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Abstract: Wound management remains a challenging issue around the world, although a lot of
wound dressing materials have been produced for the treatment of chronic and acute wounds.
Wound healing is a highly dynamic and complex regulatory process that involves four principal
integrated phases, including hemostasis, inflammation, proliferation, and remodeling. Chronic
non-healing wounds are wounds that heal significantly more slowly, fail to progress to all the phases
of the normal wound healing process, and are usually stalled at the inflammatory phase. These
wounds cause a lot of challenges to patients, such as severe emotional and physical stress and
generate a considerable financial burden on patients and the general public healthcare system. It has
been reported that about 1–2% of the global population suffers from chronic non-healing wounds
during their lifetime in developed nations. Traditional wound dressings are dry, and therefore cannot
provide moist environment for wound healing and do not possess antibacterial properties. Wound
dressings that are currently used consist of bandages, films, foams, patches and hydrogels. Currently,
hydrogels are gaining much attention as a result of their water-holding capacity, providing a moist
wound-healing milieu. Chitosan is a biopolymer that has gained a lot of attention recently in the
pharmaceutical industry due to its unique chemical and antibacterial nature. However, with its poor
mechanical properties, chitosan is incorporated with other biopolymers, such as the cellulose of
desirable biocompatibility, at the same time having the improved mechanical and physical properties
of the hydrogels. This review focuses on the study of biopolymers, such as cellulose and chitosan
hydrogels, for wound treatment.

Keywords: chitosan; cellulose nanocrystals; hydrogels; wound dressing; chronic wounds;
market products

1. Introduction

Wound can be defined as a damage of living skin or tissue [1]. According to various
injury factors, wounds are known as: bruises, incisions, injuries, and cuts. It is mostly
caused by external injury factors, namely surgery, external force, heat, current, chemicals,
low temperature, and by internal factors such as local blood supply disorders. Wounds are
classified as chronic and acute. Acute wounds can heal within 60–90 days depending on
the nature (depth and size) of the wound [2]. Chronic wounds are wounds that heal signifi-
cantly slower and fail to progress to all the phases of the normal wound heal process and
are usually stalled at the inflammatory phase [3]. These wounds cause a lot of challenges to
patients such as severe emotional and physical stress and generate a considerable financial
burden on patients and the general public healthcare system. It has been documented
that about 1–2% of the global population suffers from chronic non-healing wounds during
their lifetime in developed nations. Traditional wound dressings are dry, and therefore
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cannot provide moist environment for wound healing and do not possess antibacterial
properties [4]. Wound dressings that are presently used include films, foams, bandages,
patches, and hydrogels. Nowadays, hydrogels are gaining a lot of attention as a result of
their water-holding capacity, providing a moist wound milieu. Chitosan is a biopolymer
that has received great attention recently in pharmaceutical industries because of its unique
chemical and antibacterial nature. However, with its poor mechanical properties, chitosan
is incorporated with other biopolymers to take advantage of desirable biocompatibility of
chitosan at the same time having the improved mechanical and physical properties of the
hydrogels. Naturally derived biomaterials such as carbohydrates have been employed to
improve the mechanical properties of hydrogels. Cellulose is a highly abundant natural
polymer which continues to attract a lot of attention until now because it is easily available,
biodegradable and non-toxic [5,6]. Cellulose is usually incorporated with other polymers
because it has a large surface area, non-toxic, excellent mechanical properties, biodegrad-
able, and low density [7]. Although there are huge number of investigations based on
the development of hydrogels from cellulose in various applications, the reinforcement
of chitosan with cellulose materials in wound dressing continues to be of great interest.
Furthermore, the encapsulation of therapeutic agents such as antibiotics, antioxidants, and
growth factors and cells in hydrogels will enhance wound healing.

Hydrogels are three-dimensional network of cross-linked hydrophilic polymers which
have the ability to absorb large volumes of water (water content can be up to 99%) [6,8,9].
The swelling ability of hydrogels is due to hydrophilic groups (-OH, -CONH-, -CONH2,
and -SO3H) present in the polymeric components of the gels [10]. Hydrogels are derived
from natural and synthetic polymers via physical or chemical crosslinking. The high-water
content of hydrogels makes them compatible with most living tissues and thus facilitates
widespread application in biomedical and pharmaceutical fields. For the past few years,
investigators have focused their attention on the search for non-toxic and biocompatible
materials for living organisms [11]. Over the past years, hydrogels have been used as drug
delivery systems [12], wound dressings [9,13] gene transfection [14,15], tissue engineering
scaffolds [16,17], and biosensors [18].

