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Abstract: Intrinsically conducting polymers (ICPs) have been widely studied in various applications,
such as sensors, tissue engineering, drug delivery, and semiconductors. Specifically, polyaniline
(PANI) stands out in food industry applications due to its advantageous reversible redox properties,
electrical conductivity, and simple modification. The rising concerns about food safety and security
have encouraged the development of PANI as an antioxidant, antimicrobial agent, food freshness
indicator, and electronic nose. At the same time, it plays an important role in food safety control to
ensure the quality of food. This study reviews the emerging applications of PANI in the food industry.
It has been found that the versatile applications of PANI allow the advancement of modern active
and intelligent food packaging and better food quality monitoring systems.
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1. Introduction

Polyaniline (PANI), as the name suggests, is made up of an aniline monomer (Figure 1).
The aniline monomer in PANI is para-substituted, and its chains have a head-to-tail config-
uration [1–3].
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Figure 1. Aniline monomer.

PANI has orderly arranged chains with alternating phenyl rings and nitrogen-containing
groups, as shown in Figure 2 [4–6]. It exists in a few stable oxidising states, including
pernigraniline, emeraldine salt, and leucoemeraldine, which are violet, green, and yellow
in colour, respectively. Emeraldine appears blue when in the form of a base [7–9]. The
different oxidation states of PANI may be modified through the processes of protonation
and deprotonation [10–12]. Therefore, the oxidation states of PANI could be affected by
changes in pH, leading to a colour change in PANI, thus making it a suitable colourimetric
pH sensor [13].
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tres in which the electrons are removed from the nitrogen atoms during oxidation, leading 

to the generation of positive polarons (Figure 4) [19–21]. Therefore, the electrons can move 

along the central axis of the PANI chain, resulting in the generation of electrical conduc-

tivity. In other words, holes will be generated in the highest occupied molecular orbital 

(HOMO), allowing the migration of charge [1,22,23]. This conducting feature makes PANI 

a potential material for application in anti-static coating, batteries, light-emitting diodes, 

and gas sensors [24–28]. In addition, PANI has been proven to impart an abrupt drop in 

the electrical resistivity of an insulating polymer [29–32]. 

Figure 2. Different oxidation states of PANI.

In addition to having various oxidation states with different colours, PANI is an
intrinsically electrically conductive polymer (ICP) due to the polaron and bi-polaron charge
carriers [14–16]. The charge carriers arise from the serrated PANI chain, which lies on one
plane on which the π-electron clouds will overlap, resulting in poly-conjugation, as shown
in Figure 3 [4,17,18].
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Figure 3. Schematic diagram of the π-system of PANI.

Poly-emeraldine salt (partially oxidised) is the conductive form of PANI, and it typi-
cally has two quinoids out of eight monomers. The nitrogen atoms act as oxidation centres
in which the electrons are removed from the nitrogen atoms during oxidation, leading to
the generation of positive polarons (Figure 4) [19–21]. Therefore, the electrons can move
along the central axis of the PANI chain, resulting in the generation of electrical conduc-
tivity. In other words, holes will be generated in the highest occupied molecular orbital
(HOMO), allowing the migration of charge [1,22,23]. This conducting feature makes PANI
a potential material for application in anti-static coating, batteries, light-emitting diodes,
and gas sensors [24–28]. In addition, PANI has been proven to impart an abrupt drop in
the electrical resistivity of an insulating polymer [29–32].
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Figure 4. Bipolaron and polaron interconversion in emeraldine PANI.

