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Abstract: Lignin is a natural polymer second only to cellulose in natural reserves, whose structure
is an aromatic macromolecule composed of benzene propane monomers connected by chemical
bonds such as carbon–carbon bonds and ether bonds. Degradation is one of the ways to achieve the
high-value conversion of lignin, among which the heating degradation of lignin by deep eutectic
solvent (DES) can be an excellent green degradation method. In this study, choline chloride (CC)
was used as the hydrogen bond acceptor, and urea (UR), ethylene glycol (GC), glycerol (GE), acetic
acid (AA), formic and acetic mixed acid (MA), oxalic acid (OX), and p-toluenesulfonic acid (TA) were
used as hydrogen bond donors to degrade lignin. NMR hydrogen spectroscopy was used for the
simple and rapid determination of phenolic hydroxyl groups in lignin. FT-IR spectroscopy was used
to characterize the changes of functional groups of lignin during DES treatment. GPC observed the
molecular weight of lignin after degradation and found a significant increase in the homogeneity
(1.6–2.0) and a significant decrease in the molecular weight Mw (2478–4330) of the regenerated lignin.
It was found that acidic DES was more effective in depolymerizing alkaline lignin, especially for the
toluene–choline chloride. Seven DES solutions were recovered, and it was found that the recovery of
DES still reached more than 80% at the first recovery.

Keywords: alkaline lignin; choline chloride; deep eutectic solvent (DES); degradation

1. Introduction

With the increasing depletion of non-renewable energy sources worldwide, the con-
version of biomass to fuels and chemicals has taken the stage due to its sustainability [1].
Currently, China is a country where agriculture occupies the majority of the country and a
large number of agricultural wastes are directly discarded or polluted and burned, such
as some walnut shells and rice husks. If these agricultural wastes are utilized, not only
can environmental problems be avoided, but also agricultural economic growth will be
stimulated. The most abundant and not easily decomposed agricultural waste is lignin [2].
Lignin accounts for 20–30 wt% of lignocellulosic biomass, and its abundance in nature
is still very considerable [3]. In addition to being obtained directly from nature, a large
amount of lignin from the paper industry is available in the black liquor formed by the kraft
and sulfite pulping processes that are in urgent need of industrial treatment. Industrial
lignin is poorly utilized (less than 2%), and the remaining lignin is only discarded or used
as a low-value fuel [4]. From the structural point of view, lignin is a complex aromatic
polymer derived from the corresponding p-hydroxycinnamyl alcohol, consisting of pineol,
mustard alcohol, and p-coumaryl alcohol derivatives forming the benzene propane unit.
The presence of aromatic rings, methoxy, carboxyl, and hydroxyl groups in lignin makes it
chemically active [5]. However, the structure of lignin is relatively recalcitrant and complex,
making it difficult to upgrade [6]. The bonds in lignin are mainly ether bonds (β-O-4′,
α-O-4′, 4-O-5′) and carbon–carbon bonds (β-β′, β-1′, 5-5′, α-1′, β-5′), where the β-O-4′
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bond is the main bond type of lignin, accounting for a large percentage, and is more easily
cleaved, so it is preferred for various depolymerization reactions [7]. Due to the complex
structure of lignin macromolecules, the conditions of lignin depolymerization reactions are
often harsh and the yields are not very high, causing the high quality and high value of
lignin to be hindered [8].

Currently, the conversion of lignin to aromatic chemical monomers has become a hot
topic. Common lignin depolymerization methods include hydrolysis [9], pyrolysis [10], hy-
drogenolysis [11,12], and oxidation [13,14]. The conventional depolymerization methods,
although strongly reactive, are relatively environmentally unfriendly and non-energy-
efficient, involving high reaction temperatures, high pressures, or expensive and toxic
catalysts [15]. Deep eutectic solvent (DES) is a new green solvent, consisting of a combina-
tion of a hydrogen bond donor (HBD) and a hydrogen bond acceptor (HBA), which can
be an inexpensive, efficient, environmentally safe, and favorable solvent environment for
lignin dissolution [16,17]. DES has good solubility properties for lignin fractions, where
DES composed of lactic acid, malic acid, oxalic acid, and propionic acid as hydrogen bond
donors, and betaine, ChCl, and urea as hydrogen bond acceptors, showed a high solubility
ability for lignin [18]. What is more, DES can be used not only as a solvent but also as a
catalyst for many chemical reactions [19].

