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Abstract: Replacement of indium tin oxide with the intrinsically conducting polymer poly(3,4–ethylene-
dioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) has been of significant interest in recent years as a
result of lower processing and material costs. In addition, the inclusion of additives has been reported
to further enhance the conductivity, rheology, and wettability of PEDOT:PSS. In this study, Tween 80
was shown to decrease the sheet resistance of PEDOT:PSS films from approximately 1000 to 76 Ω�−1

at a 2.67 wt% surfactant concentration. Through X-ray diffraction, Raman spectroscopy, and atomic
force microscopy, it was shown that the surfactant caused phase separation and structural ordering of
the PEDOT and PSS components, leading to this improvement in conductivity. Furthermore, Tween
80 altered the rheological properties and decreased the surface tension of PEDOT:PSS, making coating
common commodity polymers, often used as flexible substrates, more viable.
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1. Introduction

Poly(3,4–ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) (Figure 1a) is
an intrinsically conducting polymer that has shown promise as an alternative to indium
tin oxide (ITO) in organic optoelectric devices [1]. PEDOT:PSS has some major advantages
over ITO, such as decreased material costs and superior mechanical flexibility, allowing
it to be used on flexible polymer substrates [2,3]. PEDOT:PSS also has the potential to be
applied to substrates using bulk manufacturing methods such as roll-to-roll (R2R) or inkjet
printing (IJP), which allows for more accurate patterning, lower temperature requirements,
and reduced running costs [4,5].
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Figure 1. Chemical structures of (a) PEDOT:PSS and (b) Tween 80.

The main hinderance to the widespread use of pristine PEDOT:PSS is its relatively
poor conductivity of approximately 1 S cm−1, and sheet resistance of 1800 Ω�−1 [6,7]. This
is considerably inferior to ITO, with a conductivity of 3500 S cm−1 and sheet resistance of
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20 Ω�−1 [8]. Improvements to PEDOT:PSS film conductivity using secondary enhancement
mechanisms have already been largely reviewed in the literature [1,9,10]. To date, the most
effective uses concentrated sulfuric acid as a post-treatment wash, generating a conductivity
of 4300 S cm−1 [11]. However, this is not an ideal enhancement method due to the corrosive
nature and negative environmental impacts of the acid. Furthermore, acid treatments could
limit the applications of PEDOT:PSS by potentially making it unsuitable in bioelectronics
as well as preventing bulk manufacture. Other organic compounds, such as ethylene
glycol (EG) [12], dimethyl sulfoxide (DMSO) [13] and methanol [14], have been used as pre-
and/or post-film formation treatment methods to enhance the conductivity of PEDOT:PSS
films to approximately 735 [15], 898 [16], and 1360 [14] S cm−1, respectively (Table 1).

Table 1. Summary of effective secondary conductivity-enhancing agents reported to date.

Additive Concentration
(%)

Conductivity
Change
(S cm−1)

Transparency Ref.

2,2′-thiodiethanol (TDE) 5 15 to 98 84% [6]

Diethylene glycol (DEG) 0.3 0.006 to 10 Yes [17]

DMSO
5 0.69 to 898 NR [16]

10 2.5 to 1233 NR [18]

Dodecylbenzene sulphonic
acid (DBSA) 2 1 to 500 NR [13]

EG
6 0.3 to 640 ~93% [12]
6 1 to 735 No change [15]

Glycerol 5 15 to 57 81% [6]
6 0.782 to 152 NR [5]

N-methyl-2-pyrrolidone
(NMP) 20 0.03 to 30 NR [7]

PEG (Mw 200, 300 and 400) 2 0.3 to 805 93% [12]

Sodium dodecylbenzene
sulphate (SDBS) 10 0.61 to 224 NR [19]

Sodium dodecyl sulphate
(SDS) 10 0.61 to 70 NR [19]

Triton X-100 1 0.24 to 100 96% [20]
NR: Not reported.