PANI is usually prepared via oxidative chemical or electrochemical oxidation meth-
ods [33,34]. However, for applications in the food industry, the preparation of PANI
through oxidative polymerisation is the most popular choice (Figure 5). The polymerisation
of aniline can be done through oxidative polymerisation with an oxidant such as ammo-
nium persulfate (APS), hydrogen peroxide, potassium iodate, cerium sulfate, potassium
dichromate, potassium ferricyanide, or sodium vanadate, out of which the former is the
most common [34–41]. This is because aniline possesses aromatic amine, which tends to
be oxidised due to its electron-donating capabilities [42,43]. In addition, polymerisation
should be carried out in the presence of strong acids to stabilise the PANI chains [4,44].
Although the terms “doping” and “protonation” are usually applied to describe the inter-
actions between acid and PANI, the acid neither acts as a dopant nor protonates the PANI
chains, since it only serves to stabilise the polarons via the interaction of acid anions with
neutral nitrogen atoms of PANI [4,45,46]. The pure PANI precipitate is then collected after
rinsing it with acid and acetone three to four times to remove unreacted monomers and
oxidants. The synthesised PANI powder is in the form of emeraldine salt and has a highly
distinguished dark-green appearance [47–49].
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Furthermore, it is important to understand the toxic aspect of PANI to ensure its safety
as a material for its application in the food industry, especially in food packaging. To date,
there has been no specific study on the cytotoxicity of PANI-based packaging; nonetheless,
there are quite a number cytotoxicity tests that have been carried out on PANI-based
polymers for other applications. The toxicity of PANI varies with its content of impurities,
oxidation state, size, and shape [50]. In the form of emeraldine salt, PANI exhibits higher
cytotoxicity than it does in the form of an emeraldine base. However, when the emeraldine
salt’s concentration was kept below 2.5 ppm, it showed no cytotoxicity towards a mouse
embryonic fibroblast cell line (NIH/3T3) or embryonic stem cells ES R1 (ESc) [51]. On the
other hand, the cytotoxicity of PANI was affected by an acid dopant, where the cytotoxicity
increased in the order of PANI–phosphoric acid < PANI–hydrochloric acid < PANI–sulfuric
acid < PANI–methanesulfonic acid < PANI–nitric acid, and the most popular HCl-doped
PANI did not appear to be cytotoxic at concentrations as high as 20 ppm [52]. PANI
nanofibres and nanoparticles were biocompatible at concentrations below 10 and 100 ppm,
indicating that PANI nanofibres possessed stronger cytotoxicity [53]. Other PANI-based
polymers for applications such as scaffolds, antibacterial materials, biosensors, and drug
carriers were also proven to be biocompatible as long as the concentration of PANI was
kept beneath the cytotoxicity threshold [54–58].

Due to the simple manipulation of its film thickness, the direct deposition of PANI, its
large surface area, environmental stability, and its redox conductivity, it has become a very
interesting material for various research works, and its applications in the food industry
have been well studied. The research on the applications of PANI in the food industry
has abruptly increased since the year 2018, indicating that this topic has been gaining
researchers’ attention in recent years (Figure 6). However, there is a scarcity of reviews on
PANI’s role in the food industry. Therefore, this paper aims to provide a comprehensive
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review of the applications and importance of PANI in the food industry. Then, there will be
a summary of the future perspectives of PANI in the food industry. Thus, with this review,
we aim to inspire further in-depth and extensive research on the applications of PANI in
the food industry.

Polymers 2022, 14, x FOR PEER REVIEW 5 of 22 
 

 

comprehensive review of the applications and importance of PANI in the food industry. 

Then, there will be a summary of the future perspectives of PANI in the food industry. 

Thus, with this review, we aim to inspire further in-depth and extensive research on the 

applications of PANI in the food industry. 

 

Figure 6. Number of publications regarding applications of PANI in the food industry from 2012 to 

2021. 

2. Applications of PANI in the Food Industry 

2.1. Biodegradable Food Packaging 

Biodegradable food packaging is a current trend due to the rising awareness of envi-

ronmental sustainability, and it is further encouraged by governmental policies, such as 

the Plastic Tax (European Union), Plastic Packaging Tax (United Kingdom), and Climate 

Change and Principle-Based Taxonomy (Malaysia). It was recorded that about 584 million 

tonnes of plastic waste was generated, and packaging waste accounted for over 50% of 

global plastic waste. Therefore, the replacement of single-use plastics with biodegradable 

plastics is deemed to overcome plastic pollution in both terrestrial and aquatic ecosystems 

[59,60]. Biopolymers such as starch, cellulose, and chitosan are widely studied for the re-

placement of synthetic polymers in food packaging. Nonetheless, these biopolymers are 

often associated with drawbacks such as hydrophilicity, poor mechanical properties, 

weak thermal resistance, intrinsic electrical insulation, susceptibility to wet environments, 

and high cost of production [61–63]. PANI is able to improve upon the chemical and me-

chanical properties of biopolymers so that they can be more feasible for applications in 

food packaging [64–66]. At the same time, studies have shown that biopolymer matrices 

retain their biodegradability behaviour after the incorporation of PANI [29,67–69]. In fact, 

the addition of PANI improves the biodegradability of low-density polyethylene film 

(LDPE) via oxo-biodegradation [70]. The combination of PANI with biopolymers not only 

contributes to the packaging industry, but also has great potential in a broad array of ap-

plications, including sensors, supercapacitors, solar cells, dye removers, and optical de-

vices [71–75]. Table 1 shows the improvements of biodegradable polymer matrices in var-

ious aspects after the incorporation of PANI. 