It has been found that during DES pretreatment, it can effectively cleave the β-O-
4′ bond and lignin undergoes depolymerization, which is a landmark step for the value
addition of lignin to small molecule monomers [20]. DES has also been extensively reported
in the extraction and degradation of lignin. Acid DES systems can depolymerize lignin
well; Hong et al. [21] used DES consisting of choline chloride/formic acid (1:2 molar ratio)
for the degradation of alkaline lignin, and, not surprisingly, most of the β-O-4′ bonds
were broken and the carbon–carbon bonds (i.e., β-β′, β-5′ bonds) were partially broken,
and many phenolic substances were generated. Tan et al. [22] evaluated the structural
and thermal properties of lignin using two DES systems, choline chloride/lactic acid and
choline chloride/formic acid. They found that more than half of the phenolic compounds
formed after many small lignin monomers, and the β-O-4′ bond of lignin in DES cleaves
faster in a pure lactic acid system. Li et al. [23] used choline chloride and p-toluenesulfonic
acid as DES systems and degraded alkaline lignin at mild reaction temperatures with an
average molecular weight reduction from 17,680 g/mol to 2792 g/mol; the degradation
products were phenols, ketones, and a small amount of aldehydes. Basic DES systems
(e.g., choline chloride/urea) usually depolymerize lignin by breaking ether bonds, which
eventually leads to depolymerization or repolymerization reactions. Neutral DES systems
(e.g., choline chloride/glycerol) only slightly alter the lignin structure and are not as
capable of breaking the β-O-4′ bond [24]. Yu et al. [25] investigated the effect of choline
chloride/methanol as the reaction solvent, supplemented with a catalyst, on the selectivity
of catalytic oxidation of alkaline lignin. Under fully oxidized conditions, the aromatic region
underwent oxidation to produce acetyl vanillin, along with small amounts of vanillin and
vanillic acid. The condensation and depolymerization reactions of the side chain groups of
alkaline lignin may occur simultaneously in the choline chloride/methanol system, which
is the same mechanism of depolymerization as that of the choline chloride/lactic acid
system. Therefore, we conclude that the DES system may have the prospect of acting as a
solvent or catalyst for lignin degradation reactions. To test this hypothesis, we describe the
degradation of alkaline lignin by acidic, neutral, and basic choline chloride DES, hoping to
explore its degradation mechanism.

2. Materials and Methods
2.1. Materials

The lignin material was purchased from a Nanjing pulp and paper mill (China). The
number-average and weight-average molecular weight of the alkaline lignin were 2041
and 7349, respectively, and the polydispersity was 3.601 (determined by a GPC instrument
LC-20A, Shimadzu, Kyoto, Japan) with eluent tetrahydrofuran (THF). Choline chloride
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(98.0~101.0%), urea (≥98%), ethylene glycol (≥99.5%), glycerol (≥98.0%), formic acid
(≥99.5%), acetic acid (≥99.5%), oxalic acid (≥99.5%), p-toluenesulfonic acid (≥99.0%), and
other chemicals were purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai,
China) without further purification.

2.2. Elemental Analysis of Lignin

Elemental analyses of the alkaline lignin samples were performed on an Elementar
Vario EL cube analyzer. Table 1 lists the results. The content of C, H, N, and S were
measured directly from elemental analysis.

Table 1. Elemental composition of alkaline lignin (AL).

Elements Content [wt %]

C 64.55
H 5.40
N 0.11
S 1.70

2.3. Characterization and Analysis of the Products

Weigh 10 mg of dry lignin product, dissolve it in slightly alkaline water, add FC reagent,
make up to volume, add 20% Na2CO3 after 5 min, and then make up to 50 mL. After the
mixture was stirred for 2 h, the absorbance of lignin and regenerated lignin at 760 nm was
measured using an ultraviolet spectrophotometer (TU-1900, Beijing, China) to obtain the
content of phenolic hydroxyl groups in the lignin samples. The structure and functional
groups of the products were examined by Fourier-transform infrared spectroscopy (FT-
IR) on a VERTEX 80V FTIR spectrometer (Bruker, Karlsruhe, Germany). The scanning
range was 500–4000 cm−1, and the scan number was 32. Acetylation of lignin was done
before molecular weight testing. The gel permeation chromatography determined the
molecular weight and dispersion of lignin samples (LC-20A, Shimadzu, Kyoto, Japan).
The concentration of lignin in tetrahydrofuran (THF) was about 5 mg/mL. The column
temperature was 40 ◦C, THF was the eluent, and the flow rate was 1 mL/min. The
average molecular weight of lignin was measured by an external standard method, in
which monodisperse polystyrene was applied as the standard compound. 1H NMR was
acquired by dissolving 12 mg of acetylated lignin sample in 0.5 mL of deuterated dimethyl
sulfoxide and shaking to dissolve it. The 1H spectral range was 0–16 ppm (9615 Hz) with
2048 sampling points in the 1H dimension and a relaxation time of 1.5 s, accumulated
64 times. The hydrocarbon coupling constant is 145 Hz, and the number of sampling points
in the 1H dimension is 2048, with a relaxation time of 1.5 s, totaling 64 times.

