier grass is 21.77% and that of sugarcane is 24.32%, both of which
are low, implying that both biomasses ought to be fairly easy to pulp than wood with a
lignin content of 26–30%. Furthermore, biomass fibre with a low lignin content is easier
to delignified and requires milder and faster cooking conditions [36]. With the additional
mild NaOH pre-treatment to the mechanical pulping process, the lignin content was greatly
reduced. Ultimately, the high cellulose and low lignin and extractive content of non-wood
resources of Napier grass and sugarcane stem qualify them as promising raw materials for
pulp production. This result is benefitted by using low-cost biomass and, more notably,
environmentally benign pulping processes (with mild chemical usage from the mechanical
pulping process), which could be the new market trend for the pulping industry.

3.2. Yield of Pulp

The pulp yield for Napier grass and sugarcane stem are illustrated in Figure 1. Sug-
arcane has a higher yield than Napier grass due to the presence of more hemicelluloses.
Higher hemicellulose content appears to improve the pulp yield [37]. Xylan, which makes
up approximately 24–25% of the main hemicellulose in the sugarcane holocellulose struc-
tures, is important because it contributes to increase pulp yield [38]. In comparison to
chemical pulping, mechanical pulping offers a higher pulp yield. Table 2 shows that the
chemical pulping process led to a significant delignification effect on both samples. The
removal of lignin and carbohydrates may lead to a significant decrease in pulp yield [39].
Since a higher yield was obtained, it is evident that mechanical pulping is preferable as it
will increase the producer’s profit margin.
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Mechanical pulping uses less chemicals than chemical pulping. Chemical activity
devalues and solubilizes biomass components, primarily lignin and hemicellulose, resulting
in lower pulp yield and lignin content [40]. Furthermore, chemical pulping necessitated
the recovery of chemicals from spent cooking liquor, the recovery of heat energy from
the heating of recovered lignin and other organic materials from the black liquor, and
the reduction in air and water pollution [41]. The mechanical pulping process has been
demonstrated to be a more environmentally friendly method that helps to produce a
laboratory paper handsheet that degrades naturally and lowers the levels of pollution
worldwide through this study.

3.3. Mechanical Properties

Table 3 summarizes the laboratory handsheet properties derived from Napier grass
and sugarcane stem. The Tukey–Kramer multiple comparisons test was applied to analyse
the differences between the treatment effects when significance was observed. The ANOVA
analysis revealed significant effects (p < 0.01) for the type of biomass, pulping technique,
and the interaction of the two factors.

Table 3. Mechanical properties of characterization of a laboratory paper handsheet derived from
Napier grass and sugarcane stem.

Type of
Biomass

Pulping
Technique Folding Test Burst

(Lbf/cm2)
Tensile Test

(KNm/g)
Tear Index

(Mn)

Napier Grass

Chemical
Pulping 23 cd 5.7169 d 15.4624 c 286.4880 d

Chemical and
Beating 46 b 7.1414 c 28.5712 a 396.8563 b

Mechanical
Pulping 106 a 8.3044 a 19.3793 c 363.9777 c

Sugarcane

Chemical
Pulping 8 e 6.9662 c 17.2697 c 259.3740 d

Chemical and
Beating 14 de 7.7335 b 23.7757 b 426.9640 a

Mechanical
Pulping 37 cd 8.7850 a 19.1720 c 373.6127 bc

p-value <0.001 <0.001 <0.001 <0.001
Note: Means followed by the same letter (a–e) in the same column are not significantly different at p ≤ 0.05
according to Tukey’s multiple comparisons test.

Table 3 depicts the mechanical properties of a laboratory paper handsheet made
from Napier grass and sugarcane stem using various pulping techniques. This study
found that a laboratory paper handsheet derived from mechanical pulping outperforms
chemical pulping in terms of folding endurance. Folding endurance is an empirical test that
determines how many folds a piece of laboratory paper handsheet can withstand before
its tensile strength drops below a certain level [42]. The result reveals that mechanical
pulping remarkably enhanced the folding endurance of the laboratory paper handsheets
from these two types of biomass, particularly Napier grass, for which mechanical pulping
is five times better than chemical pulping. Throughout, in regard to folding properties,
chemical pulping had lower tensile, tear, and burst indexes than mechanical pulping.