The hydrophobicity of PANI and the hydrogen linkage interactions between PANI 

and the matrix reduce the free hydrogen groups for the binding of water molecules [76,77]. 

Therefore, the incorporation of PANI into chitosan film reduces water solubility and water 

vapour permeability by approximately 30% and, at the same time, lowers the transmission 

of light (transparency), allowing the chitosan film to be used in the packaging of foodstuffs 

0

10

20

30

40

50

60

70

80

90

2021202020192018201720162015201420132012

N
u
m

b
er

 o
f 

P
u
b

li
ca

ti
o

n
s

Year of Publication

Figure 6. Number of publications regarding applications of PANI in the food industry from 2012
to 2021.

2. Applications of PANI in the Food Industry
2.1. Biodegradable Food Packaging

Biodegradable food packaging is a current trend due to the rising awareness of envi-
ronmental sustainability, and it is further encouraged by governmental policies, such as
the Plastic Tax (European Union), Plastic Packaging Tax (United Kingdom), and Climate
Change and Principle-Based Taxonomy (Malaysia). It was recorded that about 584 million
tonnes of plastic waste was generated, and packaging waste accounted for over 50% of
global plastic waste. Therefore, the replacement of single-use plastics with biodegradable
plastics is deemed to overcome plastic pollution in both terrestrial and aquatic ecosys-
tems [59,60]. Biopolymers such as starch, cellulose, and chitosan are widely studied for
the replacement of synthetic polymers in food packaging. Nonetheless, these biopolymers
are often associated with drawbacks such as hydrophilicity, poor mechanical properties,
weak thermal resistance, intrinsic electrical insulation, susceptibility to wet environments,
and high cost of production [61–63]. PANI is able to improve upon the chemical and
mechanical properties of biopolymers so that they can be more feasible for applications
in food packaging [64–66]. At the same time, studies have shown that biopolymer ma-
trices retain their biodegradability behaviour after the incorporation of PANI [29,67–69].
In fact, the addition of PANI improves the biodegradability of low-density polyethylene
film (LDPE) via oxo-biodegradation [70]. The combination of PANI with biopolymers not
only contributes to the packaging industry, but also has great potential in a broad array
of applications, including sensors, supercapacitors, solar cells, dye removers, and optical
devices [71–75]. Table 1 shows the improvements of biodegradable polymer matrices in
various aspects after the incorporation of PANI.

The hydrophobicity of PANI and the hydrogen linkage interactions between PANI
and the matrix reduce the free hydrogen groups for the binding of water molecules [76,77].
Therefore, the incorporation of PANI into chitosan film reduces water solubility and water
vapour permeability by approximately 30% and, at the same time, lowers the transmission
of light (transparency), allowing the chitosan film to be used in the packaging of foodstuffs
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that are easily oxidised under light [78]. The strong interaction between PANI and chitosan
also improves the processability and tensile strength of biofilms [37,79].

Additionally, the encapsulation of biodegradable polymers by PANI and the cationisa-
tion of PANI are used for the enhancement of thermal stability. PANI is able to enhance the
thermal stability of whey protein isolate (WPI), starch, cellulose nanofibre (CNF), cellulose
nano-whiskers (CNWs), and polylactic acid (PLA) films [6,80–83]. PANI may also exhibit
electrical conductivity and anti-static properties in intrinsically insulating biopolymers,
making it a good material for anti-static packaging. Although the electrical conductivity
of PANI-based biopolymers is often lowered when compared to that of pristine PANI,
nonetheless, they are still suitable for application as anti-static materials. However, the
addition of PANI into highly oriented CNF and PLA results in the weakening of tensile
strength [29,81]. It is important to note that the poor processability, solubility, and fusibility
of PANI are major drawbacks that have to be overcome with suitable blending routes for
the preparation of homogenous biodegradable packaging films [84].

Table 1. Improvement of biodegradable polymer matrices with the incorporation of PANI.