2.4. Lignin Depolymerization Process and DES Recycling

The degradation of lignin in choline chloride-based DES was carried out in the steps
shown in Scheme 1. First, alkaline lignin was dissolved in a DES solution with a 5 wt%
lignin solution ratio (choline chloride as the hydrogen bond acceptor and different hydrogen
bond donors as variables). The hydrogen bond donors are p-toluenesulfonic acid, oxalic
acid, acetic acid, urea, glycerol, ethylene glycol, and formic and acetic mixed acid. Here,
keeping the molar mass of the hydrogen bond donor the same, they were added to the flask.
The degradation of lignin was carried out under nitrogen atmosphere with continuous
stirring for 5 h at a temperature set at 150 ◦C under magnetic stirring.
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Scheme 1. Process flow chart of lignin degradation and DES recovery.

After the reaction, the pH was adjusted to 2 by adding 1 mol/L HCl to the DES–lignin
mixture, followed by high-speed centrifugation to obtain a partition of the regenerated
lignin and the supernatant (DES–water mixture), and the pure regenerated lignin was
obtained by repeated addition of large amounts of distilled water, and the supernatant was
recovered. The recovered supernatant and regenerated lignin were washed thoroughly
with ethyl acetate (extracted 3 times), and the regenerated lignin was freeze-dried for 24 h
as a solid product. The ethyl acetate phase of the extracted supernatant was dried with
anhydrous sodium sulfate and concentrated to remove the solvent as the liquid-phase
product for further analysis (the organic phase was obtained as a phenolic-rich product
after removing the solvent). DES was then recovered from the supernatant by rotary
evaporation and dried for an additional 12 h at 105 ◦C. The DES degradation process and
product separation is shown in Scheme 1.

3. Results and Discussion
3.1. Determination of Phenolic Hydroxyl Groups

In the process of lignin degradation, the breakage of a large number of aryl ether
bonds produces a large number of phenolic hydroxyl groups, and the content of phenolic
hydroxyl groups in the degraded products is a key indicator when evaluating its degra-
dation efficiency. The size of the phenolic hydroxyl group reflects the ability of DES to
catalyze the cleavage of ether bonds [26]. In addition, the chemical reactivity of lignin in
various modification processes is profoundly influenced by its phenolic hydroxyl content
(e.g., reaction with formaldehyde to produce lignin phenolic resin binders [27]). Therefore,
the quantification of phenolic hydroxyl groups can provide a relevant basis for under-
standing the structure and reactivity of lignin, as well as the mechanism and extent of
lignin degradation.

The measurement of phenolic hydroxyl groups in the system was performed on
partially degraded lignin using the Folin–Ciocalteu reagent method (FC method). It is
based on the principle that the reaction of isophosphotungstate—molybdate with phenolic
hydroxyl groups—appears blue and is strongly proportional to the number of total phenolic
hydroxyl groups, and is suitable for spectrophotometric determination. This method allows
a rapid and simple determination of phenolic hydroxyl groups in lignin [28].