Surfactants have also been reported to enhance film conductivity when added to
PEDOT:PSS solution prior to film formation (Table 1). The non-ionic surfactant, Triton
X-100 (1 wt%), has been shown to enhance conductivity to 100 S cm−1 [20], with Tween 80
(also known as polysorbate 80), in combination with methyl ethyl ketone (MEK), also caus-
ing a significant drop in the sheet resistance of PEDOT:PSS films [21]. Other surfactants,
such as anionic sodium dodecyl sulphate (SDS) and sodium dodecylbenzene sulfonate
(SDBS), have been reported to enhance conductivity from 0.61 to 70 and 224 S cm−1, re-
spectively [19]. It is thought that the addition of surfactants weakens the ionic interaction
between PEDOT and PSS causing phase separation, which allows for greater alignment
of the PEDOT chains through π–π stacking and a conformational change of the PEDOT
backbone from benzoid to quinoid. The resulting more linear chain structure contains
improved conductive pathways through PEDOT:PSS films, reducing the hopping distance
of electrons between PEDOT-rich regions [20,22]. Additionally, surfactants alter the rhe-
ological properties, surface tension, and wettability of PEDOT:PSS solution, which are
important considerations for bulk manufacturing processes [19,23,24].

Another important factor in the use of these formulations as electrodes is their trans-
parency. Researchers have shown that the addition of EG, TDE, and glycerol to PEDOT:PSS
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solutions has no effect on the transparency of the resultant films [6,15] with transmissions
ranging from 81 to 96% (Table 1).

Whilst the use of surfactants is better for the environment than strong acids, they have
not yet enhanced PEDOT:PSS conductivity to the same level as ITO. However, work with
non-ionic surfactants has been mostly focused on the use of the Triton X series. While
Tween 80 has been studied [21,25], it has not been utilised alone, and often the focus is on
improving wettability.

In this study, the effect of solely adding the non-ionic surfactant Tween 80 (Figure 1b) to
PEDOT:PSS solution as a conductivity-enhancing agent was investigated, utilising a broad
range of characterisation techniques. The effects of Tween 80 on film quality, sheet resistance,
conductivity, solution viscosity and wettability were investigated. Potential mechanisms
for the observed conductivity enhancement were also probed via X-ray diffraction (XRD),
Raman spectroscopy, and atomic force microscopy (AFM).

2. Materials and Methods
2.1. Materials

A high-conductivity, surfactant-free, aqueous dispersion of PEDOT:PSS (1.2 wt%)
and polysorbate 80 (Tween 80) were obtained from Sigma-Aldrich (Gillingham, UK). All
materials were used as received.

2.2. Solution Formation

PEDOT:PSS solutions containing a range of Tween 80 concentrations (0–3 wt%) were
created in triplicate. All solutions were stirred with a magnetic stirrer for 10 min, to ensure
sufficient mixing, and sonicated for 10 min, to break up any agglomerates.

2.3. Film Formation

Prior to casting, rectangular glass slides (1 × 2 cm) were washed with hot water and
detergent, followed by acetone, before being rinsed with distilled water and dried. The
glass substrates were dipped into the PEDOT:PSS/Tween 80 solutions, for 30 s, covering
approximately half the slide. Resultant films were annealed at 140 ◦C for 1 h and left to
equilibrate in ambient conditions for 12 h prior to testing.

2.4. Film Characterisation
2.4.1. Sheet Resistance and Conductivity Measurements

Sheet resistance was measured using an Ossila 4-point probe (Ossila, Sheffield, UK) at
a maximum of 1 V. Ten repeat measurements were taken at 6 locations across each film to
remove any orientation bias in the samples. Film thickness was measured with an Ambios
XP200 Stylus Profilometer (Ambios Technology, Santa Cruz, CA, USA). Five measurements
were performed on each sample at a spacing of 1.5 mm and a scan length of 10 mm. Data
was analysed using XP-Plus Stylus Profilometer software (Ambios Technology, Santa Cruz,
CA, USA). Conductivity was calculated from sheet resistance using the following equation.