2. Wound Healing Phases

Wound healing is a highly dynamic and complex regulatory process that involves four
principal integrated phases, including hemostasis, inflammation, proliferation and remod-
eling [19–22] as illustrated in Figure 1. These four phases have to begin in a well-defined
sequence and should last for a certain period, and there can be a partially comprehensive
overlap between the phases.

Hemostasis: the objective of the hemostasis phase is to stop bleeding. In this phase the
body activates its blood clotting systems. Hemostasis comprises of vascular constriction and
platelet activation, following their interaction with the extracellular matrix and damaged
collagen fibers. The formation of fibrin network produces a clot, which is a temporary
matrix that provides strength to the injured tissues and supports cell migration [22–24].
When the blood clots at the opening of a wound, it prevents the body from losing too much
blood and it is the first step of wound closure [25]. This stage can last up to two days
depending on how deep the wound is.

Inflammation: once phase one is completed and the body has stopped bleeding, the
body activates its key defense mechanism—inflammation. This stage works to kill bacteria
and remove debris with white and other blood cells. In the inflammatory phase, immune
cells (particularly neutrophils and macrophages) infiltrate into the wound where they
phagocyte damaged and dead cells, bacteria, and other pathogens or debris [20,22,26].
In addition, inflammatory cells and platelets release several peptide growth factors, pro-
moting the migration of fibroblasts into the injury site and activating angiogenesis [20].
Inflammation ensures that the wound is clean and ready for new tissue to start growing.
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Figure 1. Schematic presentation of the wound healing process. Reproduced from [20], with permis-
sion from MDPI, 2022.

Proliferation: the cell proliferation phase involves re-epithelialization, angiogenesis,
and granulation tissue formation, which is the second temporary matrix containing fibrob-
lasts and macrophages [20,26]. During this stage, the fibroblasts produce collagen and the
myofibroblasts will promote the process of wound edges contraction [23]. This phase can
be divided into three sub-phases, including: (1) filling the wound with new connective
tissues and blood vessels, (2) contracting the edges of the wound: tightening the wound,
(3) covering the wound: epithelial cells that form a protective barrier between the inside
and outside of the body migrate into the wound to close the wound completely.

Remodeling: during wound remodeling (also called maturation phase), the excess
collagen fibers in the wound are broken down in the dermis, and contraction of wound
starts to reach its maximum. Fibroblasts control the degradation of the wound matrix via
the formation of matrix metalloproteinases (MMPs) and new cellular connective tissues [27].
At this point, the repaired wound attains its maximum mechanical strength. The final scar
will have 80% of the original strength of the wound [20,28].

3. Types of Wounds

Wounds are of different types, which are caused as a result of physical, chemical, and
thermal damages. Depending on the nature of the healing process, wounds can be divided
into two main types, namely acute and chronic wounds [6,20].

Acute wound: an acute wound is an injury to the skin that takes place immediately
rather than over time. Acute wounds in a normal healthy person will heal fast at the rate
of the normal wound healing process because of a balance of growth factors, cytokines,
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and matrix metalloproteinase (MMPs) [29]. Basically, acute wounds can occur on any part
of the body, which can range from superficial bruises to deep wounds causing damage to
blood vessels, nerves, and muscles. Acute wounds may last up to 2 to 3 months followed
by infection, pain, and necrosis [30]. Some examples of acute wound include (i) surgical
wounds: Surgical wounds are incisions made intentionally by a medical professional and
are cut precisely, creating clean edges around the wound. Surgical wounds may be closed
(with stitches, staples or adhesive) or left open to heal by primary intention, (ii) traumatic
wounds: These are unplanned injuries that can range from minor injuries such as a skinned
knee, to severe injuries such as a gunshot wound. Examples of traumatic wounds consist
of abrasions, skin tears, bites, and penetrating trauma wounds, (iii) burns: A burn is a
type of injury to skin or other tissues caused by heat, cold, electricity, chemical, friction
or radiation.