Firstly, the standard curve was drawn. In this experiment, vanillin was used as the
standard substance to draw the standard curve. The standard curve was drawn: 0.2013 g
of vanillin was accurately weighed, dissolved in distilled water, and fixed in a 1000 mL
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volumetric flask. 10 mL of the solution was taken out from the volumetric flask, diluted to
100 mL with distilled water, and then 0, 1, 2, 4, 8, 10, 14 mL were drawn from it and placed
in a 50 mL volumetric flask (the solution concentrations were 0, 4.278, 8.556, 17.112, 34.224,
42.780, 59.892 µmol/L). Then, add 3 mL of FC reagent and 30, 29, 28, 26, 22, 20, 16 mL of
distilled water, shake well for 30 s, add 10 mL of 20% Na2C2O4 solution, mix well, add water
to fix the volume, mix well again, and then stir the reaction for 2 h at room temperature
to obtain a series of reaction products. The absorbance of the products was measured at
760 nm with a blank vanillin concentration of 0. The linear relationship between absorbance
and vanillin concentration was obtained, as shown in Figure 1a. The contents of phenolic
hydroxyl groups in different series with different temperatures were obtained, and the
advantages and disadvantages of degradation in the system were conveniently observed by
phenolic hydroxyl groups. A regression equation was developed based on the absorbance
of vanillin at 760 nm versus concentration (µmol/L): y = 0.01391x + 0.0005 (correlation
coefficient R2 = 0.9975).
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The phenolic hydroxyl content of alkaline lignin obtained in this study was similar
to that reported in the literature, ranging from 0.17 to 3.0 mmol/g [29,30]. Treatment
of alkaline lignin with various types of DES increased the phenolic hydroxyl content
of lignin and decreased the methoxy content of lignin [31]. As seen in Figure 1b, the
degradation effect of acidic DES was generally higher than other types of DES, e.g., GE/CC,
GC/CC, UR/CC. In addition, the highest concentration of phenolic hydroxyl groups was
better degraded after TA/CC, indicating that strongly acidic DES contributed more to the
degradation of lignin than weakly acidic DES. DES not only acted as a solvent, but also as a
catalyst to promote the β-O-4′ bond cleavage at elevated reaction temperatures, leading to
a sustained elevation of the phenolic OH group and a decrease in molecular weight [32].

3.2. FT-IR Characterization

In order to compare the structural changes of lignin before and after degradation,
the FT-IR spectra were characterized for the alkaline lignin feedstock and the regenerated
lignin obtained from different DES degradations (as shown in Figure 1c). It was found that
the FT-IR spectra of degraded lignin and alkaline lignin were not much different, e.g., the
absorption peaks near 1600 cm−1 and 1510 cm−1 representing the vibration of the aromatic
skeleton of lignin did not change, indicating that the aromatic ring structure of lignin was
not destroyed during the deep eutectic solvent treatment. The changes of the absorption
peaks mainly occurred at 3305 cm−1 and 1078 cm−1 [33]. By studying the strength of the
characteristic absorption peaks of each functional group of lignin, the qualitative data
of each functional group could be obtained [23]. The vibration of -OH corresponding to
the 3435 cm−1 peak was attenuated after degradation. It is presumed that this is due to
the breakage of the ether bond in the lignin molecule during the deep eutectic solvent
treatment to generate new hydroxyl groups. The regenerated lignin peaks of -OH and C-H
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were significantly weakened at 3435 cm−1 and 2941 cm−1, respectively, compared to the
original lignin. It is presumed to be due to the breakage of the ether bond in the lignin
molecule during the deep eutectic solvent treatment to generate new hydroxyl groups. The
disappearance of 789 cm−1 and the appearance of 732 cm−1 corresponding to the aromatic
ring vibrations suggest a change in the position of the phenyl substituent [34]. It is worth
mentioning that the higher phenolic hydroxyl content resulting from degradation also
contributes to the binding of DES to the regenerated lignin. This property differs from
other lignin depolymerization methods. It is conceivable that the reduction or elimination
of ether bonds in lignin may result in better polymer stability of regenerated lignin, since
ether bonds are more susceptible to disruption than C-C bonds, offering the prospect of
high-value applications of lignin [35].

3.3. GPC Characterization

To investigate the effect of deep eutectic solvent treatment on the molecular weight of
lignin, the molecular weight of acetylated lignin before and after degradation was examined
by GPC, as shown in Table 2. It can be seen that regenerated lignin Mw ranged from 2478 to
4330 g/mol, which was lower than the Mw value of the original alkaline lignin (7349 g/mol),
the same as reported in the literature [36]. It is generally believed that the less the aryl ether
bond content in lignin, the smaller the molecular weight. The less the condensed structure,
the smaller the molecular weight. Combined with the FT-IR results, the DES-treated
alkaline lignin had a lower ether bond content, while the molecular weight of the lignin
was reduced. The Mw of TA/CC was higher than the other types, indicating that various
reactions such as condensation occurred during the degradation process of this group of
samples while depolymerizing and breaking the ether bonds; these findings can be found
in the study of Li, et al. [23]. In addition, it has also been shown that the intramolecular
hydrogen bonds and carbonyl groups of lignin are detrimental to the carboxylic acid-
induced cleavage of the C-O bonds of lignin molecules [37]. The polydispersity coefficient
(Mw/Mn) of lignin was significantly lower after degradation, indicating that the degree of
homogeneity of lignin was improved after degradation. The molecular weights of TACC,
OX/CC, AA/CC, MA/CC, GE/CC, GC/CC, and UR/CC were opposite to the pattern of
phenolic hydroxyl groups in the supernatant mentioned above, presumably because more
ether bonds were broken under acidic conditions and easily polymerized into polymorphs.
The ether bonds were partially broken under other conditions, and the short-chain structure
of lignin remained. Acid DES-treated lignin has low molecular weight and high reactivity,
while basic DES lignin maintains the main natural structure but with a lower molecular
weight. The homogeneous dispersion and low molecular weight promote the downstream
conversion and utilization of lignin macromolecules [38].