σs =
1

Rs × t

where σs is the conductivity (S cm−1), Rs is the sheet resistance (Ω�−1), and t is the film
thickness (cm).

2.4.2. XRD

XRD was performed using a 3rd generation Malvern Panalytical Empyrean XRD
(Malvern, UK) equipped with multicore (iCore/dCore) optics and a Pixel3D detector
operating in 1D scanning mode. Scans were made with Cu Kα1/2 radiation (1.5419 Å) in
the range 2θ =1.5–50 with a step size of 0.0263◦ and a count time of ~147 s/step.
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2.4.3. Raman

Raman spectroscopy was performed using a Renishaw inVia Raman microscope
(Wotton-under-Edge, UK) at a wavelength of 532 nm. Spectra were normalised to the
largest peak height to allow for comparison between samples.

2.4.4. Atomic Force Microscopy

A NanoWizard II Atomic Force Microscope (AFM) (JPK, Berlin, Germany) was used
in non-contact mode to measure the morphology of PEDOT:PSS/Tween 80 films with
adhesion force mapping. A 50 × 50 µm area was measured to a resolution of 64 × 64 pixels.

2.5. Solution Characterisation
2.5.1. Rheology

A Netzsch Kinexus Pro+ Rheometer (Wolverhampton, UK), with a 4◦, 40 mm cone,
and plate geometry, was used to determine the viscosity of the solutions. Approximately
1.2 mL was pipetted onto the plate. Rotational tests were performed at 25 ◦C as the shear
rate increased from 0.01–100 s−1.

2.5.2. Surface Tension

The contact angle was measured by pipetting a single droplet of each solution onto
a glass slide. An image was taken and the angle between the glass slide and the droplet
analysed using ImageJ software (LOCI, University of Wisconsin, Madison, WI, USA). A
capillary tube (Ø 0.8 mm) was then placed into the PEDOT:PSS/Tween 80 solutions and
the maximum distance the liquid travelled up the capillary was measured. Surface tension
was calculated using:

Sur f ace tension =
ρgr
2
× h

cosθ

where ρ is the solution density (kgm−3), g is the acceleration due to gravity (ms−2), r is the
radius (m) of the capillary tube, h is the height (m) the solution travelled up the capillary
tube, and θ is the measured contact angle (rad).

ρ =
mPEDOT:PSS + mTween 80

VolPEDOT:PSS + VolTween 80

where the volumes of each component were calculated using the individual masses and
densities. Density of PEDOT:PSS and Tween 80 were taken as 999 and 1064 kgm−3, re-
spectively [26,27]. Two samples were analysed for the contact angle and capillary rise
experiments, and the results were averaged prior to calculating surface tension.

3. Results and Discussion

Good quality dip-cast films were successfully produced on the glass slides for each
of the Tween 80 concentrations analysed. This was determined through visual analysis
and was deemed to be ‘good’ if the film was free of defects, smooth, and displayed good
adhesion to the substrate.

3.1. Sheet Resistance and Conductivity

Pristine PEDOT:PSS films displayed a sheet resistance between 715 and 1640 Ω�−1

(Figure 2) (Table 2). The addition of a low concentration (approximately 0.5 wt%) of Tween
80 created a small reduction in the sheet resistance with a more severe drop observed as
the concentration was increased to 0.9 wt%. Above 1 wt% surfactant, the sheet resistance
continued to reduce with concentration; however, the effect diminished.
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Figure 2. Sheet resistance (Ω�−1) (black circle) and corresponding conductivity (S cm−1) (red cross)
of PEDOT:PSS films with various concentrations of Tween 80 (wt%). Error bars on sheet resistance
show ± 1 standard deviation of 6 measurements across various locations on the film.

Table 2. Summary of the parameters obtained for each of the PEDOT:PSS/Tween 80 films.