Matrix Preparation Results Ref

Chitosan
In situ

polymerisation

• Reduction of water solubility and WVP by 30%
• Lowering of light transmittance

[78]

• Reduction of electrical resistance
• Improvement of stiffness and strength by 400%

[79]

WPI Ex situ
polymerisation

• Improvement of electrical conductivity up to 0.136 S/m
• A slight reduction in thermal stability

[80]

Starch Ex situ
polymerisation • Improvement of thermal stability [6]

Starch/ZnO NPs Impregnation on ZnO NP • A slight reduction of water solubility and WVP
• Slight improvement in strength and stiffness

[85]

CNF In situ
polymerisation

• Improvement of electrical conductivity up to 4.3 × 10−2 S/cm
• Weakening of strength and stiffness
• Enhanced thermal stability

[81]

Cellulose acetate Ex situ
polymerisation

• Reduction of tensile strength by 27%
• Reduction of surface resistivity (as low as 7.0 × 10−9 Ω/sq)

[86]

CNWs In situ
polymerisation

• Improvement of electrical conductivity up to 1.9 S/m
• Enhanced thermal stability above 500 °C by 15% weight loss
• Lowering of storage modulus

[82]

PLA
Ex situ

polymerisation

• Weakening of strength, but improved elasticity and stiffness
• Reduction of surface resistivity (as low as 2.45 × 1010 Ω/sq)

[29]

• Improvement of thermal stability at high temperatures (565 °C)
• Increased viscosity resulting in greater requirements for the

shearing rate
• Improvement of electrical conductivity (3.42 S/m)

[83]

Abbreviations: WVP, Water vapour permeability, WPI, Whey protein isolate, NPs, Nanoparticles, CNF, Cellulose
nanofibre, CNWs, Cellulose nano-whiskers, PLA, Polylactic acid.

2.2. Active Food Packaging

PANI is a potential antioxidant material due to its radical scavenging capability [87–89]. In
the form of emeraldine salt, PANI possesses nitrogen atoms that are capable of electron
transfer [90–92]. Specifically, the stabilisation of peroxyl radicals depends on the donating
ability of the hydrogen atoms [93]. Its antioxidant activity is expected to greatly contribute
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to active food packaging applications, since it is reported that PANI has a comparable
antioxidant activity to that of well-known antioxidants, such as catechin and ascorbic
acid [94,95]. The proposed mechanism of the antioxidant activity of PANI against 2,2-
diphenyl-1-picrylhydrazyl (DPPH) radicals is shown in Figure 7 [50,96,97].
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In addition, PANI has been proven to be active against various fungi and bacteria,
such as Aspergillus niger, Escherichia coli, Pseudomonas aeruginosa, Bacillus cereus, Salmonella
typhimurium, and Staphylococcus aureus [50,98–100]. Its quaternary ammonium structure
renders it strong antibacterial and antifungal properties (Figure 8). The biological activity
of PANI arises from its electrical conductivity, which could mediate contact on the sur-
face of a bacterial cell via electrostatic adherence [101–103]. So, it is more active against
Gram-negative bacteria. In addition, the hydrophobic benzene ring on PANI interacts
with the membrane core of bacteria, causing membrane permeabilisation. Membrane
disruption eventually leads to cell lysis due to the leakage of cellular components and the
potential breakdown of the membrane. In addition, PANI may induce oxidative stress
on microorganisms through the production of hydroxyl radicals (H2O2), leading to the
Fenton reaction. In this reaction, free ions accelerate the formation of H2O2, causing cell
destruction [50].

Several studies on the antioxidant and antibacterial activities of PANI have been
conducted for the purpose of active food packaging (Table 2) [37,104,105]. PANI was
proven to improve the mechanical properties, electrical conductivity, and antimicrobial
activity of pure chitosan film [79]. PANI-coated PMMA/CNC showed 45% inhibition of
DPPH after 240 min and was active against B. cereus and S. typhimurium [106]. On the other
hand, chitosan/PANI exhibited slight antioxidant strength. PLA/PANI film strengthened
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with CuO and ZnO also performed well as an antibacterial film against S. aureus and
E. coli. The film was proven to slow down the microbial growth (total aerobic bacteria
and acidophilus bacteria) in orange juice, thus preserving the quality of orange juice and
resulting in a longer life span [107].
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Table 2. Some examples of antioxidant and antimicrobial applications of PANI and PANI composites.