Table 2. Weight-average molecular weights (Mw), number-average molecular weights (Mn), and
polydispersity index (Mw/Mn) of AL, TA/CC, OX/CC, AA/CC, MA/CC, GE/CC, GC/CC, and
UR/CC.

Feedstock and Regenerated Lignin Mw Mn Mw/Mn

AL 7349 2041 3.6
TA/CC 4330 2509 1.7
OX/CC 2979 1894 1.6
AA/CC 3412 1699 2.0
MA/CC 3112 1858 1.7
GE/CC 2895 1743 1.7
GC/CC 2734 1708 1.6
UR/CC 2478 1284 1.9

3.4. TG Characterization

Figure 2a shows the thermogravimetric analysis of alkaline lignin and regenerated
lignin. As can be seen from the figure, the initial phase is the drying phase of the lignin
sample (30–150 ◦C). The first peak of weight loss after 150 ◦C corresponds to the individual
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interaction reaction between the phenolic hydroxyl epoxy groups in lignin, mainly involv-
ing the degradation of β-O-4; these results are consistent with Poletto’s study [39]. During
the initial pyrolysis phase (200–350 ◦C), the destruction of low-molecular-weight lignin
fragments and the breakage of side chains in the lignin fraction occur [40]. During the sub-
sequent degradation at 350–400 ◦C, the degradation rate of lignin mainly depends on the
side-chain oxidation of lignin, such as carbonylation, carboxylation, and dehydrogenation
reactions. At temperatures greater than 400 ◦C, the rate of pyrolysis gradually slows down,
indicating a relatively stable aromatic ring structure and slow weight loss, with a series of
reactions occurring mainly on the aromatic ring of lignin, such as saturation of the aromatic
ring, carbon–carbon bond breakage, and degradation of lignin to CO2, CO, and H2O [41].
At a given endpoint of testing at 700 ◦C, the weight loss was 71.45% for TA/CC, 49.09% for
alkaline lignin, and ranged from 41.71% to 46.51% for GE/CC, OX/CC, GC/CC, MA/CC,
UR/CC, and AA/CC. It can be found that the thermal stability of most of the regenerated
lignin is lower than that of alkaline lignin, while the thermal stability of TA/CC is much
better than that of alkaline lignin. The relatively large weight loss rates of GE/CC, OX/CC,
GC/CC, MA/CC at 200–600 ◦C indicated that the β-O-4 linkages and lignin side chains
were still retained after the treatment process. The samples of GE/CC, OX/CC, GC/CC,
MA/CC reached the fastest pyrolysis rate at the β-O-4 pyrolysis stage, while UR/CC and
AA/CC reached the fastest pyrolysis rate in the side-chain pyrolysis phase, indicating more
side-chain structures [42]. In a variety of DES systems, the DES of choline chloride/oxalic
acid broke the structure of part of the side-chain region of lignin, and the lignin molecules
with broken side chains re-formed intra- or intermolecular C-C and C-O bonds, causing the
lignin to condense [43]. It has been reported in the literature that methanol promotes the
esterification reaction of carboxyl groups at high temperatures and acidic conditions and
inhibits the repolymerization of lignin with free radicals [44]. It can be seen that the alcohol
DES contributes to the reduction in the condensation reaction activity of regenerated lignin,
which is consistent with the results of the thermogravimetric curves.
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3.5. 1H NMR Characterization