Tween 80 (wt%) Thickness (µm) Sheet Resistance (Ω�−1) Conductivity (S cm−1)

0.00 2.31 1639.49 2.64
0.00 2.08 1096.41 4.39
0.00 2.40 1334.68 3.12
0.00 - 715.67 -
0.34 4.18 637.85 3.75
0.37 - 429.53 -
0.44 3.28 757.14 4.02
0.47 - 597.84 -
0.49 2.27 1074.19 4.11
0.49 2.78 1120.75 3.21
0.53 3.08 955.35 3.39
0.53 - 736.25 -
0.85 5.11 121.96 16.04
0.93 - 125.08 -
0.95 3.43 142.38 20.46
0.95 - 136.58 -
1.17 5.11 104.47 18.75
1.29 - 99.57 -
1.32 - 104.37 -
1.40 3.34 111.84 26.80
1.40 4.57 123.75 17.68
1.57 5.53 87.15 20.75
2.05 6.42 98.72 15.77
2.05 - 89.11 -
2.10 7.25 77.97 17.69
2.27 - 78.40 -
2.50 - 74.24 -
2.63 8.00 83.73 14.93
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Table 2. Cont.

Tween 80 (wt%) Thickness (µm) Sheet Resistance (Ω�−1) Conductivity (S cm−1)

2.63 - 69.36 -
2.67 6.70 79.29 18.84
2.67 6.77 72.33 20.41

As expected, conductivity showed the reverse trend with an increase from 3 to 20 Scm−1

being obtained at 0.9 wt% Tween 80 (Figure 2) (Table 2). Contrary to the sheet resistance
results, above this concentration Tween 80 had little effect on conductivity, as the films
were also found to increase in thickness.

It has been suggested in the literature that surfactants will initially interact with the
excess PSS in solution before disrupting the ionic bond between PEDOT and PSS [28]. Based
on the sheet resistance and conductivity results (Figure 2) it is suspected that complete
saturation of the excess PSS does not occur until between 0.5 and 0.8 wt%. Above this
concentration, the Tween 80 will interfere with the bound PEDOT:PSS, resulting in a
significant reduction in sheet resistance coupled with an increase in conductivity.

Reductions in sheet resistance and/or increases in conductivity have been observed
for a range of additives such as PEG of various molecular weights [12], SDS [19], SDBS [19],
the Triton-X series [28], 2,2-thiodiethanol [6], and glycerol [6]. As seen with Tween 80,
in the majority of these cases, a minimum concentration of additive is required prior to
any significant change being observed. Similar plateaus in electrical performance are
reported in the literature, however, the concentration at which this occurs depends on the
additive [6,12,28].

3.2. Microstructural Analysis

A range of analyses were performed to probe the increase in conductivity observed on
the addition of Tween 80.

3.2.1. XRD

The X-ray diffraction pattern of pristine PEDOT:PSS displayed three distinct peaks at
2θ values of approximately 3.4, 17.4, and 26.9◦ (Figure 3). As calculated using Bragg’s Law,
2d sinθ = λ, these values correspond to lattice d spacings of 25.8, 5.1 and 3.3 Å, respectively.
The d spacing of 25.8 Å (2θ = 3.4◦) has been attributed to the distance between the lamella
stacking (d100) of alternating PEDOT and PSS chains [16]. The amorphous halo of PSS was
observed at a d spacing of 5.1 Å (2θ = 17.4◦) whereas, the peak at 2θ = 26.9◦, giving a d spacing
of 3.3 Å, corresponded to the distance between the π-π stacking (d010) of PEDOT chains [11].

With the exception of a reduction in the intensity of the peak at approximately
2θ = 3.4◦, indicative of a loss of order, no changes were observed to the diffraction pattern
on the addition of 0.47% Tween 80. However, deviations in the sizes and positions of the
peaks were observed with the higher concentration. The peak at approximately 2θ = 3.4◦

reduced in both intensity and angle, resulting in an increase in the d spacing. These factors
demonstrate an increased separation between the PEDOT:PSS lamella and a reduction
in crystallinity of this particular ordering [16]. In addition, extra peaks were observed at
2.33, 6.79, and 11.28◦, corresponding to d spacings of 37.9, 13.0, and 7.8 Å, respectively.
Similar peaks have previously been observed when PEDOT:PSS has undergone acid washes
with sulfuric acid and were attributed to the lamella stacking of distinct additional PE-
DOT:PSS orderings with high crystallinities [11]. No change was observed to the peak at
approximately 2θ = 26.9◦, and therefore, the π-π stacking of the PEDOT chains.
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(blue) and 1.32 (green) wt% surfactant. Insert displays a close up of the smaller peaks.

