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Abstract: This investigation reports on the thermomechanical properties of Poly-tripropyleneglycoldi
acrylate (Poly-TPGDA)/liquid crystal (LC) blends, developed via free radical polymerization pro-
cesses, which are induced by Electron Beam (EB) and Ultraviolet (UV) radiation. The EB-cured
Poly-TPGDA network exhibits a higher glass transition temperature (Tg), a higher tensile storage,
and Young moduli than the corresponding UV-cured sample, indicating a lower elasticity and a
shorter distance between the two adjacent crosslinking points. Above Tg of Poly-TPGDA/LC blends,
the LC behaves as a plasticizing agent, whereas, for EB-cured networks, at temperatures below Tg,
the LC shows a strong temperature dependence on the storage tensile modulus: the LC reinforces the
polymer due to the presence of nano-sized phase separated glassy LC domains, confirmed by electron
microscopy observations. In the case of the UV-cured TPGDA/LC system, the plasticizing effect of
the LC remains dominant in both the whole composition and the temperature ranges explored. The
rubber elasticity and Tg of Poly-TPGDA/LC films were investigated using mechanical measurements.

Keywords: polyacrylates; liquid crystals; electron beam curing; UV-visible irradiation; dynamical
mechanical analysis; elastic modulus; glass transition

1. Introduction

Radiation curing of reactive functional monomers and oligomers represents a widely
used technique for academic purposes and for industrial applications, such as thin film
coatings, adhesives, and paintings [1–7], especially since the desired reactions are generally
ultrafast, they can be carried out at an ambient temperature, and do not need the use of
solvents or catalysts. A broad choice of reactive initial polymer precursors is commercially
available, which can be adapted for particular applications by choosing the correct basic
compositions. Several parameters, such as number and volume densities of functional
groups, molar weights, chemical structures, viscosities, and the processing temperature
can be adjusted to obtain the required polymeric material.

Acrylates are cheap and versatile monomeric materials that can be easily transformed by
radiation polymerization and crosslinking reactions to obtain stable material properties [8].
During exposure to radiation, the initial reactive blends will be transformed to stable three-
dimensional chemically cross-linked polymer networks, which can be characterized, for
example, by their glass transition temperatures and their average distance between two
neighboring cross-linking points.

The choice of curing conditions, such as radiation dose and dose rate, strongly influences
the kinetics of polymerization/cross-linking processes, and thus has an impact on the for-
mation of the polymer network. Ultraviolet (UV)—visible-induced radical polymerization

Polymers 2022, 14, 5024. https://doi.org/10.3390/polym14225024 https://www.mdpi.com/journal/polymers

https://doi.org/10.3390/polym14225024
https://doi.org/10.3390/polym14225024
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/polymers
https://www.mdpi.com
https://orcid.org/0000-0001-7970-1966
https://doi.org/10.3390/polym14225024
https://www.mdpi.com/journal/polymers
https://www.mdpi.com/article/10.3390/polym14225024?type=check_update&version=3


Polymers 2022, 14, 5024 2 of 15

processes generally require the presence of a photoinitiator absorbing in the emission spectrum
of the employed radiation source. The electron beam (EB) technique has the advantage of
enabling the curing process to be carried out in the absence of any initiating species and
is not sensitive to UV-absorbent materials, for example dyes. This technique has already
been applied to elaborate polymer films and Polymer Dispersed Liquid Crystals (PDLC)
materials [9–13]. Starting from a homogeneous mixture with a low molecular weight LC, and
the reactive monomer(s), radiation induced polymerization/crosslinking processes lead to
a decrease in the miscibility between the LC and the growing polymer network, with the
mixture finally separating into two phases. Depending on the LC concentration range, PDLC
materials can be obtained, consisting of micron sized LC domains distributed randomly in
the polymer matrix. These materials are still subject to intensive studies because of the funda-
mental interests and their potential applications, including intelligent windows, information
displays, optical shutters, and holographic devices [14–19]. For example, normal mode PDLC
films can be switched from being optically opaque to a transparent state with the application
of an electrical field.

In this work, the influence of adding an LC to a difunctional acrylic monomer, prior
to its irradiation, was investigated in detail, with particular attention to the concept of
adding small filler particles to a polymer matrix. Research also focuses on nano- and micro-
composite polymers in order to achieve a strengthening of the virgin polymer [20–30], with
relation to specific chemical and physical properties of the filler particles. To the best of our
knowledge, only a few reports are available on studies for reinforced polymers developed
by radiation curing of acrylic monomer/filler blends [29–34].