Chronic wound: it is a wound that fails to heal in a well-ordered set of stages and in
an expected period of time of normal wound healing process. Wounds that take a long
time (that is more than 90 days) to heal are generally considered chronic. Chronic wounds
sometimes do not proceed to one or more of the wound healing phases. For example,
chronic wounds are often stalled at the inflammatory phase for too long a period of time.
Some of the common types of chronic wounds are diabetic foot ulcers, venous and arterial
ulcers, and pressure ulcers [6,31]. Chronic wounds may take a very long period to heal or
may never heal. These wounds cause severe emotional and physical stress, and pain in
patients. Many factors are usually responsible for wound impairment. This is as a result of
overlapping mechanisms in normal wound healing process that tends to prevent one factor
from disrupting the process. However, when the healing process is disrupted and wound
healing is impaired, this will lead to the development of chronic wounds. Generally, the
main factors affecting chronic non-healing wounds include infection, imbalance in matrix
metalloproteinases and matrix metalloproteinases inhibitors, oxidative stress, metabolic
conditions, immunosuppression, and radiation.

Bacterial infection in wounds is the most often reason of the wound healing process
interruption. Bacteria generate inflammatory markers that prevent the inflammatory phase
as well as epithelialization phase of wound healing. The presence of bacteria in an infected
wound leads to cell death, which causes an increase in inflammation response and persistent
inflammatory phase. Necrotic tissues present in wounds disrupts the ingrowth of new
tissues. In addition, necrotic tissue also serves as a ground for bacterial growth, leading
to a pathologic cycle. When the bacterial burden of a chronic wound is more than 1 × 106

colony forming units per gram of tissue, it is considered as being clinically infected [32].
Commonly encountered, chronic wound bacteria include Staphylococcus aureus, Pseudomonas
aeruginosa, Enterococcus faecalis, Proteus spp., Streptococcus spp., Escherichia coli, Citrobacter
spp., Morganella spp. and Corynebacterium spp. Bacteria form protective biofilms that are
not recognized by the host cells. Biofilms severely affect the wound healing process because
they disrupt the immune response, prolong epithelialization, and decrease the growth of
granulation tissues.

Persistent oxidative stress in chronic wounds disrupt inflammatory responses resulting
in poor angiogenesis and re-epithelialization is impaired [33]. Oxidative stress is as a result
of excess reactive oxygen species (ROS) production in the wound. ROS consist of hydrogen
peroxide H2O2, superoxide anion O2

− or peroxide O2
2−. They are powerful oxidants and

contribute enormously to cell damage, but they also play a vital role in the preparation
of the normal healing process. Therefore, a balance between low and high level of ROS
is very important. Low levels of reactive oxygen species are essential in the protection of
tissues against bacterial infection and promoting wound healing by the production of cell
surviving signaling [34]. There is no clear cut-off point for reactive oxygen species level in
tissues but for normal wounds, the level of hydrogen peroxide (which is the most common
oxidant) is in the range 100–250 µM [34].
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4. Hydrogels as Biomaterials

Biomaterial is any material (synthetic or natural) used as a complete or as part of a
biological system which has been impaired or to interact with living systems for medical
purposes [35,36]. Biomaterial should be compatible and biodegradable. Biomaterials
should not possess any kind of unfavorable or side reaction from the living tissue and
vice versa. The biomedical applications of biomaterials include hip joints, drug carrier
devices, bone plates, contact lenses, wound dressings [35]. Biomaterials such as gelatin,
alginate, hyaluronic acid, dextran, elastin, collagen, cellulose nanocrystals, chitosan have
gained great interest and are widely used for wound dressings and as drug delivery
systems. Wound dressings are primarily produced from natural and synthetic polymers.
In this review, we focused on chitosan and cellulose nanocrystals as biomaterials for the
development of hydrogels for wound management.