3.2.2. Raman

Raman analysis was performed on the PEDOT:PSS/Tween 80 films to probe for
possible changes to the PEDOT double-bond structure from benzoid to quinoid. Pristine
PEDOT:PSS displays three main peaks in the Raman spectra (Figure 4). The peaks at
approximately 1372 and 1429 cm−1 are attributed to the Cβ - Cβ and Cα = Cβ stretching
vibrations, respectively, within PEDOT, whereas, the peak at approximately 1586 cm−1 was
created by the PSS component [29]. Although Tween 80 is Raman active, it has a much
lower intensity compared to PEDOT:PSS, with no difference observed between the three
traces in the region of the expected main peak (approximately 2800 cm−1) [30].

Within the literature, it has been reported that the benzoid to quinoid resonance struc-
tural change can be seen through a red shift and narrowing of the band at approximately
1429 cm−1, representing the Cα = Cβ bond in the thiophene ring of PEDOT [22,31]. These
shifts have been observed with both the non-ionic surfactant Triton X-100 [20] and the
organic solvent ethylene glycol [31]. Alternatively, Chang et al. reported changes to the
ratio of the peak heights at 1372 (Cβ - Cβ) and 1429 (Cα = Cβ) being indicative of the
benzoid to quinoid shift when a 2:1 ethylene glycol:hexafluroisopropylalcohol mixture was
used as a post-processing wash [29]. Neither of these changes were observed in the present
study, suggesting that this resonance structural change does not occur with the surfactant
Tween 80. The surfactants SDS and SDBS have also been reported to display no changes to
the Raman spectra of pristine PEDOT:PSS, and in these cases the enhanced conductivity
was attributed to an increase in the size of the conducting domains [19].
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Figure 4. Raman spectra of PEDOT:PSS/Tween 80 films containing 0.00 (red), 0.47 (blue), and 1.32
(green) wt% surfactant (from bottom to top).

3.2.3. AFM

AFM analysis of pristine PEDOT:PSS film shows an even distribution of both polymers
throughout the surface (Figure 5a). However, in the presence of 1.40 wt% Tween 80 there
is a clear degree of phase separation (Figure 5b), with the large dark patches believed
to be the surfactant. Kim et al. previously demonstrated a similar phase separation
when high concentrations of Triton X were added to PEDOT:PSS spin-coated films [28].
The authors observed that as the concentration of Triton X was increased there was an
obvious distinction where immiscibility occurred dependent on the molecular weight
of the surfactant. This immiscibility was also coupled with a sharp decrease in sheet
resistance comparable to that seen here with Tween 80. Kim et al. postulated that at low
concentrations, the surfactant only interacts with the excess PSS [28]. As the concentration
is increased further towards the miscibility boundary, the surfactant interacts with the
PEDOT and PSS, leading to a reduction in sheet resistance. Above the saturation point,
the excess surfactant is phase-separated and the sheet resistance begins to plateau. Based
on the results seen here and the similarity of the two surfactants, it is likely that the same
trend occurs with Tween 80.

Numerous theories on the effect of additives, in particular surfactants, on the sheet
resistance and/or conductivity of PEDOT:PSS films have been proposed in the
literature [12,17,19,20,22,28,32–35]. The most widely publicised are: screening of PEDOT
and PSS, phase separation of both polymers, formation of nanofibrils, conformational
changes to the structure of PEDOT, and combinations of these effects. These factors are all
reported to reduce the barriers to electron flow and, therefore, improve conductivity by
creating better conducting pathways.