Figure 2b shows the 1H-NMR hydrogen spectra of alkaline lignin and regenerated
lignin degraded by different DES species. Among them, 8.0–6.2 ppm are attributed to
the proton signals on the aromatic nuclei of guaiacyl unit and lilacyl unit, 5.0–4.1 ppm
are attributed to the Hα, Hβ, and Hγ signals in the β-O-4 structure, and 4.1–3.5 ppm are
attributed to the methoxy proton signal. The sharp peak at 3.5–3.3 ppm is attributed to
the proton signal of water in the solvent, and the small peak at 3.4 ppm is attributed to
the proton signal of choline chloride, which may be due to a slight reaction between lignin
and choline chloride in the solvent or a small amount of deep eutectic solvent remaining in
the lignin during the treatment. 2.5–2.2 ppm is attributed to the proton signal of aromatic
ring acetate, and 2.2–1.4 ppm is attributed to the proton signal of aliphatic acetate [23]. The
hydrogen of the phenolic hydroxyl group is very active, and the solvent is taken off in
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the deuterated reagent. In general, aromatic phenolic hydroxyl groups tend to be more
low-field. The alcohol hydroxyl group is 0.5–5.5 ppm and the phenolic hydroxyl group
is 4–8 ppm. In addition, the phenolic hydroxyl group may also be seen at chemical shifts
greater than eight. The breakage of the β-O-4 bond generates new phenolic hydroxyl
functional groups, while the breakage of the Cα-Cβ bond increases the alcohol hydroxyl
content in lignin. After regenerating lignin with p-toluenesulfonic acid as the hydrogen
bond donor, more carbon–carbon bonds were broken, while AA/CC and MA/CC were
also partially broken; it can be seen that acidic deep eutectic solvents are more effective
for lignin degradation. The methoxy content of the regenerated lignin after acidic DES
treatment was slightly higher than that of AL, as seen by 1H-NMR. This could be due to
the further reaction between lignin and acid during the extraction of lignin to produce
lignin derivatives (Lignin-O-CR) [45]. Based on the results of the present study, significant
lignin depolymerization and condensation can be observed in acidic DES lignin [8]. It is
worth mentioning that the complex and polymeric structure of lignin is responsible for the
overlapping signals of 1H NMR spectra [46].

3.6. Recyclability of Solvents

The recyclability of solvents can reduce environmental pollution and save reaction
costs. We recovered seven DESs using rotary evaporation and discussed the recovery
rates of DESs accordingly. As shown in Figure 2c, the DES recoveries were above 90% for
GE/CC, UR/CC, GC/CC, and MA/CC, and above 80% for TA/CC, OX/CC, and AA/CC.
In particular, the DES recoveries of MA/CC and MA/CC were slightly lower than those
of GE/CC, UR/CC, and GC/CC due to the volatilization of formic acid and acetic acid
during the actual reaction and recovery. The advantages of DES over conventional solvents
are its low toxicity, non-volatility, low cost, and recyclability. In addition, the viscosity of
DES, which typically ranges from 10 to 5000 cP, is strongly influenced by temperature. For
example, as the temperature increases from 30 ◦C to 95 ◦C, the viscosity of DES for UR/CC
decreases sharply from 500 cP to 50 cP. It has been reported that the high viscosity of DES
may lead to difficulties in reuse [47]. This can be understood by the formation of DES
between HBA (ChCl) and HBD (GE, UR, GC, MA, TA, OX, and AA) by a strong hydrogen
bonding network [48]. Moreover, the loss of solvent attached to the solute, the water
content of DES after recovery was reduced, which could be the reason for the decrease in
DES recovery.

4. Conclusions

In this study, we propose a green solvent system for lignin degradation with low
toxicity and reusability of DES compared to other solvents. This study proposes a good
solvent system for the efficient and high-quality degradation of lignin. Lignin is a complex
macromolecular structure with complicated bond types, and the effect of each type of DES
on lignin degradation is different, so it is also critical to find a good degradation system.
Seven different DESs were used to degrade alkaline lignin under given conditions and
the supernatant and regenerated lignin after their degradation were analyzed, and it was
found that the phenolic hydroxyl content in the supernatant increased a lot (126–481%
compared to alkaline lignin). The regenerated lignin fraction showed attractive structural
and functional characteristics (homogeneous dispersion with low molecular weight). Acid
DES-treated lignin exhibited higher fragmentation (i.e., cleavage of β-O-4 bonds) and
condensed structures and lower molecular weights, and TA/CC DES was more degraded
and had the highest degree of condensation in acid DES. The thermal stability of most of
the regenerated lignin was lower than that of AL. The breakage of the β-O-4 aryl ether bond
in lignin generates phenolic hydroxyl functional groups, while the breakage of the C-C
bond increases the content of alcohol hydroxyl groups in degraded lignin. In addition, the
performance applications of the regenerated lignin are further explored, and the degraded
regenerated lignin can be applied to phenolic resins, hydrogels, and carbon aerogels.
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