4.1. Gelatin

Gelatin is a natural biopolymer consisting of biologically active polypeptides derived
from collagen in animal skin, bones, and other tissues. This polymer, being nontoxic due to
its unique chemical and physical nature has been investigated as wound dressings and drug
delivery systems [37]. Gelatin is also biocompatible, promotes cell adhesion and growth,
non-immunogenic substrate of matrix metalloproteinases, and cost economy. Gelatin
polymer consists of a large number of glycine, proline, and 4-hydroxyproline residues,
which can have either acidic or basic properties depending on the extraction method [36].
Anionic acidic gelatin is useful for the delivering of positively charged bioactive agents
whereas cationic basic gelatin is useful as drug system for negatively charged bioactive
agents, forming polyion complexes. Its gelling properties can be controlled by chemical
crosslinking with crosslinkers such as glutaraldehyde and genipin, that has been widely
used for the development of wound dressings and as controlled release drug delivery
systems. Gelatin has excellent property to form films, and thus is suitable material to
produce capsules with rapid dissolution in gastric fluids. It is highly hydrophilic and
has good swelling properties. Gelatin-based scaffolds have been used for a variety of
biomedical applications, such as bone regeneration, skin tissue engineering [37], nerve
tissue engineering, cardiac tissue engineering, tubular scaffolds, wound dressing and drug
delivery systems [38]. Its application in drug delivery systems and wound healing is
limited by poor mechanical properties. This disadvantage is overcome by the incorporation
of other natural and synthetic polymers to reach the desirable biocompatibility and at the
same time to have improved the mechanical and physical properties of nanofibers [38,39].

4.2. Cellulose

Cellulose is the most abundant natural polymer on earth, being the main structural
component of plant cell walls. Cellulose has excellent characteristics, including recyclability,
tunable surface features (Figure 2d), less risks of toxicity, biodegradability, biocompatibil-
ity [40]. Three types of nanocellulose are known, namely bacterial nanocellulose, cellulose
nanocrystals, and cellulose nanofibers [41]. Bacterial nanocellulose is used for antibacterial
wound healing and can safely and effectively improve wound healing [42]. Cellulose
nanocrystals are excellent biomaterials with tunable surface chemistry. Recently, several
studies have been focused on the topic of modification of cellulose nanocrystals, such as by
esterification, oxidation [43], carbamation, amidation, etherification [44]. In the past years,
it has been reported that cellulose nanocrystals can be oxidized with periodate and form
several aldehyde groups [45]. The oxidation of cellulose with periodate leads to C2 and C3
carbon bond cleavage and aldehyde functional group formation on these carbon atoms.
Therefore, dialdehyde cellulose nanocrystals may react with the free amino groups from
chitosan or gelatin same as glutaraldehyde. This type of reaction is widely known as the
Schiff base reaction [44].
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Zhang research group developed a well-reinforced chitosan/bacterial cellulose hydro-
gel, which demonstrated improved mechanical properties and bactericidal activity [46].
The in vivo study showed that the wound dressing with chitosan/bacterial nanocellulose
was totally filled with new epithelial cells within a period of two weeks, with no significant
side reactions.

4.3. Chitosan

Chitosan is a linear natural amino polysaccharide obtained by alkaline N-de acety-
lation of chitin (Figure 2a,b) commonly derived from exoskeleton of crustaceans such as
crabs, shrimps and lobsters [22,47]. Chitosan and its derivatives are widely known due to
their functionalities, being biocompatible, biodegradable, non-toxic, bio-adhesive, antimi-
crobial, antioxidant; and due to its wound healing properties is considered as an excellent
material for wound dressings [42]. It can be used to form membranes, sponges, scaffolds
and hydrogels. Hydrogel dressing due to the ability to provide optimal moist healing
environment, can protect, interact, contract the wound, and facilitate wound healing [4].
Additionally, chitosan derivatives can easily be produced by chemical modification of
hydroxyl- and amino-groups present in the biopolymer (Table 1). Some of these derivatives
consist of N-carboxymethyl-, N-succinyl-, N-acyl-, N-carboxybutyl-, N-carboxyethyl-, 5-
methylpyrrolidinone-, N-N-dicarboxymethyl-, O-succinyl-, and O-carboxymethyl-chitosan
derivatives, etc. Chitosan has poor mechanical properties, and it can easily undergo
deformation through external applied stress, but this challenge can be overcome by incor-
porating it with suitable polymers such as cellulose nanocrystals, to improve its mechanical
properties for production of wound coverings [48].
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Table 1. Some common modification of chitosan for wound healing dressings.