The experimental mechanical data from selected cured polymer/LC systems will be
presented and analyzed in order to understand the effect of UV/EB radiation on both of
the polymer and the LC properties. The LC is expected to either act as a plasticizer, or to
reinforce the polymer, depending on the composition and the temperature.

2. Materials and Methods
2.1. Materials

The LC E7 was purchased from Synthon GmbH (Wolfen, Germany). It is an eu-
tectic mixture exhibiting a nematic-isotropic transition temperature of TNI = 60 ◦C, a
glass transition of Tg (LC) = −62 ◦C, and a volumetric density of 1.03 g/L at room
temperature. E7 is composed of 51 weight percent (wt.%) 4-cyano-4′-n-pentyl-biphenyl
(5CB, molecular weight 249.36 g/mol), 25 wt.% 4-cyano-4′-n-heptyl-biphenyl (7CB, molec-
ular weight 277.41 g/mol), 16 wt.% 4-cyano-4′-n-octyloxy-biphenyl (8OCB, molecular
weight 307.44 g/mol), and 8 wt.% 4-cyano-4”-n-pentyl-p-terphenyl (5CT, molecular weight
325.46 g/mol), providing the wide temperature range of a nematic phase (≈120 ◦C) [35].
E7 can thus be characterized by a theoretical molecular weight of 271.75 g/mol. Tripropy-
leneglycoldiacrylate (TPGDA, molecular weight 300 g/mol) as a difunctional monomer,
was purchased from Merck (Sigma Aldrich, Saint-Quentin-Fallavier, France). All materials
were used without further purification.

2.2. Preparation of Monomer/LC Blends

The TPGDA/E7 blends containing x wt.% of TPGDA and (100-x) wt.% E7 were
homogenized at an ambient temperature. The samples were applied uniformly on glass
plates and irradiated at room temperature in a nitrogen atmosphere, either by exposure to
EB irradiation or to UV light. 2 wt.% (with respect to the monomer) of Lucirin TPO (BASF)
as a photoinitiator, was added to the initial mixture in the latter case. Film thicknesses
of 100 µm were prepared to allow for complete and homogeneous penetration of EB and
UV irradiation.

2.3. Electron Beam Curing

The EB generator is an Electrocurtain Model CB 150 (Energy Sciences Inc., Wilmington,
MA, USA), delivering a voltage of 175 kV. The samples were prepared according to the
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above procedure and placed on a tray, which went under the irradiation source using a
conveyor belt. Samples were exposed to a dose of 105 kGy, which was achieved using a
constant conveyor speed of 0.19 m/s and a beam current of 7 mA. For each composition,
several samples were prepared to ensure the validity of the results.

2.4. Ultra Violet Curing

The UV light source used was a Minicure Model MC4-300 (Primarc UV Technology,
Slough, Great Britain) equipped with a medium pressure mercury arc lamp rated 80 W/cm.
The samples were placed on a conveyor belt and exposed to UV light, applying a dose of
150 mJ/cm2.

2.5. Mechanical Measurements

Static properties were analyzed using a mechanical testing machine, Instron 6022.
Rectangular samples were cut from irradiated films and the effective sample dimensions
were roughly 15 × 4 × 0.1 mm3. Measurements were performed at 20 ◦C at a constant rate
of 1 mm/min. The stress vs. draw ratio λ, was recorded where λ is the ratio of the final
length l to the initial length l0, prior to the application of stress. Five to eight independent
measurements were made and the results represent average values. Young moduli were
determined from the slope of the stress/draw ratio curves at a zero strain.

Dynamic measurements were performed by means of a Rheometrics RMS 800 mechanic
spectrometer. Rectangular samples with effective dimensions of 20 × 4 × 0.1 mm3 were cut
from the prepared films. Uniaxial tensile deformation was applied under the condition of a
controlled deformation amplitude, which was changed with temperature between ∆γ = 0.0001
at low and ∆γ = 0.05 at high temperatures, remaining in the range of a linear viscoelastic
response. A special set-up designed for the investigated films was used and the experiments
were performed under a dry nitrogen atmosphere.

Curves representing storage and loss moduli (E’ and E”) were measured at a constant
deformation frequency of 10 rad/s and a heating rate of 2 ◦C/min, starting from T = −100 ◦C
up to the temperature where a rubbery state plateau modulus was detected. Values of tan δ
were deduced from the ratio of loss to storage moduli.