Composites Antioxidant
Properties

Antimicrobial
Towards Food Ref

Chitosan/PANI
√

- - [78]

CS/PANI-ZnO NP - S. aureus
E. coli - [85]

PANI-(PMMA/CNC)
√ B. cereus

S. typhimurium - [106]

Chitosan/PANI - A. niger
E. coli - [79]
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Table 2. Cont.

Composites Antioxidant
Properties

Antimicrobial
Towards Food Ref

PANI
-

S. aureus
E.coli - [108]

Cellulose/PANI

Chitosan-ZnO/PANI - S. aureus
P. aeruginosa - [109]

Dextrin/PANI
√

- - [110]

PCL/NF PANI
√ S. aureus

E. coli - [111]

LLDPE/NR PANI
√

S. aureus Fish oil [112]

EC/PANI
√

- Fish oil [113]

PET/NR PANI
√

- - [114]

PLA/PANI/ZnO/CuO
√ S. aureus

E. coli Orange juice [107]

Abbreviations: CS, Corn starch, NP, Nanoparticles, PMMA, polymethyl methacrylate, PCL, Poly-ε-caprolactone,
NF, Nanofibrous, LLDPE, Linear low-density polyethylene, NR, Nanorod, EC, Ethylcellulose, PET, Polyethylene
terephthalate, PLA, Polylactic acid.

2.3. Intelligent Food Packaging

Microbial growth and metabolism are major causes of food spoilage, and they result
in the formation of amines, sulfides, alcohols, aldehydes, ketones, and organic acids with
unpleasant and unacceptable off-flavours [115–117]. Trimethylamine (TMA), dimethylac-
etamide (DMA), decomposed urea, and amino acid are released in the form of ammonia
during food spoilage by bacteria [118]. Therefore, ammonia and TMA are common marker
gases for indicating food spoilage [119–121]. They are usually released during the spoilage
of high-protein foods, but can also be released by spoiled vegetables, including spinach,
seaweed, and corn [122,123].

Moreover, E. coli is a very common food-borne bacterial pathogen found in the gut
of cattle. E. coli often leads to food-borne illnesses such as haemolytic uremic syndrome
and haemorrhagic colitis. In addition, due to the extreme climatic change, COVID-19
pandemic, and Russia–Ukraine war, people are alarmed about global food insecurity and
are concerned about solutions for tackling food waste [124]. According to the Food Waste
Index Report 2021 by the United Nations (UN), in 2019, approximately 931 million tonnes
of food waste (17% of global food production) was generated. Therefore, it is crucial to
develop a rapid and reliable technique for the detection of E. coli in foodstuffs. An effective
and simple colourimetric sensor can be utilized to detect the presence of these gases within
food packaging to monitor the quality of perishable foods in a real-time manner and reduce
food waste [119].

As a stimulus-responsive polymer, PANI is able to conduct electricity and is sensitive
to pH changes through protonation and deprotonation of its central axis. It has been widely
studied as a colourimetric indicator of food freshness (Figure 9) [125–127]. Starch/PANI
film was studied as an ammonia sensor for the purpose of the indication of food spoilage.
During food decomposition, ammonia vapour was released, and its interaction with PANI
changed it from a green emeraldine salt into a blue emeraldine base. This starch/PANI
colourimetric sensor exhibited a limit of detection (LOD) as low as 245 ppm and a relative
standard deviation (RSD) of 8.72% [6]. PANI was also specifically applied to food samples
as a real-time food freshness indicator. PANI/TPE showed a good linear response to TVB-N
within the concentration range of 25.2 mg to 100 g and was able to indicate the spoilage
of live red drum (Sciaenops ocellatus) fish through its colour change from emerald green to
peacock blue [128]. A similar study was also performed to evaluate the freshness of tilapia,
where doped PANI film acted as a colourimetric sensor, even under chilled conditions
(4 °C), and was able to be recycled up to three times [129]. On the other hand, E. coli in
milk and butter was detected by PANI through colour changes due to its interaction with
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the acidic product of E.coli’s glycosidic pathways, such as succinate, acetate, lactate, and
malate [130].
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Furthermore, the changes in PANI’s electrical conductivity due to gases released
during food spoilage make it a simple yet effective food freshness indicator (Table 3). This
is due to the flexible polar bond rotation, which eventually modifies the PANI chains
through the structure of complex charge transmission, resulting in AC conductivity [131].
There was a more recent study in which a PANI/silver nanowire/silk composite was
applied as a resistometric microsensor for the detection of TMA, and it was capable of
indicating the freshness of pork. The high sensitivity (LOD: 3.3 µg/L), good stability, and
repeatability (up to five cycles) made this composite a great potential freshness indicator
for pork [132]. In addition, in a PLA/ZnO/CuO film, PANI played a significant role in
the estimation of the shelf life and expiration date of orange juice, where it yielded an
accuracy higher than 90%. As the spoilage of the juice began, gases were released, and they
applied pressure to the smart film as they accumulated in the packaging. The pressure
applied caused a change in the electrical conductivity of the film, thus indicating food
spoilage [107]. However, the greatest challenge of PANI in intelligent food packaging is
that the electroconductivity of PANI is easily affected by humidity, leading to the false
detection of target molecules [133]. Moreover, the lack of an evaluation of its toxicity and
the imposed risk of the migration of substances are stumbling blocks on the path toward
PANI-based food packaging [134,135].
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Table 3. Applications of PANI as a food freshness indicator.