Modification Properties

Carboxymethyl
chitosan

Improved solubility in water. The commonly explored derivative of
chitosan; it is amphoteric in nature and its solubility depends on pH, when
the pH is >7 it is water soluble.

Thiolated urea
derivatives

Thiourea chitosan boost the antibacterial
properties.

Carbohydrate
branched chitosan

Water soluble. Carbohydrate can be grafted on the chitosan backbone at
the C2 position by
reductive alkylation. They could be used for wound dressing and drug
targeting.

Sugar derivatives
N-Succinyl chitosan is an amphoteric polymer consisting of amine,
hydroxyl, and carbonyl groups. It has excellent physical, chemical, and
biological properties as required in biomedical applications.

Alkylation chitosan
It is an essential amphiphilic polymer based on polysaccharides. Improves
the stability of the
interfacial films, promotes its solubility.

Chitosan is a biopolymer that is soluble in dilute aqueous acidic medium at a degree
of deacetylation of 50% and higher (which depends on the origin of the polymer) as a result
of its primary amino groups that have a pKa value of 6.3. The solubility takes place by the
protonation of the amino group (–NH2) of the D-glucosamine repeating unit, whereby the
polysaccharide is changed to a polyelectrolyte in acidic media. Solubility of chitosan is
commonly carried out in acetic acid by dissolving it in 1% or 0.1 M acetic acid [49]. Table 1
summarizes some of the common modifications of chitosan along with their principal
properties [50].

5. Preparation of Chitosan/Cellulose Nanocrystals Hydrogels

Cellulose and chitosan have chemical similarities and biocompatibility of the polysac-
charide structures, attracting great attention for their usage as composite biomaterials.
Nanocelluloses due to their high mechanical properties, large surface area, and aspect ratio
can be used as reinforcement in nanocomposites. Its incorporation in chitosan can also
improve the mechanical properties and stability of chitosan-based composites [12]. The
preparation of chitosan solution is commonly carried out by dissolution of chitosan in dilute
acetic acid due to its poor solubility in water. Chitosan derivatives such as carboxymethyl
chitosan is water-soluble when pH is greater than 7 [50]. The chitosan/cellulose hydro-
gel is formed by covalent linking of the chitosan polymer with cellulose nanocrystals
where the bond formation is irreversible. The cross-linking of chitosan and cellulose poly-
mers can be formed through the reaction of their functional groups (such as OH, COOH,
and NH2) without any cross-linkers such as glutaraldehyde [49]. There are different ap-
proaches to chemically crosslinked chitosan with cellulose nanocrystals. The most used
crosslinked technique of chitosan/cellulose nanocrystals is based on the oxidation of cel-
lulose nanocrystals. The hydroxyl groups on the surface of cellulose can be selectively
oxidized to carboxylic acid groups using TEMPO-mediated oxidation or to aldehydes
using oxidizing agents such as periodate. In the case of carboxylic acid oxidation, the
amino groups of chitosan will then react with carboxylic acid groups on oxidized cellulose
nanocrystals using carbodiimide. For aldehyde modification, the amino groups of chitosan
will then react with aldehyde groups through a Schiff base reaction (the formation of imine
bonds) (Figure 3) [51], forming strong covalent bond without the use of any toxic chemical
crosslinker, such as the commonly used glutaraldehyde.
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6. Clinical Trials/Commercial Chitosan and Cellulose Wound Dressings

Currently, a number of cellulose and chitosan hydrogel wound dressings are under
certain phases of clinical trials, and some of the dressings are marketed products as depicted
in Table 2. The wound dressings are reported to be safe and effective for the management
of different types of wounds [48,50].

Table 2. Some chitosan and cellulose-based hydrogels in clinical trials/marketed product.

Hydrogels Polymer Characteristics References

Chitoflex® HemCon Chitosan
Antibacterial and biocompatible. It
adheres strongly to tissue surfaces and
forms a flexible barrier.

[49]

Tegasorb® 3M Chitosan

Swells in the process of absorbing
wound exudate and forming a soft gel.
A sheet of waterproof Tegaderm® film
dressing covers the hydrocolloid. Good
for leg ulcers and chronic wounds.