Sorbitol, PEG, Triton-X, and the polar solvents DMSO, dimethylformamide (DMF),
and tetrahydrofuran (THF) have all been reported to produce a screening effect, weakening
the Coulombic interaction between PEDOT and PSS [12,22,28,33–35]. In some cases, this
was caused by the ability of the additives to penetrate the PEDOT–PSS bond [22,28,34];
whereas in others, exterior interactions caused a weakening of this bond [12]. In the present
work, the increase in PEDOT:PSS lamella separation shown by XRD could be an indication
of this screening effect.



Polymers 2022, 14, 5072 9 of 14Polymers 2022, 14, 5072 9 of 15 
 

 

 
Figure 5. Topographic AFM images showing the adhesion scan normalised by the surface profile of 
(a) pristine PEDOT:PSS and (b) PEDOT:PSS films containing 1.40 wt% Tween 80. 

Numerous theories on the effect of additives, in particular surfactants, on the sheet 
resistance and/or conductivity of PEDOT:PSS films have been proposed in the literature 
[12,17,19,20,22,28,32–35]. The most widely publicised are: screening of PEDOT and PSS, 
phase separation of both polymers, formation of nanofibrils, conformational changes to 
the structure of PEDOT, and combinations of these effects. These factors are all reported 
to reduce the barriers to electron flow and, therefore, improve conductivity by creating 
better conducting pathways.  

Sorbitol, PEG, Triton-X, and the polar solvents DMSO, dimethylformamide (DMF), 
and tetrahydrofuran (THF) have all been reported to produce a screening effect, weaken-
ing the Coulombic interaction between PEDOT and PSS [12,22,28,33–35]. In some cases, 
this was caused by the ability of the additives to penetrate the PEDOT–PSS bond 
[22,28,34]; whereas in others, exterior interactions caused a weakening of this bond [12]. 
In the present work, the increase in PEDOT:PSS lamella separation shown by XRD could 
be an indication of this screening effect.  

The screening effects allow phase separation to occur, creating PEDOT islands within 
a PSS matrix [20,22,28,33]. These islands have been described using AFM analysis as clus-
ters, elliptical grains, and nanofibrils. The growth of these domains with increasing addi-
tive concentration leads to better conducting pathways and, therefore, an increase in con-
ductivity [12,19]. AFM analysis following the addition of Tween 80 shows phase separa-
tion on a much larger scale and is likely to be excess surfactant [28]; however, the increased 
order observed by XRD may be generated through the formation of PEDOT nanofibrils or 
elliptical grains.  

Authors have also reported a conformational change to the PEDOT structure 
[17,20,22,32]. In the natural state, the short chains of PEDOT are bound to the longer PSS 
chains. This results in the formation of coils as the PSS chains repel each other. Phase sep-
aration of the two polymers allows PEDOT to realign into an extended coil or linear struc-
ture, resulting in a change from a benzoid to quinoid structure. Raman spectroscopy has 
been used to display this change when diethylene glycol and Triton X-100 have been 
added to PEDOT:PSS [17,20,22,32]. However, others have reported no conformational 
changes with polar solvents, SDS, or SDBS using the same technique [19,34]. 

In the present study, no conformational change was observed by Raman; however, 
increased ordering was found by XRD. These results suggest that phase separation occurs, 
leading to the formation of more ordered PEDOT segments within a PSS matrix; however, 
the effect is not severe enough to cause a conformational change to the PEDOT structure. 
The formation of these PEDOT islands improved the conducting pathways through the 
film, causing the reduction in sheet resistance observed. These results also show that a 

Figure 5. Topographic AFM images showing the adhesion scan normalised by the surface profile of
(a) pristine PEDOT:PSS and (b) PEDOT:PSS films containing 1.40 wt% Tween 80.

The screening effects allow phase separation to occur, creating PEDOT islands within
a PSS matrix [20,22,28,33]. These islands have been described using AFM analysis as
clusters, elliptical grains, and nanofibrils. The growth of these domains with increasing
additive concentration leads to better conducting pathways and, therefore, an increase
in conductivity [12,19]. AFM analysis following the addition of Tween 80 shows phase
separation on a much larger scale and is likely to be excess surfactant [28]; however, the
increased order observed by XRD may be generated through the formation of PEDOT
nanofibrils or elliptical grains.