Method Label Target Food Ref

Colourimetric

PANI-Pec E. coli Milk and butter [130]

Starch/PANI NH3 - [6]

PANI/TPE Spoilage gas Red drum fish [128]

PANI TMA Blue marlin fish [126]

PANI NH3 and DMA Tilapia [129]

PANI-Pec NP E. coli Tap water [136]

PANI-PSS TEA - [137]

PANI NH3 Milkfish [138]

Resistometric

PLA/PANI/CuO/ZnO Spoilage gas Orange juice [107]

PANI/Ag NW/Silk TMA Pork [132]

PTS-PANI NH3, putrescine, and cadaverine Beef, pork, fish, and chicken meat [139]

TiO2-PANI/SFF NH3 Pork [140]

PANI-PI NH3 Meat [141]

Potentiometric PANI NF/PET pH Milk & apple [142]

Conductometric HEC/PANI pH Milk [143]

Abbreviations: Pec, Pectin, TPE, Tetraphenyl ethylene, TMA, Trimethylamine DMA, Dimethylamine, NPs,
Nanoparticles, PSS, Poly(sodium 4-styrenesulfonate), TEA, Triethylamine, PLA, Polylactic acid, NW, Nanowire,
PTS, p-Toluene sulfonate hexahydrate, SFF, Silk fibroin microfibre, PI, Polyimide, NF, Nanofibre, PET, Polyethylene
terephthalate, HEC, Hydroxyethyl cellulose.

2.4. Food Safety Control

Antibiotic contamination from the wastes of hospitals, the pharmaceutical industry,
and human and animal excretion often occurs in an aquatic environment, where pro-
longed unintended exposure towards these antibiotics promotes antibiotic resistance in
humans [144–146]. Therefore, a PANI-nanofibre-coated U-bend optical-fibre-based sen-
sor is a useful tool for monitoring β-lactam antibiotics in food. During the enzymatic
hydrolysis of β-lactam, protons and acidic by-products, such as penicillinoic acid (from
penicillin) and ampicilloic acid (from ampicillin), are released, leading to a pH change
that converts PANI from the form of an emeraldine base into that of an emeraldine salt,
which is measured by the increase in wave absorbance at 435 nm. This optical fibre sen-
sor is able to detect penicillins and cephalosporins in food, including milk, chicken, and
water, with an LOD as low as 0.18 nM [147]. PANI nanowires have also been synthesised
into molecular-imprinted (MIP) sensors, where the nanowires were electro-polymerised
onto a gold electrode and then imprinted with chloramphenicol as a molecular template
(Figure 10). It turned out that a PANI MIP sensor was able to detect chloramphenicol
at levels as low as 10−7 mM [148]. In addition, magnetic mesoporous PANI coated with
hydrophilic monomers and casein for solid-phase extraction coupled with HPLC was able
to simultaneously determine a wide array of antibiotics in milk samples with recoveries
as close as 100%. These included doxycycline, oxytetracycline, trimethoprim, and peni-
cillin G [149]. Similarly, PANI/GO was used for the electrochemically controlled SPME of
antibiotics—specifically, tetracyclines—in milk samples, with recoveries ranging from 71%
to 104% [150].
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Figure 10. Mechanisms of PANI-based devices for the detection and/or extraction of contaminants
in food samples.