[3]

Chitopoly® Fuji
spinning

Chitosan Good for developing antimicrobial wear,
which helps to prevent dermatitis. [50]

Chitoseal® Abbott
It has good biocompatibility and
hemostatic functions. Suitable for
bleeding wounds

[50]

Chitopack C® Eisai Chitosan
Cotton-like chitosan. Fully repairs
damaged body tissues and regenerate
skin regularly.

[50]

FibDex®

(Nanofibrillar
cellulose)

Cellulose
Efficiently heals wound at skin graft
donor site, requires no dressing changes,
self-detaches after re-epithelialization.

[48]

Bacterial
nanocellulose Cellulose

A great number of the patched skin did
not show any symptom of edema and
vesicles. It was non-irritant and safe.

[48]

Polyhexanide
modified cellulose
wound dressings

Cellulose

Clinical tests were performed on
patients with pressure ulcers infected
with Methicillin-resistant Staphylococcus
aureus. The bacteria were
completely eradicated.

[48]

Celox™ Rapid hemostatic property and reduces
blood loss. [48]
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Table 2. Cont.

Hydrogels Polymer Characteristics References

Chitoderm® plus Chitosan Good absorbent properties. [30,49]

Nanoderm™ Ag Cellulose

Demonstrated a high degree of
flexibility and prolonged
antimicrobial properties.
Effective for the treatment of
infected wounds.

[48]

7. Bioactive Hydrogel Wound Dressings

Modern hydrogel wound coverings should actively take part in the process of wound
healing. Active wound dressings can be developed based on the encapsulation of bioactive
components, including drugs, cells, growth factors and the wound dressing material. In
any case, the desired wound dressing should actively assist in the wound healing process
and should be cost-effective for clinical applications.

7.1. Bioactive Chitosan-Based Hydrogel

Wound dressing material can actively take part in wound healing. Hydrogels such as
precursors derived from natural origin and derivatives affect wound healing. Biomaterials
hydrogels such as gelatin, chitosan, alginate promote cell proliferation and migration, and
growth and also enhance antibacterial activities [52–55]. Recent studies have proposed the
usage of these biopolymers for different bioactive wound dressing applications. Murakami
et al. employed a mixture of biopolymers consisting of chitin, fucoidan and chitosan to
developed sheets of bioactive hydrogels that significantly boost tissue granulation and
blood vesicles in non-healing wounds [56]. Moreover, chitosan polymer is mostly used to
develop wound dressings because of its microbicidal, hemostatic properties. Recently, hy-
drogels such as chitosan/PEG, chitosan/PEG/poly(vinyl pyrrolidone) coated cotton fibers,
chitosan/poly(vinyl alcohol), chitosan/poly(vinyl alcohol)/)poly-(ethylene oxide) hydro-
gels, carboxymethyl chitosan/gelatin, and chitosan-lactic acid have been demonstrated
by researchers as suitable wound dressings promoting healing, in terms of the healing
duration, degree of tissue granulation, production of collagen fibers, epithelialization and
angiogenesis, and the inflammatory phase [57,58].