Chemical pulping was the most widely used method in the pulp and paper industry.
However, the currently used chemical pulping procedures are primarily adapted from
wood pulping; with this procedure, the operating mills face difficulties accepting other
raw materials such as grass-type biomass [43]. Many published researches have stated the
distinct advantages of mechanical and chemical pulping, with mechanical pulp providing
paper with higher bulk properties, while chemical pulp provides paper with higher tensile
stiffness [44]. Nonetheless, the results from this study show that the tensile strength of both
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grass-type laboratory paper handsheets prepared by chemical pulping is extremely low
compared to laboratory paper handsheets from mechanical pulping. The tensile strength
of laboratory paper handsheets derived from chemical pulping was increased with the
additional beating process. With an additional beating treatment, the tensile strength of
laboratory paper handsheets derived from chemical pulping was doubled. This could
be due to the fact that tensile strength is primarily affected by inter-fibre bonding force
and fibre strength, and beating clearly promoted inter-fibre bonding [45,46]. Furthermore,
improved fibrillation induced by the beating process may also lead to improved fibre
conformability, resulting in a stronger fibre network structure [47].

The results demonstrate that laboratory paper handsheets made from both unbeaten
pulps have a low tearing resistance. Unbeaten pulp commonly has poor inter-fibre contacts
during the laboratory paper handsheet formation, which results in poor laboratory paper
handsheet properties. Beaten pulps have highly improved the mechanical properties of
laboratory paper handsheet specimens significantly. The enhancement is also ascribed to
the increase in the bonded area of the sheet, resulting from internal and external fibrillation
that occurs during beating. Inter-fibre bonding is crucial to sheet strength because it is
determined by two factors: the strength of an individual fibre and the inter-fibre bonds.
They make a significant contribution to the internal cohesion of paper. As inter-fibre
bonding strengthens, it is more likely that a fibre in the path of an advancing tear will be
severed rather than pulled out. Additionally, all the while, stress is concentrated at the apex
of the tear and is challenging to share with the rest of the structure [44,48,49]. Defibrillation
and delamination occur during the beating process, resulting in an increased fibre surface
area, improved contact quality, and flexibility [50]. Respectively, fibre flexibility increases
the number of bonds required to provide the bonding area, resulting in a larger surface area
for bonding [51,52]. Because of internal and external fibrillation, the development of fibre
surfaces for bonding may be enhanced during the beating of chemical pulp. Since the good
inter-fibre contact was created by the beating process, the laboratory paper handsheets can
withstand more stress before tearing.

The amount of hydrostatic pressure applied to a circular sample area is defined as
bursting strength. It indicates the resistance of the laboratory paper handsheet to rupturing,
and laboratory paper handsheet with a low burst strength cannot easily retain packed
goods and tears [53]. Besides, the bursting strength also determined the capability of
packaging when it was subjected to stacking, collapsing, striking, tearing, and squeezing,
all of which were greatly improved multiple times in both dry and wet states [54]. This
study reveals that fibre obtained directly from pulping is simply inadequate for laboratory
paper handsheet production. They must first be refined through the beating process or the
alkaline pre-treatment. The burst strength resistance of the laboratory paper handsheets
improved with the beating process and mechanical refining process. The knife-edges or
bars in the refiner or beater abrade and fibrillate the fibres. Mechanical squeezing and
pounding of cellulose fibre allow water to penetrate its structure, causing swelling and
making the fibre more flexible. The pulp fibres are separated, crushed, frayed, fibrillated,
and cut during refining or beating. They absorb water and expand, becoming more flexible
and pliable. Their ability to bond with one another after drying is greatly enhanced, partly
due to the modification of the fibre surfaces and partly due to the creation of the new surface
area, which increases the fibre-to-fibre bonding during the laboratory paper handsheet-
making process [55]. Remarkably, the results indicate that mechanical pulping is best suited
for grass-type biomass because it can achieve higher strengths than the most conventional
pulping methods, such as chemical pulping for paper production.

3.4. Optical Properties

Figures 2 and 3 had shown the optical properties (brightness and opacity) of the
laboratory handsheet made from Napier grass and sugarcane stem. The Tukey–Kramer
multiple comparison test was employed to determine the interaction among the indepen-
dent variables.