Authors have also reported a conformational change to the PEDOT structure [17,20,22,32].
In the natural state, the short chains of PEDOT are bound to the longer PSS chains. This
results in the formation of coils as the PSS chains repel each other. Phase separation
of the two polymers allows PEDOT to realign into an extended coil or linear structure,
resulting in a change from a benzoid to quinoid structure. Raman spectroscopy has been
used to display this change when diethylene glycol and Triton X-100 have been added to
PEDOT:PSS [17,20,22,32]. However, others have reported no conformational changes with
polar solvents, SDS, or SDBS using the same technique [19,34].

In the present study, no conformational change was observed by Raman; however,
increased ordering was found by XRD. These results suggest that phase separation occurs,
leading to the formation of more ordered PEDOT segments within a PSS matrix; however,
the effect is not severe enough to cause a conformational change to the PEDOT structure.
The formation of these PEDOT islands improved the conducting pathways through the
film, causing the reduction in sheet resistance observed. These results also show that a
minimum Tween 80 concentration is required to produce an effective response, with no
change to the XRD pattern or sheet resistance found below 0.9 wt%.

3.3. Solution Analysis

In addition to improving the conductivity of PEDOT:PSS, surfactants can also alter
the solution properties. This can impact the viscosity and wettability, which in turn has
implications for bulk manufacturing and adhesion to substrates.

3.3.1. Rheology

The rheology of a range of PEDOT:PSS/Tween 80 formulations was assessed to de-
termine the suitability for processing via bulk manufacturing methods such as roll-to-roll
and inkjet printing. Pristine PEDOT:PSS is a non-Newtonian fluid displaying a continuous
decrease in viscosity with increasing shear rate (Figure 6). The viscosity of Tween 80 stays
relatively constant regardless of the shear rate, and is greater than pristine PEDOT:PSS
throughout. Despite the Newtonian behaviour of Tween 80, solutions of PEDOT:PSS con-
taining the surfactant were also found to shear thin (Figure 6). Hoath et al., previously
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reported similar non-Newtonian behaviour when PEDOT:PSS is mixed with the surfactants
Dynol 607 and Zonyl F50-100 [24].
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cross) for varying shear rates (s−1).

On the addition of small amounts (<1 wt%) of Tween 80, the viscosity of PEDOT:PSS
was found to increase with surfactant concentration (Figure 7) (Table 3). This is in agreement
with literature reports for the addition of the surfactants Dynol 607 and Zonyl F50-100 [24].
Above this concentration, a plateau was observed until the viscosity begins to decrease
again above 2 wt% Tween 80. As PEDOT:PSS solution contains mainly water, the effect of
the same Tween 80 concentrations on pure water were evaluated. These tests revealed a
constant viscosity throughout (Figure 7), highlighting that the changes observed were a
result of interactions between the surfactant and PEDOT:PSS.

To the authors’ knowledge, no literature has been published to date on the rheology of
PEDOT:PSS with surfactants or other additives at these higher concentrations. One possible
explanation for the trend in viscosity is centered on the concept of which components the
Tween 80 interacts with. Initially, Tween 80 is believed to interact only with the excess PSS
in solution [28]. Based on the sheet resistance results (Figure 2), the saturation of the excess
PSS by Tween 80 is expected to occur below 0.5 wt% surfactant. Above this concentration,
the Tween 80 begins to disrupt the bond between the PEDOT and PSS components. It has
previously been suggested that the interaction of surfactants with PEDOT:PSS results in the
creation of PEDOT-surfactant and PSS-surfactant complexes [22]; therefore, the Tween 80
will be contributing to the overall polymer content in the dispersion, increasing viscosity.
Following this interaction, any excess Tween 80 has been reported to phase-separate and
will begin to dilute the solution, reducing its viscosity towards that of pristine PEDOT:PSS.