2.6. Scanning Electron Microscopy

Samples for Scanning Electron Microscope (SEM) studies were prepared in the same
way as described above. After irradiation exposure was finished, the samples were im-
mersed in tetrahydrofuran for several seconds, in order to extract the LC. The samples
were then coated by a thin platinum layer and characterized by a SEM (Philips XL-30
field emission gun). This sample preparation technique leads to the appearance of dark
holes that were once filled with LC. The magnification used in our experiments was about
5000× using an acceleration voltage of 10 kV.

3. Results and Discussion
3.1. Development of Crosslinked Polymer/LC Films

The effects of both radiation dose and dose rate on the preparation of UV- and EB-
cured polymer and polymer/LC films were investigated by Bouchakour et al. [12,13] on
TPGDA/E7 and other similar acrylic systems. Polymerization and crosslinking reactions of
monomer/LC mixtures may introduce phase separation processes that are likely to govern
sample morphologies of the obtained polymer/LC films. Phase diagrams of monomeric
TPGDA/E7, as well as from the corresponding UV- and EB-cured systems, were determined
using several analytical techniques, such as light microscopy, differential scanning calorime-
try, and light scattering, showing a one-phase region for both cured systems below 30 wt.%
of LC, and a broad biphasic nematic + isotropic region above this concentration [36–38].

The curing conditions for each radiation method (UV and EB) were chosen to give a
fair comparison between the corresponding mechanical results presented in this report.
The UV irradiation equipment (Minicure) was adopted to be able to attain a fast curing
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speed comparable to that used for EB curing, i.e., the maximum exposure time did not
exceed 3 s. The dose values were fixed to reach complete conversion of the monomer
TPGDA into a chemically crosslinked polymer network. Indeed, high acrylic double-bond
conversions should be reached to minimize the undesired effects of unreacted or partially
reacted monomer molecules. In particular, the decrease in the FTIR-bands associated with
the carbon-carbon double bonds of the acrylate groups were followed (C=C deformation
band at 810 cm−1, and another C=C valence vibration around 1638 cm−1), as a function of
a radiation dose. It was found that increasing the radiation doses lead to an increase in the
acrylic double bond conversion [13]. The LC E7 acts as a solvent and the polymerization
reaction was governed by the diffusion of the initiator radicals in this solvent towards
the acrylic double bonds. When the phase separation began, the E7 segregated in small
domains and the reaction was then enhanced towards higher conversions. Polymeriza-
tion/crosslinking reactions involving E7 reached a 100% monomer conversion due to a
certain mobility of the reactive species in this solvent. On the other hand, in the absence of
E7, TPGDA conversion was limited to around 90% due to the relationship with the strongly
reduced mobility of the radicals in the glassy state of the irradiated pure polymer matrix.

As a result, a complete monomer conversion was achieved at radiation doses of
105 kGy for the EB-cured and 150 mJ/cm2 for the UV-cured TPGDA/E7 systems, this then
enabled the two radiation methods to be compared at their best performance.

3.2. Static Mechanical Measurements

Figure 1 represents the evolution of Young moduli as a function of the LC content for
both EB- and UV-cured TPGDA/E7 blends in the range from 0 to 50 wt.% of E7. Starting
from EEB = 1080 MPa and EUV = 820 MPa, which was obtained for the pure crosslinked
Poly-TPGDA, an increase in the LC concentration provoked a sharp decrease in the moduli.
A cross-over phenomenon was observed around 20 wt.% LC, indicating the lower moduli
for EB-cured films with a higher LC concentration.
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Figure 1. Static mechanical analysis: Dependence of Young modulus on LC concentration for both
EB- and UV-cured TPGDA/E7 systems. The insert shows stress as a function of draw ratio λ for the
same samples.
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The inset of Figure 1 shows the stress-strain dependencies. The stress rise of EB-cured
films is steep at low draw ratios, indicating the high modulus, whereas for UV-cured
samples, a reduction in the modulus was observed. Increasing the LC concentration leads
to a strong decrease in the modulus and the tensile strength of the films, accompanied
with an increase in the elongation at break. Interestingly, upon addition of only 10 wt.% of
LC, the Young modulus drops sharply, primarily due to the decrease in the cross-linking
density of the polymer network. The stress–elongation curves of UV-cured films show
yield stress, which means a higher viscoelasticity when compared with EB-cured samples.
As a consequence, elongation at break in the UV-case becomes particularly important for
high LC concentrations.