Polymers 2022, 14, 5203 10 of 18

Polymers 2022, 14, x FOR PEER REVIEW 10 of 18 
 

 

and cut during refining or beating. They absorb water and expand, becoming more flexi-

ble and pliable. Their ability to bond with one another after drying is greatly enhanced, 

partly due to the modification of the fibre surfaces and partly due to the creation of the 

new surface area, which increases the fibre-to-fibre bonding during the laboratory paper 

handsheet-making process [55]. Remarkably, the results indicate that mechanical pulping 

is best suited for grass-type biomass because it can achieve higher strengths than the most 

conventional pulping methods, such as chemical pulping for paper production. 

3.4. Optical Properties 

Figures 2 and 3 had shown the optical properties (brightness and opacity) of the la-

boratory handsheet made from Napier grass and sugarcane stem. The Tukey–Kramer 

multiple comparison test was employed to determine the interaction among the inde-

pendent variables. 

 

Figure 2. Brightness values of produced laboratory paper handsheets. Means followed by the same 

letter (a, b) in the same column are not significantly different at p ≤ 0.05 according to Tukey’s multi-

ple comparisons test. 

 

a a

b

a
a

b

0%

10%

20%

30%

40%

50%

Chemical Chemical &

Beating

Mechanical Chemical Chemical &

Beating

Mechanical

B
ri

g
h

tn
es

s 
V

al
u

e 
(%

)
Brightness Properties

ab b

c

a
b

c

0%

20%

40%

60%

80%

100%

Chemical Chemical &

Beating

Mechanical Chemical Chemical &

Beating

Mechanical

O
p

ac
it

y
 v

al
u

e 
 (

%
)

Opacity Properties

Napier grass Sugarcane 

Napier grass Sugarcane 

Figure 2. Brightness values of produced laboratory paper handsheets. Means followed by the same
letter (a, b) in the same column are not significantly different at p ≤ 0.05 according to Tukey’s multiple
comparisons test.
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Figure 3. Opacity values of produced laboratory paper handsheets. Means followed by the same
letter (a–c) in the same column are not significantly different at p ≤ 0.05 according to Tukey’s multiple
comparisons test.

Figures 2 and 3 illustrate the Tukey-Kramer multiple comparisons test, which was
used in this study to classify various mean levels of brightness and opacity for six different
laboratory paper handsheets. The ANOVA analysis revealed significant effects (p < 0.01)
for biomass type, pulping technique, and the interaction of the two factors. It clearly shows
that the laboratory handsheets made from mechanical pulp had the lowest brightness
and opacity. The low value for both opacity tests on the mechanical laboratory paper
handsheet was due to the fact that the majority of the original lignin in the raw pulp
was still present [56]. The lignin substrate contains many chromophore groups, such
as quinoids, catechols, aromatic ketones, stilbenes, conjugated carbonyls with phenolics,
and metal complexes, and some additional chromophores within paper can be oxidised



Polymers 2022, 14, 5203 11 of 18

from leucochromophores and remnant carbohydrates [57–61]. Chromophores are coloured
substances with a high degree of stability that reduce brightness in pulp and fibre [62,63].
The goal of mechanical pulping is to achieve a high yield with high strength properties.
Although the lignin may cause the mechanical pulp to turn yellow with exposure to air and
light, they are less expensive to produce and yield a higher pulp content [64]. Furthermore,
mechanical pulp can be used without bleaching to produce printing papers for applications
where low brightness is acceptable, such as newsprint.

A new discovery was made in this current study, as there is a growth in tensile strength
but a reduction in the opacity of laboratory paper handsheets from chemical pulping. As
stated by [65], laboratory paper handsheets with a high light scattering coefficient indicate
small bonding areas. The breaking length, which expresses tensile strength, increases
linearly as bond strength per unit area and relative bonded area increase. As a result,
enhancing the surface area through the beating process is a crucial method for improving
the bonding strength of the fibre and forming a fibrous network. Due to the small bonding
area, the opacity degree of laboratory paper handsheets prepared via chemical pulping
was reduced. The opacity of Napier grass and sugarcane laboratory paper handsheets
was reduced with the additional beating process shown in Figure 3. Figure 3 also shows
that the beaten laboratory paper handsheet produced the same brightness as the unbeaten
laboratory paper handsheet. As a result, it is concluded that the beating process only affects
the opacity properties of the laboratory paper handsheet and not the brightness properties.