Non-steroidal anti-inflammatory drugs (NSAIDs) are common veterinary medicines,
and NSAID residues in animal-originating foodstuffs adversely affect human health, caus-
ing cardiovascular diseases, gastrointestinal ulceration, kidney toxicity, and platelet ag-
gregation inhibition [151]. Solid-phase extraction (SPE) with a PANI/PAC nanofibre mat
was used in the extraction of NSAIDs, as the amino and benzene ring groups of PANI
rendered it a strong affinity towards NSAIDs via a hydrogen bond, π–π interaction, its
acid–base function, and its hydrophobicity (Figure 10). This showed practical feasibility
with meat and egg samples and was able to detect a wide array of NSAIDs (ibuprofen,
naproxen, diclofenac, carprofen, ketoprofen, tolfenamic acid, and salicylic acid) with LODs
and recoveries in the ranges of 0.6–12.2 µg kg−1 and 85.18–107.31%, respectively [152].
Other similar studies on the extraction of NSAIDs using PANI have also been done in
recent years (Table 4) [153–155].

Heavy metal ions, such as lead, chromium, cobalt, and copper, are severely toxic to
human health, even at low dosages [156–158]. In order to separate, enrich, and detect
metal ions at trace levels, SPE is one of the most selective and sensitive techniques. Elec-
trically or magnetically assisted SPE eliminates the use of eluent by changing the surface
of the conducting sorbent, thus simultaneously improving the extraction efficiency. Due
to its reversible redox and electroactivity properties, PANI is an excellent candidate as
the conducting sorbent of electrically assisted SPE [159]. Moreover, the abundance of
imine and amine functional groups in PANI also enhances the adsorption of heavy metal
ions (Figure 10) [160,161]. A PANI nanofibre–graphene oxide (GO) sorbent was devel-
oped to extract Pb2+, and it achieved an LOD, RSD, and reproducibility of 0.04 µgL−1,
1.97%, and 2.51%, respectively [162]. Another similar study was performed by using
SiO2-coated GO/PANI/Polypyrole (PPy) in magnetic SPE of Cr(III) and Pb(II) with LODs
of 4.808 and 3.401 ngL−1, respectively [156]. In addition to SPE, free-standing PANI
composites have also been studied in the adsorption of heavy metals from aqueous sam-
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ples [163–166]. Although volume changes in PANI—either swelling or shrinking—may
occur during electrochemical cycling, thus adversely affecting its stability, most of the PANI-
based sensors reported for food safety control have exhibited reliable stability with good
reproducibility [154,157,162].

Table 4. Detection and/or extraction of contaminants such as antibiotics, NSAIDs, and heavy metal
ions by PANI-based devices.

Contaminant Device Target Food Ref

Antibiotic

β-Lactamase immobilised on
PANI-coated optical fibre β-lactam antibiotics Packaged milk, cow milk,

buffalo milk [147]

SPME based on Cu/PANI/GO
coupled with HPLC-UV DOX, OXY, TET Water, pasteurised bovine milk [150]

MSPE based on
RA/MMPANI/HM/CAS coupled

with HPLC
DOX, OXY, TPM, PEN-G Milk [149]

PANI NW-based MIP deposited on
a gold electrode CHL - [148]

PANI/GO/QD-based MIP probe LOM Milk, chicken meat, egg [167]

NSAID

SPE based on PANI NFM coupled
with UPLC-MS/MS IBU, NAP, DC, CPF, KTP, TLF, SA Meat, egg [152]

CS/PANI/ZnAl-LDH NAP - [154]

Au/PANI-based MIP membrane IBU - [153]

SPME based on graphene/PANI
coupled with IMS MFA, IBU - [168]

Heavy metal ions

MSPE based on PANI-coated
magnetic NPs coupled with FAAS Co(II) Soft drinks, spices,

vegetables, water [169]

PAN/PANI membrane Pb(II), Cr(VI) Water [163]

Electrochemically assisted SPE
based on PANI NF/GO coupled

with FAAS
Pb(II) Juices (peach, orange, grape),

water (tap, mineral) [162]

MSPE based on SiO2-magnetic
GO/PANI/PPy coupled

with ICP-MS
Cr(III), Pb(II) Water, rice, milk, wine [156]

SPE based on nanostructured
PANI coupled with FAAS Cu(II), Pb(II) Shrimp, crab, fish, apple, tomato,

mushroom, potato, water [170]