3.3. Dynamic Mechanical Measurements

The addition of LC to a polymeric material induces considerable changes in the
mechanical behavior of the latter [10,11]. The cross-linking density of a polymer network
decreases when the precursor mixture is diluted with LC, and the molecular weight of the
strands between the cross-links increase, which yields a more flexible network with a lower
plateau modulus [39].

Figure 2 represents the evolution of tan δ around the glass transition temperatures
(Tg) of LC (Tg (LC)) and Poly-TPGDA (Tg (polymer)) as a function of temperature and
composition for EB- and UV-cured films. Tg values were deduced from the peak maxima of
tan δ. In both the EB and UV cases, for less than 30 wt.% of LC only a single (Tg (polymer))
is observed since LC molecules are homogeneously dispersed in the polymer. In the range
from 0 to 30 wt.% of E7, (Tg (polymer)) decreases from 55 ◦C to 29 ◦C for UV-cured and from
76 ◦C to 28 ◦C for EB-cured films, respectively, thus confirming the stronger plasticizing
effect in the latter case. Beyond 30 wt.% of LC, the two compositions dependent Tg’s
appear (Tg (polymer)) and (Tg (LC)), thus indicating a phase separation between the LC
and the polymer. In the vicinity of (Tg (LC)) (Figure 2a,c), tan δ increases abruptly beyond
60 wt.% of E7, and in particular for UV-cured systems, reaching tan δ = 0.45 for 20 wt.% of
Poly-TPGDA/80 wt.% of E7, and tan δ = 0.22 for the corresponding EB-cured blend. These
results indicate stronger phase separation effects for UV-cured films. Moreover, EB-cured
samples exhibit relatively wide tan δ peaks around (Tg (polymer)) and less regular and low
intensity peaks around (Tg (LC)) (Figure 2a). This can be explained by the dispersion of a
certain amount of LC molecules in the EB-cured polymer, providing more network elasticity.
Around (Tg (polymer)) (Figure 2b,d), peak maxima temperatures decrease with the LC
concentration, accompanied with a sharp increase in peak intensities beyond 40 wt.% of
E7. In the case of UV-cured films, (Tg (polymer)) remains almost constant, whereas for
EB-cured samples, it decreases and approaches (Tg (LC)), indicating a certain LC/polymer
miscibility of these blends.

Figure 3a represents the LC concentration dependence of the reduced TgR, defined as a
ratio of Tg of cured TPGDA/E7 films to that of crosslinked TPGDA. Above 30 wt.% of LC, a
plateau of TgR is observed for UV-cured samples, whereas for EB-cured films, the TgR curve
continues to decrease, thus indicating a higher miscibility between the polymer and the
LC when compared to the UV-cured samples. The Full Width at Half Maximum (FWHM)
of tan δ peaks, given in Figure 3b, increases from 0 to 20 wt.% of E7. Plateau values were
obtained at higher LC concentration, with a greater amplitude, thus confirming a better
elasticity of the EB-cured polymer network.
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Figure 4 describes the evolution of the average molar mass of strands between adjacent
crosslinking points (Ms), as a function of the LC concentrations for both UV- and EB-cured
samples. The corresponding Ms values were determined from the classical law of rubber
elasticity [40]:

E′ = 3ρRT/Ms (1)

where EP’ represents the storage modulus at T = 100 ◦C, corresponding to the rubbery state
plateau moduli, ρ is the volumetric density of the networks (determined in this report by
weight measurements of the crosslinked samples with defined geometries, such as disks
and parallelepipeds), and R stands for the constant of perfect gases. Figure 4 clearly shows
that below 20 wt.% of LC, Ms is slightly greater for UV-cured films indicating a higher
crosslinking degree of EB-cured samples. Above 20 wt.% of LC, one observes inversion
of the curves, i.e., the magnitudes of Ms of EB-cured films become larger than those of
UV-cured samples. Beyond 50 wt.% of LC, Ms increases exponentially for both cases, and
at 80 wt.% of LC, Ms (EB-film) ≈ 3 × Ms (UV-film), indicating a strong decrease in the
crosslinking degree of the cured EB sample.
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Figure 5 represents a detailed view of the storage tensile moduli versus temperature
in the range from T = −100 ◦C to T = −40 ◦C. Figure 5a,b displays results from EB- and UV-
cured films, respectively. In the glassy region of the polymer/LC systems, at temperatures
below −70 ◦C, plateau values of the storage tensile moduli were observed for both UV-
and EB-irradiated samples, which strongly depend on the LC concentrations.