3.5. Surface Morphology

The visual observation in Figure 4 also shows that beating causes changes in labo-
ratory paper handsheet characteristics. All laboratory paper handsheets produced with
beaten pulp fibres were denser than those made with unbeaten pulp fibres. This appears
that the pulp fibre has a high felting power but a low flexibility and collapsibility of the
fibre wall [66,67]. Through the visual observation, the brightness of the laboratory paper
handsheet clearly reflects the efficiency of lignin removal from chemical pulping from both
grass-type biomasses. As shown in Figure 2, the laboratory paper handsheet derived from
chemical pulping is much brighter as compared to mechanical pulping. The factor that
leads to the change in brightness of papers is the presence of lignin. When lignin content
is low, the paper will appear brighter [68]. Despite the fact that the high lignin content
was responsible for the low brightness on the laboratory paper handsheet derived from
mechanical pulping, it provided an interesting feature. When the Napier grass’ laboratory
paper handsheets are pressed and folded by hand, the laboratory paper handsheet prepared
by chemical pulping is softer than the laboratory paper handsheet prepared by mechanical
pulping. A high removal of lignin, hemicellulose, and cellulose through chemical pulping
causes the fibres to become soft and more loosened, and therefore, unsuitable for paper-
making. This observation explained why the foldance capability of mechanical laboratory
paper handsheets derived from Napier grass is far greater than that of chemical pulping.

To better comprehend the distinctions between the laboratory paper handsheets, this
study depicts SEM images of laboratory handsheets from Napier grass and sugarcane.
Long-fibre materials, as shown in the SEM image of the laboratory handsheet, were made
from Napier grass (Refer Figure 4a). The mechanical properties of the paper are influenced
by the length of the fibre. According to Gomes et al. [69], long fibre will improve the
mechanical properties of the paper. Long fibre pulps have high folding endurance because
they have more fibre joints that are able to form a strong network as well as a larger surface
area to form bondings with their length spans and width of the fold line [70,71]. The
strength of the fibre itself is affected by the packed arrangement of the fibre matrix on the
surface and fibre of Napier grass. Inside the Napier grass, there were many matrix fibres
and long fibres that crossed with each other (Figure 4b). In this study, lower tensile and
tearing indexes occurred in laboratory paper handsheets produced by chemical pulping.
As a result, additional mechanical treatment, including the use of beating, could well
be needed to improve the paper properties. Paper with an additional beating process
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has significantly higher paper strength, as shown in Table 3. The improvement could be
attributed to the changes in fibre structure induced by the beating process. The SEM results
reveal that the additional beating process causes the fibres to be drawn toward each other,
resulting in a more robust fibre network that contributes to good paper strength. The long
fibre (Figure 4b(ii)) and abundance fibre (Figure 4b(iii)) from Napier grass pulp has greatly
contributed to the folding test value.

Furthermore, pulping process conditions, such as high alkalinity, temperature, and
mechanical forces, or a combination of these, can result in non-homogeneous zones in the
fibre wall, such as deformations [72]. The surface of the chemical pulp of sugarcane was
noticeable with prominent deformation, kinks, and curls (refer to Figure 4d(iii)). It has
been reported that an increase in fibre deformations such as curls and kinks reduces tensile
strength [47]. Such a deformation was resolved by an additional beating process. After
the beating process, large parts of the fibre deformation were removed, and the strength
properties were restored to undeformed pulp values [73]. When beaten samples were
compared to unbeaten samples, the fibres were straighter and had fewer deformations
(refer Figure 4e). Some deformations are known to be straightened during the beating
process. The beaten sample’s fibres were found to be flatter than the unbeaten sample. This
could be because the fibre wall became more flexible as a result of lumen collapse [74].