7.2. Drug Incorporated Hydrogel Dressings

Another promising properties of bioactive wound dressings are their ability for the
prolong and/or controlled delivery of therapeutic agents. The loaded bioactive molecule
can target several important places in wound healing. Pain killers such as aspirin, ibupro-
fen, lidocaine, acetaminophen, are mostly used in skin burns and wounds with high
bacterial colonies or infection [53,59–61] (Table 3). Investigated hydrogel delivery systems
for wound management are based on chitosan, polyvinyl alcohol and poloxamers and
other biopolymers. For wounds with high bacterial infection, hydrogel dressings incorpo-
rated with antimicrobial agents are the most preferred and effective choice. Taking into
account the increasing number of threats of antibiotic resistant bacterial strains, several
studies, such as ciprofloxacin loaded in chitosan/alginate hydrogels, tetracycline loaded in
alginate-cellulose nanocomposite hydrogel, and gentamicin incorporated in chitosan and
sodium fusidate released from polyvinyl alcohol/poly vinylpyrrolidone/ propylene glycol
hydrogels have been investigated [62–64].
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Another procedure to prevent the growth of bacterial colonies is the application of
microbicidal agents such as biological active peptides, metals naturally obtained com-
pounds. Recently, comprehensive studies have been conducted on microbicidal activities
of nanoparticles such as zinc oxide, silver and titanium dioxide nanoparticles. Zhao et al.
developed a chitosan-based multifunctional hydrogel wound dressing containing in situ
rapidly bioreduced silver nanoparticles with an excellent antibacterial properties which ac-
celerated the healing process of infected wounds and promoted angiogenesis and collagen
deposition [65]. Neibert group fabricated a microbicidal wound dressing by incorporating
silver nanoparticles which was chemically crosslinked with alginate polymer [66]. Further-
more, silver nanoparticles promoted wound repair, increased the rate of healing, collagen
deposition, formation of epithelia, improved the new tissues stability. Titanium dioxide
nanoparticles incorporated in chitosan-pectin hydrogel and chitosan/polyvinylpyrrolidone
dressing demonstrated a good microbicidal activity and at the same time improved the
wound healing in animal models [67]. However, metals or metal oxide nanoparticles can
be toxic to cells depending on the concentration. Recently, researchers have focused on
the use of naturally derived antimicrobial agents, including essential oils, tea tree, and
lemons incorporated in alginate wound dressing, melatonin loaded in chitosan-Pluronic®

F127 dressings and vanillin encapsulated in lysine-based dendrimers [68–72]. The main
advantage of using hydrogels in the delivery of drugs is their ability to deliver drugs in a
controlled release rate. This benefit can reduce drug dosages, costs and side effects, and
therefore can enhance the therapeutic efficacy of their use [39].

Table 3. Summary of the application of drug-loaded chitosan hydrogels.

Drug Preparation Technique Potential Application References

Gentamicin sulfate EDC/NHS crosslinking Anti-bacterial wound
dressing [63]

Apigenin PEG-crosslinking Diabetic wound dressing [64]

Lupeol Glutaraldehyde
crosslinking Wound dressing [73]

Polyphenolic Laccase crosslinking Chronic wound dressing [74]

Amoxicillin Freeze–thaw Antibiotic delivery [75]

Ibuprofen Not mention Wound dressing [76]

Tetracycline
hydrochloride Mixing Scar preventive wound

dressing [77]

Tetracycline
hydrochloride silver
sulfadiazine

Casting/solvent
evaporation

Anti-infection wound
dressing [78]

Superoxide dismutase Polyelectrolyte complex Antioxidant wound
dressing [79]

EDC: 1-ethyl-3-(3-dimethylaminopropyl)-carbodiiminde, NHS: N-hydroxysuccinimide. PEG: Polyethylene glycol.