For UV-cured films (Figure 5a), with exception of 60 wt.% of LC, increasing LC content
leads to a decrease in the plateau moduli from 1.6 GPa for pure polymerized TPGDA to
0.6 GPa for the blend containing 80 wt.% of LC. The plateau moduli of samples possessing
between 5 and 70 wt.% of LC can be found roughly in the same order of magnitude, whereas
the modulus of the 80 wt.% of LC film was found much below the values of the other
samples. It should be mentioned that films exhibiting LC concentrations below 40 wt.% do
not show any discontinuity around (Tg (LC)). Note the increasing drop of moduli at (Tg
(LC)) for samples exceeding 40 wt.% of LC. Interestingly, the highest drop of 0.5 GPa was
found for 80 wt.% of LC films.

For EB-cured films (Figure 5b), between 0 and 40 wt.% of LC, the corresponding
plateau values roughly overlap and no clear dependence on the LC content was observed.
For LC concentrations higher than 40 wt.%, the EB-curves show widely dispersed plateau
moduli of up to 1 GPa, higher than those of films with a lower LC content. This surprising
behavior was not observed for UV-cured samples.

To achieve a better understanding of the observed phenomena, reduced storage moduli
(E’R) defined by E’R = E’(cured TPGDA/LC)/E’(cured TPGDA) are shown in Figure 6a,b
as a function of the LC concentration in the range from −95 ◦C to 60 ◦C for EB- and UV-
cured samples, respectively. Generally, low E’R values were obtained at high temperatures,
and vice-versa. The isotherm corresponding to Tg (pure LC) divides the graphs into two
distinct parts.
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temperatures for (a) EB- and (b) UV- cured TPGDA/E7 films.

For temperatures above T = −60 ◦C, E’R begins to decrease and drops sharply towards
high temperatures. This behavior can be related to the sorption of the LC as a penetrant
within the polymer matrix and has been described in the literature as a plasticizing effect. A
strong loss of rigidity is observed with increasing LC concentration, confirmed by a strong
drop of Tg (see Figure 3a).
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Furthermore, polymer network formations depends on the LC concentration in the
reactive initial blends prior to curing, for example, the network developed with 70 wt.%
of LC exhibits a much greater distance between two adjacent cross-linking points than
the network prepared with 30 wt.% of LC. As mentioned before, an increasing Ms value
leads to an enhanced network elasticity while the rubbery state plateau moduli EP’ (see
Equation (1)) will be reduced.

For EB-cured films (Figure 6a), below T = −60 ◦C and for a LC content higher than
30 wt.%, E’R increases sharply, reaching twice its initial value (E’R = 2.03) at 50 wt.% of LC,
and stabilizes around E’R = 1.6 for high LC concentrations. The composition dependent
appearance of sub-micron-sized phase separated LC domains within the polymer matrix,
at temperatures below (Tg (LC)), can explain these observations. These glassy LC domains
lead to a reinforced structure of the polymer/LC system and possess an improved mechan-
ical behavior when compared to the virgin polymer. It has already been demonstrated in
the literature that parameters, such as dimension, volumetric, and spatial densities of filler
particles strongly influence the modulus [41].

In contrast to the results obtained from EB-cured films, no enhancement effect on E’R
was detected for UV-cured TPGDA/LC samples (Figure 6b), when compared to pure cured
TPGDA, even at the lowest temperature measured (T = −95 ◦C). At this temperature, E’R
drops from 0.85 (30 wt.% of LC) to 0.67 (50 wt.% of LC), then rises to 0.79 (60 wt.% of LC),
and suddenly relapses for higher LC concentrations. E’R decreases with an increasing LC
content in the temperature range from T = 25 ◦C to −15 ◦C due to the plasticizing effect
induced by the presence of the dispersed LC molecules in the polymer matrix. Only in
the case of polymer/LC blends with more than 30 wt.% of LC and for temperatures lower
than −15 ◦C, a small reinforcement effect was seen, leading to a change in the shape of
the decreasing E’R curves. As for the EB-case, the change in the shape of the curves can
be explained by the appearance of sub-micron-sized glassy LC domains, which stabilize
the modulus. These results can be related to the different irradiation methods and their
consequences on the sample morphology and the polymer network structure.