In addition to fibre straightening, beating causes fibrillation along the fibre surfaces.
Fibrillation, or the exposure of cellulose fibrils, will certainly improve the accessible surface
area, enhance fibre-fibre bonding, and ultimately, improve laboratory paper handsheet
mechanics [75–77]. Aside from the tear index, fibre fibrillation significantly increased all of
the strength properties (refer to Table 2). The bonding of fibre became increasingly tight,
and the fibrillation became more visible with the additional beating process (Figure 4e). As
stated by Jiang et al. [78], over half of the increase in fibre strength is due to beating, which
straightens the fibre during the pulping process, removing curls and kinks. Additionally,
fibrillation can also be attributed to the removal of lignin and other structural effects [79].
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Fibrillation is actually explained as a peeling-off mechanism in shearing refiners; the
primary wall and S1 layer are peeled off, exposing the S2 layer to inter-fibre bonding [80].
This result indicates that the refining process of mechanical pulping resulted in fibre
fibrillation. A highly fibrous network-like structure composed of cellulose microfibrils is
visible in the micrograph for mechanical laboratory paper handsheets (Figure 4c,f). Bunches
of fibres in the suspension are squeezed and sheared between the refiner’s working surfaces.
As a result of this action, parts of the fibre’s outer layers unravel, resulting in fibrillated
fibre surfaces. Furthermore, delamination within the cell wall tends to make the fibres
more flexible while they are still wet [81]. Apart from that, the removal of lignin and
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hemicelluloses by alkaline pre-treatments may also be responsible for the morphological
changes in the fibre surface. Aside from contributing to a high pulp yield, hemicellulose has
a significant impact on sugarcane surface characteristics. The high hemicellulose content of
the sugarcane facilitated fibrillation during the mechanical pulping process, as shown in
Figure 4f(iii). This can be explained by hemicelluloses acting as inhibitors of microfibril
coalescence, and thus, facilitating fibrillation [7,82].

Apparently, the current research reveals that the mechanical pulping with alkaline
pre-treatment could indeed replace the most prevalent pulping process (chemical pulp-
ing) in producing pulps from Napier grass and sugarcane. As evidenced by the surface
morphology and mechanical properties results, mechanical pulping is far more suitable
for the grass-type biomass. Furthermore, the high yield value has proven that mechanical
pulping is best suited for commercial scale production. This study discovered that the
mechanical pulping process on Napier grass and sugarcane could meet the quantity and
quality concerns in paper production. This discovery was extremely plausible for indus-
trial paper production because it does not only make economic sense, but it is also more
environmentally conscious for this money-generating and constantly expanding industry.

4. Conclusions

This research employed fibre from the underutilized discarded grass-type biomass,
Napier grass and sugarcane stem, via a pulping process for enhanced biomass conversion
in order to establish a zero-waste environment. The concept of using pre-hydrolysis tech-
niques and beating techniques in conjunction with the chemical and mechanical pulping
processes, respectively, opens up new possibilities to improve the paper strength. The
low lignin content of Napier grass and sugarcane stem emphasizes that both grass-type
biomasses ought to be the new frontier materials for the pulping industry. The introduction
of alkaline pre-treatment to the mechanical pulping process not only effectively reduced
the lignin content of both biomasses, but it also markedly increased the mechanical prop-
erties of the paper. Undoubtedly, chemical pulping is more advanced in terms of optical
preference, but the high reduction in hemicellulose has resulted in a low pulp yield, which
is an important consideration for the pulp and paper industry. The visual observation
reveals that the laboratory paper handsheet produced by chemical pulping is softer than the
laboratory paper handsheet produced by mechanical pulping. Moreover, the surface of the
chemical pulp derived from sugarcane was noticeable with prominent deformation, kinks,
and curls, rendering it unsuitable for papermaking. Additional beating is required to make
it more suited for paper production as it causes the fibres to be drawn toward each other,
resulting in a more robust fibre network. Furthermore, the beating would be attributed to
fibre straightening, which improves fibre bonding and contributes to good paper strength.
Overall, mechanical pulping combined with alkaline pre-treatment is an ideal technique
for producing paper for grass-type biomass as compared to chemical pulping. Chemical
pulping may be more suitable for making pulp from wood, however, from this study, it was
too harsh to be applied on grass-type biomasses which are lower in lignin and extractive
content. The high removal of lignin, whilst also maintaining hemicellulose content via
the mechanical pulping process, has a significant impact on the surface characteristics
of the laboratory paper handsheet derived from Napier grass and sugarcane stem. The
high hemicellulose content of sugarcane-facilitated fibrillation will enormously improve
the accessible surface area, fibre–fibre bonding, and eventually, hand-sheet mechanics.
This work establishes a solid foundation of knowledge regarding the actual potential of
grass-type biomass for paper production and presents an efficacious method for improving
the conventional wood-pulping method.
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