These results also inform the suitability of PEDOT:PSS/Tween 80 solutions for bulk
manufacturing. Tween 80 has previously been shown to be an effective additive to PE-
DOT:PSS for IJP and R2R methods when used in conjunction with other additives [36,37].
IJP and R2R generally favour lower viscosity inks. While limitations to attainable shear
rates make it difficult to determine solution suitability for bulk manufacturing, pristine
PEDOT:PSS and PEDOT:PSS containing 1% Tween 80 are thought to be appropriate [24,25].
As the viscosities of these two concentrations were found to be the highest and lowest in
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the current study, it suggests that any of the PEDOT:PSS/Tween 80 formulations analysed
would be suitable for bulk manufacture.
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Table 3. Summary of the viscosity and surface tension obtained for each of the PEDOT:PSS/Tween
80 solutions.

Tween 80 (wt%) Viscosity (Pa.s) Surface Tension (mNm−1)

0 0.136 30.61
0.37 0.262 30.12
0.47 0.310 36.82
0.93 0.579 16.52
1.29 0.515 26.57
1.32 0.514 18.81
2.27 0.376 28.22
2.50 0.281 32.72

3.3.2. Surface Tension

The surface tension of PEDOT:PSS/Tween 80 solutions with varying surfactant con-
centrations was assessed. With the addition of Tween 80, surface tension showed an inverse
relationship to viscosity (Figure 8) (Table 3), with 0.93 wt% Tween 80 causing both the
lowest surface tension and the greatest viscosity.

A drop in surface tension was seen with alternative surfactants, although in most
cases only a single concentration was analysed [18,23,24]. Triton X-100 shows a progressive
reduction in surface tension to 1 wt%; however, a plateau rather than an increase was
observed as the concentration exceeded this point [20].

A lowering of the surface tension is advantageous when considering bulk manufac-
turing, as a lower surface tension will improve the wettability of the solution, allowing
for a more even coating. This is particularly important when considering polypropylene,
polyethylene terephthalate (PET), or other polymeric substrates, since pristine PEDOT:PSS
solution coverage and adhesion on these substrates are usually poor [19]. By lowering
the surface energy, and more closely matching this between solution and substrate, higher
quality films can be produced.
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4. Conclusions

Tween 80 has previously been used as an additive to improve the wettability of
PEDOT:PSS for the gravure printing of organic light emitting diodes; however, to date,
its potential as a conductivity-enhancing agent has not been probed. This is despite other
surfactants showing promise. Herein, it has been shown for the first time that Tween 80 can
act as an effective additive to reduce the sheet resistance and increase the conductivity of
PEDOT:PSS films, while also modifying the solution properties to facilitate bulk processing.
Although it may initially appear that Tween 80 does not show as great an improvement
as some other surfactants, such as Triton X-100, these results cannot be directly compared,
as the films reported in the literature have also undergone post-treatment with solvent
washes, which is known to enhance conductivity significantly. Therefore, if the current
formulations were also washed, a greater improvement would be expected.

The addition of small quantities of Tween 80 was shown to reduce the sheet resistance
and improve the conductivity of PEDOT:PSS films, with a more significant change observed
at 0.9 wt% surfactant. Above this concentration, only a small further reduction in sheet
resistance was observed, while the conductivity plateaued. AFM and XRD analysis suggest
the occurrence of phase separation leading to more ordered PEDOT segments within
the PSS matrix. However, this is not significant enough to produce benzoid to quinoid
conformation changes in the Raman spectra. The formation of these PEDOT islands leads
to better conducting pathways and a reduction in sheet resistance.

Furthermore, the rheology and surface tension of PEDOT:PSS were modified by the
addition of Tween 80. The reduced surface tension observed between 0.9 and 1.5 wt%
surfactant implies enhanced wettability and is a good indication that these formulations
would produce better films on flexible polymer substrates, which would otherwise coat
poorly with pristine PEDOT:PSS.
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