7.3. Cells and Cell-Derived Peptides-Proteins Encapsulated in Hydrogels

Recently, bioactive hydrogels are receiving particular interest. Effective investigation
of the complicated and dynamic wound healing process facilitated the recognition of dif-
ferent cell-derived peptides that mediate essential healing processes such as cell growth,
migration and differentiation of endothelial cells [80,81]. The influence of the various
growth factors such as fibroblast growth factor (FGF), epidermal growth factor (EGF),
keratinocyte growth factor (KGF), platelet-derived growth factor (PDGF) and vascular
endothelial growth factor (VEGF) have been studied [82–86]. Human EGF which was
loaded in a heparin/polyethelene glycol scaffold or in an infrared responsive poly(N-
isopropylacrylamide) hydrogel significantly promoted wound repair in mice, leading
to high rate of cell granulation, re-epithelialization and growth of new blood capillar-
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ies [53,87,88]. However, the transdermal release and stability of growth factors had some
limitations. In order to resolve this drawback, endothelial growth factor was entrapped
in hyaluronic acid while conserving the biological properties of the growth factor [80,89].
Recent examples of bioactive dressings include fibroblast growth factor loaded in gelatin,
keratinocyte growth factor encapsulated in chitosan-based hydrogel, chitosan/hyaluronic
gels incorporated with nanoparticles of fibrin and vascular endothelial growth factor and
some of created [90–92]. Currently, studies have shown that the encapsulation of two or
more growth factors can produce a better result, because the healing process consists of
different interactions between several growth factors [83]. The application of two or more
growth factors surpasses the one growth factor administration by accelerating wound
healing, higher rate of epithelialization, and the growth of new blood vessels. The most
relevant ways are developing hydrogels with various growth factors for example the en-
capsulation of platelet-derived growth factor and vascular endothelial growth factor in
chitosan/polyethylene oxide or wound dressings with platelet-rich plasma or platelet
lysate [93]. Suitable delivery biomaterials for platelet rich plasma include chitosan, fibrin or
gelatin [84,94,95]. Spanò research group described a biological active membrane of various
blood plasma-derived components such as platelet-rich plasma combined with thrombin
to treat skin ulcers [96]. A better approach to deliver several cell-derived peptides to a
wound is the direct encapsulation of cells of interest in the hydrogel scaffold. This approach
consists of stem cells, fibroblasts and keratinocytes from different biological sources [86].
Fibroblasts and keratinocytes are principally utilized to develop skin substitutes obtained
from biodegradable scaffolds such as gelatin, alginate and chitosan [97–99]. Previous
studies showed that the cellular delivery of keratinocytes, accelerating epithelialization,
and vascular endothelial growth factor, promoting the development of new blood vessels,
along with the release of cells to the wound area significantly enhanced the wound healing
process [100]. The production and potential applications of wound dressings containing
cells appear to be more promising in the near future. Stem cells can be self-renewed with
the ability to differentiate into different types of cells depending on the milieu. Stem cells
produce growth factors and cytokines which enables the cells to actively participate in
the healing process [101]. The presence of stem cells has been reported to improve tis-
sue granulation, accelerate angiogenesis and re-epithelialization, and collagen production
and the rate of wound healing. However, the clinical application of stem cells in wound
dressings are still under development due to high cost of growth factors, the reduction in
therapeutic activity for long-time administration and inappropriate preservation, and high
possibility of cancer as a result of extensive use of growth factors [102,103]. In addition,
growth factors easily degrade at high concentrations of MMPs in chronic wounds, which
requires the frequent changing of wound dressings (for example, twice a day for Regranex®

Gel) [86,104].
In addition, chitosan matrix loaded with basic fibroblast growth factor (bFGF) in

gelatin microparticles was investigated for the treatment of chronic ulcers of aged mice.
The obtained results demonstrated that the hydrogel was an effective material for the
delivery of growth factor and accelerated wound healing [105]. Chitosan/gelatin hydro-
gels demonstrated a positive effect on promotion of cell proliferation and angiogenesis,
inducing granulation tissue formation, effectively prevents microorganisms, releasing
bioactive agents, and accelerating the wound healing [50,106,107]. Figure 4 shows the
summary of various applications of chitosan-based hydrogels as wound dressings and
drug delivery systems.
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8. Conclusions and Future Perspectives

Unique properties of hydrogels such as non-toxicity, biocompatibility, biodegradability,
high water retention, soft texture, swelling properties, stimuli-responsive, controlled release
of therapeutic agents and low cost are reason to consider them as most promising materials
for wound management. Chitosan-based hydrogel is considered an excellent biomaterial
due to its biodegradable, biocompatible, antimicrobial properties, and these properties
could be modified by various natural or synthetic polymers. The capacity to release
therapeutic molecules or growth factors to promote a more effective treatment is a necessary
option for wounds. Chitosan-based hydrogels can deliver antibacterial agents, growth
factors, stem cells, peptides, and other active substances in a prolong and controlled release
fashion. This review covers the current state of wound dressing products with the main
emphasis on chitosan and cellulose hydrogels as wound dressings.

The design, synthesis, and fabrication of hydrogels for wound dressing should be
considered comprehensively, comprising multifunction, improvement of existing perfor-
mances, stability of in all aspects, care impact for wound, and processability. We believe
that the current challenges will be resolved, and hydrogel dressing will be a promising
candidate for wound healing in near future with the continuous research in this field.
Therefore, there is intensive research for the design and synthesis of advanced wound
dressing materials with improved properties and they have to undergo clinical trials to
ensure safety and effective wound treatment. It is expected that many hydrogels that
are formulated from cellulose and chitosan will enter the clinical trials and market in
the near future. Therefore, it can be concluded that chitosan-based hydrogels are highly
explored and promising matrix for the use in drug delivery, wound dressing, and tissue
engineering applications.
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