Abbreviations: SPME, Solid-phase microextraction, GO, Graphene oxide, HPLC, High-performance liquid chro-
matography, DOX, Doxycycline, OXY, Oxytetracycline, TET, Tetracycline, MSPE, Magnetic solid-phase separation,
RA, Restricted access, MM, Magnetic mesoporous, HM, Hydrophilic monomers, CAS, Casein, TPM, Trimethoprim,
PEN-G, Penicillin G, NW, Nanowire, MIP, Molecular-imprinted polymer, CHL, Chloramphenicol, QD, Quantum
dots, LOM, lomefloxacin, NFM, Nanofibre mat, UPLC-MS/MS, Ultraperformance liquid chromatography–tandem
mass spectrometry, IBU, Ibuprofen, NAP, Naproxen, DC, Diclofenac, CPF, Carprofen, KTP, Ketoprofen, TLF,
Tolfenamic acid, SA, Salicylic acid, CS, Carbon sphere, LDH, Layered double hydroxides, IMS, Ion mobility mass
spectrometry, MFA, mefenamic acid, NPs, Nanoparticles, FAAS, Flame atomic absorption spectrometry, PAN,
Polyacrylonitrile, NF, Nanofibre, PPy, Polypyrrole, ICP-MS, Inductively coupled plasma mass spectrometry, SPE,
solid-phase extraction.

2.5. Electronic Noses

The discrimination of aromas is important for the determination of the freshness,
quality, and safety of food. The π-conjugated PANI chains capable of electron delocalisation
make it suitable for application as a sensitive layer for gas sensors. A HCl-doped PANI
electronic nose system’s potential effectiveness was proven in detecting and distinguishing
several aromas, and it showed the best sensitivity towards grapes (112%) [171]. In another
study, an electronic nose with PANI-layered gold-interdigitated microelectrodes (IDEs) was
also able to analyse artificial aromas found in gummy candies by detecting aromas with con-
centrations as low as 900 ppb, as it had good reversibility (97.6%) [172,173]. Another similar
study in situ involved the polymerisation of PANI onto a graphite-interdigitated electrode
to monitor the release of aromas (apple, strawberry, and grape) from gummy candies. It
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showed that an electronic nose with camphor sulfonic acid (CSA)-doped PANI had the
best sensitivity towards artificial aromas [174]. On the other hand, a PANI/functionalised
single-wall carbon nanotube was developed into an electronic nose for the detection of
ammonia vapours to monitor the freshness of beef [175].

3. Conclusions and Future Perspectives

In a nutshell, this review included some remarkable applications of PANI in the food
industry from the last few years. The ability of PANI to improve the chemical, physical, and
mechanical properties of biopolymers makes it a good material for food packaging. To make
it even more valuable, the antioxidant and antimicrobial properties held by PANI allow it
to perform specifically as an active and intelligent food packaging material. In addition,
PANI is able to respond sensitively and selectively towards various analytes, including
ammonia, TMA, antibiotics, NSAIDs, heavy metals, microbial growth, and artificial aromas;
thus, it can be readily applied in sensors and electronic noses. The performance of PANI
can also be enhanced through the incorporation of metal oxides and nanoparticles such
as nanocellulose.

Nonetheless, in order to enhance the feasibility of using PANI in the food industry,
thorough toxicology tests should be included to identify the hazards of using PANI among
humans and animals. These should include the comprehensive assessment of toxicology
profiles, mutagenic potential, genetic toxicology assays, and structure–activity relationship
analysis (SAR). Since the polymerisation of PANI involves the usage of harmful chemicals
and the generation of unwanted side-products, analyses should be performed to assess
the presence of impurities in PANI and to ensure that these contaminants are kept below
the safety thresholds. Moreover, overall and specific migration tests should be performed
to identify and quantify the transition of PANI from its matrix into food substances. This
is to ensure that food safety is not compromised with the addition of PANI as a food
contact substance. Moreover, it is well known that PANI exhibits redox properties. Ideally,
PANI-based active and intelligent food packaging should be renewable; however, there
is lack of similar tests on active and intelligent packaging derived from PANI. Therefore,
the renewable antioxidant, antimicrobial, and sensing features of PANI in food packaging
should be explored later on. In conclusion, PANI has great potential in the food indus-
try, and further research can be done so that it is feasible to commercialise PANI for its
applications in the future.
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stabilized with bioactive polysaccharides: Non-cytotoxic antibacterial materials. Carbohydr. Polym. 2019, 219, 423–430. [CrossRef]
[PubMed]
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