Representative SEM micrographs of EB- and UV-cured 30 wt.% of TPGDA/70 wt.% of
E7 films are exhibited in Figure 7, applying the same magnification. These pictures show
a large number of dark domains, corresponding to empty holes after careful LC removal
embedded in a brighter continuous environment that represents the polymer matrix. LC
domains are randomly distributed over the films and no preferential orientation of these
domains was observed. Image processing of the SEM images was undertaken using freely
available software from Scion. The results obtained from this granulometric data treatment
were compared with a standard manual method by tracing the encirclements of phase
separated LC domains on semi-transparent paper, which was then scanned and analyzed
by Scion software.

Figure 7a represents a typical image of the morphology of an EB-cured 70 wt.% of
E7/30 wt.% of TPGDA film, revealing a large number of segregated nano-sized LC domains,
exhibiting a maximum of their major axis around 50 nm (see histogram on Figure 7b). These
LC domains present a nearly monodisperse distribution of sizes and forms and can act as
reinforcing filler particles below (Tg (LC)) which is in good agreement with the observed
mechanical enhancement effect.

On the other hand, Figure 7c shows the morphology of the same monomer/LC mixture
irradiated by UV light, revealing a smaller number of more irregular shaped larger LC
domains when compared to the EB-cured sample. The maximum of the major axis of
the LC domain size distribution of the UV-cured film was found around 80 nm, together
with a relatively long tailing up to 700 nm (see histogram on Figure 7d). Moreover, these
irregularly shaped LC domains are often interconnected (revealed by strongly magnified
SEM pictures, not shown here), forming larger objects, also explaining the absence of a
mechanical reinforcing effect.
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 Figure 7. (a) A representative micrograph obtained from SEM observations is presented, showing
the morphology of an EB-cured 30 wt.% of TPGDA/70 wt.% of E7 film. (b) Histogram obtained by
image processing of the SEM picture from Figure 7a, taking into account the size distribution of the
LC domains, and assuming the presence of ellipsoids characterized by a major and a minor axis. The
corresponding SEM analysis of a UV-cured 30 wt.% of TPGDA/70 wt.% of E7 film is given in (c,d).
In both cases, the same experimental conditions were used for the morphological observations of
the samples.

Furthermore, the presence of polymer network heterogeneities should be mentioned
due to the free radical polymerization/crosslinking processes. As a consequence, regions
with highly and loosely cross-linked polymer networks may be created locally. These
heterogeneities can be formed, especially in the case of the UV-cured sample, due to the
initiation step and may contribute to the absence of the mechanical reinforcement effect.
Indeed, during the initiation step of the photo-polymerization process, the reaction starts
first around the photoinitiator radicals, forming polymer network spots, which might
be different from one spot to another, depending on the local solubility of the initiator
in the monomer. As a consequence, this might induce some heterogeneity, not only in
the obtained polymer networks, but also in the morphologies of the phase separated
polymer/LC system. However, under EB exposure; the electrons directly react with the
double bonds of TPGDA, which should be homogenous in the mixture, and as a result,
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homogenous networks and morphologies are likely to be formed throughout the EB-cured
polymer/LC film.

4. Conclusions

In this report, static and dynamic mechanical studies of UV- and EB-cured Tripropy-
leneglycoldiacrylate were presented. An important decrease in the mechanical strength of
the polymeric films was observed when the polymer precursor blend contains E7 as a model
for a low molar weight nematic LC. Below 30 wt.% of E7, LC molecules are well dispersed
in the polymer matrix thus weakening its mechanical properties by a plasticizing effect.
Phase separated structures were obtained above 30 wt.% of LC, where E7 domains were
formed in the polymer networks. In this concentration range, at temperatures below the
LC glass transition, EB-cured TPGDA/LC films present strong and unusual enhancements
of their mechanical modulus. Therefore, tunable mechanical properties can be obtained
from such phase separated polymer/LC materials, depending on the LC glass transition
temperatures and sample compositions. This reinforcement effect can be explained by the
sample morphology, showing a large number of nano-sized monodisperse LC domains in
the EB-cured films. On the other hand, UV-cured samples did not show a reinforcement
effect due to the large size distribution of irregularly shaped LC droplets.
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